

Ms. Renee Romero New Mexico Environment Department Petroleum Storage Tank Bureau 1914 West Second Street Roswell, New Mexico 88201-1712

Re: Final Remediation Plan

Former Y Station, 721 Commerce Way, Clovis, New Mexico

Facility #53742, Release ID #4746, WPID #4134

Dear Ms. Romero:

Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed Final Remediation Plan (FRP) for the above-referenced site. The plan has been prepared in accordance with applicable sections of the Petroleum Storage Tank Regulations and DBS&A standard operating procedures. Pending approval of the FRP and potential responses to comments, DBS&A intends to invoice the full amount budgeted for Deliverable ID 4134-1.

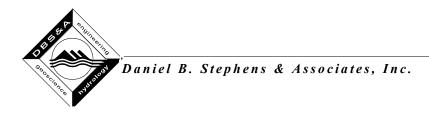
Please contact us at (505) 822-9400 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Am & Sk


Project Engineer

Jason J. Raucci, P.G. Project Geologist

TG/rpf Enclosure

cc: Katherine MacNeil, NMED PSTB

Lorena Goerger, NMED PSTB

Responses to Petroleum Storage Tank Bureau Comments Received July 30, 2021 Regarding Former Y Final Remediation Plan

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared the following responses to questions posed by the New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB) regarding the Final Remediation Plan (FRP) for the Former Y Station site. DBS&A submitted the original FRP on July 16, 2021. Comments were discussed in a conference call on July 30, 2021 and submitted via email on August 5, 2021. The PSTB's complete comment is provided in *italics*, followed by DBS&A's response in regular text. The FRP has been updated to include these responses.

Comments

1. Please include verbiage about pressure testing conveyance lines before backfilling as mentioned in the PVC piping specification 22 05 03 02.

The following was added to the FRP:

Section 4.5.2. "All PVC conveyance piping shall be pressure tested per specification Section 22 05 03 02 prior to backfilling."

2. Appendix C - Engineering Drawings & Appendix E - Cut Sheets

Spelling mistakes and other minor errors have been corrected on the drawings, as was discussed during the conference call. The following items will be captured in the as-built report in order to provide the most accurate information on those specific items:

- Labels and tank gauging chart for the 300-gallon product storage tank
- Labels on the SVE treatment unit and the Thermal Oxidizer
- A separate P&ID legend
- 3. Calculation DB18.1157-001: SVE Headloss
 - a. Narrative:
 - Please fix Reynold's Formula and call out dynamic viscosity instead of kinematic viscosity in the denominator of this formula as per our MS Teams discussion on Friday July 30th, 2021.

Corrected from "kinematic" to "dynamic".

ii. Please correct the air density value to be consistent in the H_{maj} and H_{min} calculation as per our MS Teams discussion on Friday July 30th, 2021.

Air density was corrected for the H_{min} calculation.

b. Summary Table 2:SVE Headloss by Line

Daniel B. Stephens & Associates, Inc.

i. SVE Line 1 shows 23.2 in H2O head loss yet when you tally up the line segments that make up SVE Line 1 – you get 17.39 in of H2O and if you include the BW-5 (RW-3) to tie-in and RW-4 to tie in, you get a total of 20.69 in of H2O. How do you arrive at 23.2 in of H2O for SVE Line 1.

The total for SVE Line 1 also includes the losses from the Blower to the SVE Manifold (4.16 inches water), and the Intermediate Well head (1.70 inches water). These are provided in Table 3 of the spreadsheet.

c. Summary Table 3: Total Head losses – the total sum of head loss for the lines (Maximum head loss) shows 9.3 in of H2O, please revise as appropriate.

The total sum in that table has been deleted. It does not apply to this site.

d. Third graph: depicting pressure (bs/sq ft) versus altitude needs the y and x axes labeled.

Added axis labels.

- 4. Calculation DB18.1157-002:
 - a. Please elaborate on your professional judgment in the assumption of wellhead minor losses (pitless adaptor, valve, fittings etc) as per our MS Teams discussion on Friday July 30th, 2021.

During design, it can be difficult to accurately predict minor losses for small submersible pump systems. Choosing one value for minor losses simplifies calculations and provides the ability to include an additional factor of safety for the overall TDH for each pump. For this site, a value of approximately 10 percent of the static head (rounded up), or 40 feet, was conservatively chosen for minor losses. Total friction loss was only 13 feet, so the value of 40 feet used in the calculation will be very conservative.

- 5. Additional Calculations:
 - a. As per our MS Teams Discussion on Friday July 30th, 2021, DBS was to provide the hydrocarbon emissions and rates from the DPE system to demonstrate compliance with Air Quality Standards for TPH and COCs in lbs/hr, tons/yr.

A calculation has been added showing hypothetical emissions from the proposed remediation system. No pilot testing was performed on the proposed remediation wells, so actual influent concentrations are not available and had to be estimated from sample collection performed by the previous consultant on other nearby wells. The calculation does show convincingly that soil vapor treatment is required at this site, and that emissions should be below regulatory triggers for a Notice of Intent. Emissions calculations will need to be performed during regular system operation to ensure compliance with NMED air permitting regulations.

Final Remediation Plan Former Y Station State Lead Site 721 Commerce Way, Clovis, New Mexico Facility ID #53742, Release ID #4746 WPID #4134

Prepared for

New Mexico Environment Department Petroleum Storage Tank Bureau Roswell, New Mexico

Prepared by

6020 Academy NE, Suite 100 Albuquerque, New Mexico 87109 www.dbstephens.com DB18.1157

July 16, 2021 (Revised August 12, 2021)

Table of Contents

1.	Introduction1			
	1.1	Site Summary	1	
	1.2	Site History	1	
	1.3	Geology and Hydrogeology	3	
	1.4	Distribution of Contamination	4	
		1.4.1 Contaminants of Concern		
		1.4.2 Distribution of Contaminants in Soil	4	
		1.4.3 Light Nonaqueous-Phase Liquid Contamination		
		1.4.4 Dissolved-Phase Contamination	6	
2.	Con	tractor Qualifications	6	
3.	Remediation Goals/Cleanup Standards			
	3.1	Exposure Pathways	6	
	3.2	Remediation Goals/Performance Standards	7	
4.	Description of Proposed Remediation System			
	4.1	Overview	9	
	4.2	Equipment Enclosures	11	
	4.3	Soil Vapor Extraction Treatment Equipment	11	
	4.4	Groundwater Treatment Equipment		
	4.5	Remediation Wells, Trenching, and Pipe Installation		
		4.5.1 Extraction Wells		
		4.5.2 Conveyance Line Trenching and Pipe Installation		
	4.6	Utility Requirements/Utility Clearances		
	4.7	As-Built Report Preparation and Submittal		
	4.8	Operations		
	4.9	Contingency Plan		
5.	Rem	nediation System Operation and Maintenance		
	5.1	Overview	18	
	5.2	Extracted Soil Vapor	18	
	5.3	Extracted Groundwater		
	5.4	DPE Treatment System Operation and Maintenance		
		5.4.1 Biweekly Activities		
		5.4.2 Quarterly Activities		
	5.5	One Year of Quarterly Monitoring and Reporting	21	

	5.6	Health and Safety Requirements	23	
6.	Permits		24	
	6.1	Temporary Water Right Use Agreement	24	
	6.2	Air Quality Bureau Notice of Intent	24	
	6.3	Office of the State Engineer Well Permits	24	
7.	Noti	fications	24	
8.	Implementation Schedule2			
9.	Evaluation of Remedial Actions2			
10.	Statement of Familiarity			
Refe	rences	S	27	

List of Figures

- 1 Area Map
- 2 Site Map
- 3 Geologic Cross Section
- 4 Potentiometric Surface Elevations, March 19, 2021
- 5 Distribution of Dissolved-Phase Contaminants, March 2021
- 6 Benzene Isoconcentration Map, March 2021
- 7 EDC Isoconcentration Map, March 2021
- 8 EDB Isoconcentration Map, March 2021
- 9 Proposed Technical Approach
- 10 Proposed Remediation System Layout

List of Tables

1 Proposed Remediation Wells

List of Appendices

- A Boring Logs
- B DBS&A Groundwater Modeling Report
- C Engineering Drawings
- D Calculations
- E Product Cut Sheets
- F Technical Specifications
- G O&M Data Collection
- H Health and Safety Plan
- I Permits
- J Legal Notice of Publication
- K Schedule for Implementation of Final Remediation Plan

1. Introduction

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this Final Remediation Plan (FRP) for the Former Y Station State Lead site in Clovis, New Mexico (the site). This FRP was prepared in accordance with applicable sections of Part 119 of the New Mexico Petroleum Storage Tank Regulations (PSTR) and the work plan dated December 20, 2019 (DBS&A, 2019d), which was approved by the New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB) on February 19, 2020 (NMED, 2020). The associated work plan identification (WPID) number is #4134.

1.1 Site Summary

Located at 721 Commerce Way in Clovis, New Mexico (Figure 1), the site is currently occupied by an optical retail center and the intersection of Prince Street and Commerce Way. It is surrounded by a variety of other commercial land uses, such as big box retail stores, fast food restaurants, and gasoline service stations. Residential neighborhoods are adjacent to the west and east of the Prince Street commercial corridor.

Initial site investigation activities conducted by the previous consultant in 2011 were driven by the discovery of a release during a tank pull at the Allsup's No. 320 (Allsup's) site, located at the corner of Prince and 21st Streets (Figure 2). Subsequent investigations from 2012 to 2016 revealed a large dissolved-phase hydrocarbon plume south of the Allsup's site, centered near the intersection of Prince Street and Commerce Way.

1.2 Site History

Interviews with local residents and inspection of public records by the previous consultant revealed that a fueling station was formerly present on the southwest corner of Prince Street and Commerce Street, locally referred to as "the Y." The Former Y Station was reportedly active from the late 1950s through approximately 1981. The intersection has been reconfigured since that time, and the site is now occupied by active traffic lanes and the adjacent Optical Source retail outlet.

The previous consultant oversaw installation of 10 groundwater monitor wells (BW-1 through BW-10) in the vicinity of the Former Y Station, including 3 wells on the Allsup's property (Figure 2), and conducted limited soil vapor extraction (SVE) feasibility testing at the Allsup's site

(BEI, 2012). Benzene was the constituent detected at the highest concentrations and across the greatest areal extent. Concentrations of other contaminants of concern (COCs) above applicable regulatory standards were typically localized near the center of the benzene plume. As of July 2016, the extent of groundwater contamination remained undefined to the south and east.

DBS&A responded to a request for proposals (RFP) for State Lead remediation services for the site with a proposal submitted to the PSTB on October 24, 2017. DBS&A was selected as the most responsive bidder and entered into a contract with NMED that was executed on May 15, 2018. On May 30, 2019, DBS&A initiated an additional investigation program, which included installation of 9 monitor and/or remediation wells at the site (RW-1 through RW-4, BW-7R, and MW-11 through MW-14). The primary goals of the initial investigation were to (1) characterize soil and groundwater conditions directly under the site of the Former Y station, which is presumed to be the site of the release and (2) attempt to delineate the downgradient extent of the dissolved-phase contaminant plume.

Data collected during installation of remediation wells RW-1 through RW-4 confirmed the conceptual site model (CSM) presented in DBS&A's proposal for State Lead remediation services. Significant contamination is present in the vadose zone adjacent to the release point; however, contamination in the downgradient smear zone appeared to be less than previously thought (DBS&A, 2019c). Initial investigation activities also included step and constant-rate aquifer pumping tests at newly installed monitor well MW-11, analysis of the physical properties of aquifer materials, groundwater modeling to assess the feasibility of the proposed remediation approach, and baseline monitoring of new and existing site wells (DBS&A, 2019b and 2019c). In June 2020, 3 additional monitor wells (MW-15, MW-16, and MW-17) were installed to better define the extent of contamination cross-gradient to the east (DBS&A, 2020).

Based on findings from the additional investigations, DBS&A recommended that corrective action proceed using a dual-phase extraction (DPE) system as detailed in the DBS&A proposal for State Lead remediation services. The proposed remediation system prioritizes removal of source area mass near the point of release using multi-zone DPE remediation wells to remove light nonaqueous-phase liquid (LNAPL) and residual hydrocarbons in the vadose zone, and is coupled with a pump-and-treat approach to speed remediation of the downgradient dissolved-phase contaminant plume in groundwater.

1.3 Geology and Hydrogeology

The site is located in the Llano Estacado section of the Great Plains physiographic province, at an elevation of approximately 4,280 feet above mean sea level (feet msl). Surface drainage in the area around the site is generally to the south. The City of Clovis (the City) is located within the Curry County underground water basin (UWB), as defined by the New Mexico Office of the State Engineer (OSE).

The geology underlying the City consists of layered sedimentary formations dipping gently to the southeast—principally the Ogallala Formation and underlying Triassic-age sedimentary rocks. The Ogallala Formation (Pliocene) consists of fine- to coarse-grained sand, silt, and clay; ledges of weathering-resistant, calcium carbonate-cemented caprock are present near the top of the formation (Galloway, 1972). The caprock unit of the Ogalalla Formation is up to 60 feet thick and variably cemented by caliche, and has been observed in boreholes completed at the site. The caprock is underlain by a thick sequence of fine-grained, loosely consolidated sands and silty sands. A slight increase in cementation is noted below about 250 to 300 feet below ground surface (bgs) in boring logs from the site (DBS&A, 2019c and 2020). Sonic cores retrieved during drilling of new wells installed in 2019 indicated the widespread presence of a poorly sorted, clay- and gravel-rich interval below about 350 feet bgs (Figure 3), consistent with the basal beds described by Galloway (1972).

Based on data from the U.S. Geological Survey (USGS), the Ogallala Formation likely extends to a depth of approximately 380 feet bgs in the site vicinity (Hart and McAda, 1985). The Ogallala Formation is underlain by fine-grained sedimentary rocks of the Triassic-age Dockum Group. Rocks of the Dockum Group are considered hydrologic bedrock, and constitute the lower bound of the Ogallala Aquifer (Hart and McAda, 1985; Galloway, 1972).

At the site, groundwater is present within the Ogallala aquifer under unconfined conditions, and is encountered at depths of approximately 325 to 330 feet bgs. Figure 4 presents a potentiometric surface map constructed from data collected during the most recent monitoring event in March 2021. The groundwater flow direction is generally to the south-southeast with an overall average gradient of approximately 0.003 foot per foot (ft/ft). The flow direction and gradient have been consistent since the initiation of groundwater monitoring at the site.

The current saturated thickness of the Ogallala aquifer in the site vicinity is estimated to be approximately 50 to 55 feet. The City currently relies entirely on groundwater from the Ogallala aquifer for its municipal water supply. Significant and ongoing water level declines in the

Ogallala aquifer are well documented in the Clovis area. Water levels have decreased in the Clovis vicinity by over 50 feet since 1950, and recent estimates indicate that water levels have been decreasing at locally variable rates, by up to 1 foot per year.

The results of aquifer testing conducted by DBS&A at Former Y Station monitor well MW-11 indicate aquifer parameters that are consistent with literature ranges for fine-grained silty sand aquifers under unconfined conditions (e.g., Freeze and Cherry, 1979). Based on observed drawdown at MW-11, the estimated aquifer transmissivity is approximately 58 square feet per day (ft²/d), with a specific yield of 0.20. The transmissivity estimate is equivalent to a hydraulic conductivity of 1.16 feet per day (ft/d) for an aquifer of 50-foot thickness. These findings are close to the lower range of laboratory hydraulic conductivity measurements for sediment samples collected during well drilling. The laboratory samples did not include the clay-rich basal sediments (DBS&A, 2019b).

Modeling of the Curry County UWB by the OSE estimated that the hydraulic conductivity of the Ogallala aquifer in the vicinity of Clovis is approximately 70 ft/d, with a specific yield of approximately 23 percent (NMISC, 2016). The regional hydraulic conductivity in the Ogallala Aquifer is thus significantly greater than that observed at the site. This difference may be due to the lower part of the aquifer at the site being locally composed of finer-grained sediments and/or well losses during pumping, which would contribute to a lower estimate of the formation hydraulic conductivity.

1.4 Distribution of Contamination

1.4.1 Contaminants of Concern

Field observations and laboratory analytical results indicate that soil and groundwater at the site have been impacted by contamination from petroleum storage facilities. Contamination is characteristic of gasoline range organics (GRO) fuels. COCs at the site include LNAPL and dissolved-phase petroleum hydrocarbons including benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tertiary-butyl ether (MTBE), and naphthalenes, as well as the fuel additives 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB).

1.4.2 Distribution of Contaminants in Soil

Historical aerial photographs show an aboveground tank farm and convenience store north of the current Optical Source building, within what is currently right-of-way (ROW) for Commerce Way (Figure 2). Soil screening data gathered during drilling of remediation wells near the site

helped confirm the release point as the Former Y Station, with high soil vapor field screening concentrations present in RW-2 below a depth of 135 feet bgs. Elevated soil vapor field screening concentrations were present in RW-1 starting at approximately 273 feet bgs, which corresponds to the approximate water table near the time of the release. In RW-3, high soil vapor field screening concentrations were noted starting at approximately 294 feet bgs (Appendix A). These data are consistent with the proposed CSM, with decreasing water levels over time as contaminants migrated off-site, resulting in a significant thickness of impacted smear zone above the water table downgradient of the release area, decreasing in thickness farther from the release. However, vadose zone contamination in the smear zone near downgradient wells appears to be less than that expected based on wellhead vapor analysis by the previous site consultant. A relatively high SVE radius of influence (ROI) may have allowed movement of soil vapor from highly impacted areas toward more distal sampling points.

1.4.3 Light Nonaqueous-Phase Liquid Contamination

LNAPL has been consistently present in monitor well BW-5 since at least February 2019 at thicknesses ranging up to 1.77 feet, and recently appeared in well RW-2 at a thickness of 0.35 foot. Based on the presence of LNAPL in these two wells, a significant volume of LNAPL is likely present under North Prince Street and Commerce Way. The limited number of wells intersecting the LNAPL plume precludes a quantitative assessment of the free LNAPL volume, but a rough estimate—assuming an LNAPL formation thickness of 0.15 foot, impacted area of approximately 0.5 acre, and porosity of 0.25—yields a residual volume of approximately 6,100 gallons.

The laboratory report from the May 2019 monitoring event includes results for individual hydrocarbon constituents, as well as a series of diagnostic ratios and parameters used to characterize the LNAPL recovered from well BW-5. Diagnostic ratios are used to assess a variety of factors, such as the type of release, environmental weathering, refining characteristics, and regulatory compliance. Evaporation ratios from the BW-5 LNAPL sample are below established ranges for fresh gasoline, suggesting that the LNAPL is more evaporated, consistent with a source from an aboveground tank. LNAPL analytical results were consistent with slightly weathered, leaded gasoline, with little or no indication of a diesel fuel component (DBS&A, 2019a).

Oxygen exchange with the surface at this depth is likely to be minimal without the aid of a corrective action system. Therefore, it is reasonable to assume that anaerobic conditions

currently exist in the vicinity of the LNAPL plume, and that natural biodegradation of the petroleum hydrocarbon constituents is minimal.

1.4.4 Dissolved-Phase Contamination

DBS&A conducted six monitoring events between 2019 and 2021. Based on data collected during these monitoring events, concentrations of dissolved-phase COCs in groundwater above the applicable New Mexico Water Quality Control Commission (NMWQCC) standards extend approximately 1,000 feet downgradient from the presumed release. Figure 5 provides analytical results for dissolved-phase COCs in groundwater samples from site wells collected during the most recent monitoring event in March 2021. Figures 6 through 8 provide isoconcentration maps showing the extent of elevated benzene, EDC, and EDB concentrations in groundwater. The elongate plume structure is consistent with a stable groundwater flow direction in a relatively permeable aquifer. Monitor wells MW-14, MW-15, and MW-17 largely define the extent of dissolved-phase contamination downgradient to the east and south. The plume extent remains less well constrained east of well MW-16 (DBS&A, 2021).

2. Contractor Qualifications

DBS&A is a licensed contractor in the state of New Mexico and holds a GS-29 license (License #89947). EnviroWorks of Edgewood, New Mexico has been selected to serve as the general contractor at the site, and will coordinate conveyance line trenching and backfill, as well as installation of the remediation system. The equipment manufacturers will be Intellishare Environmental (Intellishare) of Menomonie, Wisconsin and H2K Technologies, Inc. (H2K) of Corcoran, Minnesota. All work will be performed under the supervision of a professional engineer licensed in the state of New Mexico.

3. Remediation Goals/Cleanup Standards

3.1 Exposure Pathways

Potential exposure pathways at the site include soil vapor, soil, and groundwater. Shallow soil has been impacted near former bulk dispensers at the Former Y Station site, located north of the intersection of Commerce Way and Prince Streets in Clovis, New Mexico. Findings of the site investigations confirmed a CSM of water levels decreasing with time as contaminants migrated

off-site, resulting in a significant but decreasing thickness of smear zone above the water table downgradient of the release area. However, vadose zone contamination in the smear zone at downgradient well locations appears to be less than expected. Based on historical information, the primary release point was likely located under the current intersection of Prince Street and Commerce Way. The Optical Source is the only occupied commercial structure located in proximity to the release. Soil impacts were noted during drilling of well RW-2 (adjacent to the Optical Source) below a depth of about 135 feet bgs, and the depth to contamination in the smear zone farther from the release is greater than 250 feet bgs. Based on current U.S. Environmental Protection Agency (EPA) guidance, petroleum hydrocarbons in soil at this depth are not considered a risk via the vapor intrusion pathway.

The vapor intrusion pathway is therefore not considered complete for petroleum hydrocarbons at the site due to the depth of groundwater and LNAPL, as well as the lack of shallow soil impacts under existing structures. However, concentrations of the halogenated organic compounds EDB and EDC in groundwater under commercial and residential structures in the plume area may exceed the March 2017 New Mexico vapor intrusion screening levels (VISLs) for these compounds. The VISLs corresponding to the vapor intrusion pathway from groundwater for EDC and EDB are 22.3 micrograms per liter (μ g/L) and 1.76 μ g/L, respectively. These compounds are comparatively stable in the vadose zone, and may diffuse upward in the vapor phase from the water table to shallow soil. Given the depth to the water table in this area, it is not known whether this pathway is complete for these constituents.

Groundwater impacts to municipal production or domestic wells constitute a potential exposure pathway. Based on data obtained from the OSE online database, the nearest well to the site is a domestic well located approximately 1,000 feet cross-gradient to the east; the nearest downgradient well is a domestic well located approximately 2,000 feet to the southeast. It is not known if these wells remain in use. The closest active EPCOR Water production well is located approximately 2.5 miles northeast of the site. Based on the distances to these wells and the apparent stability of the plume, the risk to water production wells is minimal. In addition, EPCOR has stated that they are actively sampling downgradient municipal supply wells, and that no detections of hydrocarbon constituents have been reported.

3.2 Remediation Goals/Performance Standards

The proposed remedial approach entails using DPE to simultaneously remove vapor-phase and dissolved-phase hydrocarbons from the soil column and groundwater, respectively. Treated

groundwater will be discharged to a sanitary sewer manhole located near the equipment compound. Primary remedial objectives are as follows:

- Remove residual source area hydrocarbon mass in order to mitigate the impact of released petroleum hydrocarbons on groundwater resources and potential receptors. DBS&A has observed that during previous remedial actions, dissolved-phase hydrocarbon concentrations in groundwater decreased significantly following removal of the source area contaminant mass.
- 2. Accelerate achievement of performance standards for the dissolved-phase hydrocarbon plume by extracting and treating impacted groundwater. Dissolved-phase contamination will be monitored on a quarterly basis to assess plume stability and response to mitigation actions.

The following performance standards will be met to document the success of the remediation work performed:

- Maintain minimum runtime of 90 percent for major remediation equipment, which is achievable through proper preventive maintenance on equipment and use of telemetry to provide instant notification of system shutdowns through text message and/or e-mail.
- Document, through laboratory testing, that extracted groundwater discharged to the sanitary sewer system contains volatile organic compound (VOC) concentrations that are below NMWQCC standards and/or comply with City discharge requirements.
- Document efficacy of the vapor treatment system by collecting system influent and effluent air samples at a minimum frequency of twice per month to demonstrate optimization of mass removal and destruction of contaminants prior to discharge to the atmosphere.
- Within two years of system operation, document that measurable LNAPL is no longer
 present within the monitor well network, and within three years reduce extracted soil vapor
 concentrations to less than 100 parts per million by volume (ppmv) of VOCs as measured by
 a photoionization detector (PID).
- Conduct remediation of groundwater to meet NMWQCC standards for BTEX, MTBE, EDB, EDC, and total naphthalenes within 5 to 7 years of system operation.

These performance standards for remediation of LNAPL and vadose zone contaminants are based on DBS&A's experience with LNAPL plumes of similar areal extent. SVE feasibility testing showed the subsurface to be highly conducive to SVE, with a relatively high ROI—approaching

100 feet (BEI, 2012). DBS&A aggressively designed the extraction well network using a more conservative ROI of 80 feet and removal of approximately 800 standard cubic feet per minute (scfm) of impacted soil vapor from source area wells BW-8 and RW-1 through RW-4 (Table 1).

The DBS&A groundwater modeling report provided an assessment of a range of groundwater extraction scenarios for 5- and 10-year time frames (Appendix B). The minimum pumping scenario evaluates the minimal threshold for attaining containment of the benzene plume within 5 years of operation. The maximum pumping scenario evaluated the pumping conditions that could be applied to maximize capture of the plume through 10 years of operation without extraction wells going dry. A combined pumping rate of 20 gallons per minute (gpm), similar to the maximum pumping scenario, will produce approximately 10 million gallons per year, which is approximately half of a contaminated pore volume per year based on the current plume extent. Under this scenario, and combined with aggressive source area vapor-phase extraction, DBS&A anticipates that COC concentrations in groundwater across a significant majority of the impacted area can be reduced to below applicable standards within 5 to 7 years.

Although it may not be possible to remove all COCs from the subsurface, the selected method of remediation will provide the most cost-effective means of mitigating hydrocarbon contamination in soil and groundwater at the site, while protecting potential receptors and groundwater resources.

4. Description of Proposed Remediation System

4.1 Overview

The remediation system designed for the site is a DPE system, including SVE and whole-fluids extraction. The proposed remediation system is detailed in the engineering drawings (Appendix C), supporting calculations (Appendix D), product cut sheets (Appendix E), and technical specifications (Appendix F).

A total of 5 multi-zone nested wells (BW-8 and RW-1 through RW-4) have been clustered around the current extent of LNAPL to address source area contamination. A total of 4 single-zone remediation wells (BW-7R, MW-11, MW-12, and MW-16) will address downgradient contamination (Figure 9). Table 1 summarizes extracted air and groundwater flow rates for the DPE system. MW-13 will also be connected to the DPE system for contingency purposes; a submersible pump could be installed at a later date if site conditions warrant its use.

SVE pilot testing showed observable vacuum response up to 94 feet from the extraction wells (BEI, 2012). Due to the large areal plume extent and high cost of well installation at this site, it has not been practical to establish a well network conducive to additional pilot testing. Therefore, DBS&A conservatively designed the remediation well network for an ROI of 80 feet, as shown on Figure 9.

Applied well vacuum during feasibility testing ranged from 27 to 57 inches of water column (inches H₂O), which produced extracted air flow rates of 85 to 99 scfm (BEI, 2012). The vacuum and flow data were used to estimate design parameters for the proposed SVE wells based on calculated unit flow rates per length of exposed screen (scfm per foot [scfm/ft]). Because individual zones produced air flow on the order of 1.5 scfm/ft, DBS&A assumed that flow in a full-scale, multi-zone extraction scenario with some overlap with adjacent zones will be approximately 1.0 scfm/ft. In addition, DBS&A conservatively assumed an applied well vacuum at the wellhead of 60 inches H₂O (Appendix D).

Based on evaluation of the pumping scenarios presented in the groundwater modeling report for the site (Appendix B), DBS&A plans to implement a groundwater extraction strategy that will produce a combined volume of approximately 20 gpm from 8 existing wells (Table 1). This approach will maximize capture of the dissolved-phase contaminant plume and expedite achievement of the applicable cleanup standards, while not dewatering the well network during sustained system operation.

The remediation wells will be plumbed to an equipment compound located on the northeast corner of North Prince Street and York Drive (Figure 10). The compound will be enclosed by an 8-foot-tall, gated chain link fence with vertical privacy slats to reduce visibility of the remediation equipment. Treated groundwater will be discharged to the sanitary sewer.

DBS&A received written approval in January 2021 from both the property owner and the tenant, Albertson's, to locate major remediation equipment at this location. DBS&A helped negotiate access for conveyance piping with most of the other affected property owners in 2019, and NMED counsel negotiated access for conveyance piping with Clovis Shopping Center, LLC in June 2021.

The remediation system is designed to achieve the goals outlined in Section 3 through the following primary processes:

Recovery of contaminant mass from the release area and vicinity using SVE

- Reduction of groundwater impacts by diffusing hydrocarbon mass from a liquid to a vapor phase that can be removed using the SVE system
- Treatment of contaminated groundwater using an oil/water separator, a diffused aerator, and an inclined plate clarifier

4.2 Equipment Enclosures

Treatment equipment will be provided within two modified shipping containers to reduce noise and mitigate theft and vandalism. Both containers are expected to be 20 feet in length. The modular approach at this site will be advantageous if site conditions require operation of only one component of the DPE system.

The SVE blower, vapor/liquid separator, and associated equipment and controls will be located within one modified shipping container. The second container will contain the oil/water separator, diffused aerator, and clarifier. The enclosures will be provided with an insulated floor, walls, ceiling, and steel access doors; the floor will be sealed with a non-skid bed liner. Heating and cooling will be provided via a wall-mounted heater and vent fan with sound-insulated inlet/outlet louvers and a thermostat. A floor sump and high level sensor will be included in the event of a water leak from tanks or process piping. Noise will be reduced to a reasonable level. The site is zoned as commercial and located adjacent to Prince Street, but the closest residence is located approximately 200 feet to the southeast.

4.3 Soil Vapor Extraction Treatment Equipment

The SVE system treatment equipment will include the following:

- Conveyance piping: SVE wells will be piped to three primary conveyance lines that will connect to a common manifold using individual Schedule (SCH) 40 polyvinyl chloride (PVC) conveyance lines (Appendix C). The primary trunk lines for SVE from source area wells (SVE line 1) and downgradient wells (SVE line 2) will be 8-inch-diameter and 4-inch-diameter, respectively. A 2-inch-diameter pipe will convey flow from contingency well MW-13 (SVE line 3).
- Inlet piping manifold: The manifold will be constructed using an 8-inch SCH 40 PVC header, with SCH 40 PVC risers and fittings to match the three primary trunk lines. Each riser will include a vacuum gauge, isolation valve, sample port, and 1/4-inch threaded plug for a manometer-type insertion flow meter.

- Moisture separator: The piping manifold will connect to a 220-gallon vapor/liquid separator, including a 55-gallon liquid-holding capacity, with at least 99 percent moisture removal capability. The vapor/liquid separator will include a liquid-coalescing media internal to the separator, and a demister element with acquiescence plate to isolate condensate water from turbulent flow. External devices will include a 6-inch sediment clean-out port, sight tube and 3-point level switch, vacuum relief valve, and bottom drain valve that will be connected to the oil/water separator using a condensate transfer pump.
- SVE blower: The SVE blower will be a rotary lobe blower Sutorbuilt Legend 7L or equivalent, capable of maintaining an extraction flow rate of 1,000 scfm at 85 inches H₂O vacuum at an elevation of 4,295 feet msl. A 40-horsepower (hp), 480-volt, 3-phase completely enclosed fan-cooling variable speed motor will be provided, equipped with a variable frequency drive (VFD) located at the main control panel. The blower will be mounted on a steel discharge silencer with adjustable motor base for belt tensioning. The blower inlet will include a particulate filter; the discharge piping from the blower will be galvanized steel, and will include a sample port, pressure gauge, and temperature gauge.
- Thermal oxidizer: The oxidizer used for treatment of extracted soil vapor will be an
 Intellishare thermal oxidizer designed to operate at concentrations up to 50 percent of the
 lower explosive limit (LEL) and rated at a maximum of 1,000 scfm. The base and reactor will
 be composed of A-36 carbon steel, with a 300-series stainless steel stack. The treatment
 unit will discharge through a stack that will vent at a height of approximately 15 feet above
 the ground surface.
- Control panel: The control panel will consist of a NEMA 4 enclosure or equivalent enclosure rated for outdoor use, with an interior swing door. A fused main disconnect will be located in a separate enclosure mounted next to the control panel. The panel will have circuit breakers for protection of all motors. Each motor will have a Hand-Off-Auto switch with green run light indicators. Red lights will be labeled for all alarms. The panel will include intrinsically safe barriers for all switches, and surge and lightning protection for the controls and telephone line. The system will be controlled with an Allen Bradley programmable logic control (PLC) that has datalogging capability and a touch-screen graphical user interface. The PLC will be sized with two additional inputs and outputs beyond the number required to run the system and an uninterruptible power supply. The panel will include a control transformer, emergency stop switch, and ground fault interrupter outlet. The control panel will be labeled with an Underwriters Laboratory certification sticker.

4.4 Groundwater Treatment Equipment

The proposed groundwater treatment equipment, as shown in the mechanical series of the drawings (Appendix C), will include the following:

- Well pumps: Submersible pumps will be used to extract groundwater from the wells. Wells RW-1 through RW-4 will each have a Grundfos model 5SQ05-320 ³/₄-hp pump with a 220-volt, single-phase motor, and integral soft start. This pump will operate at 2 gpm. All other groundwater extraction wells will use a Grundfos model SP 5S10-22 1-hp pump with 480-volt, 3-phase motor equipped with a VFD. These pumps will operate between 2 and 4 gpm based on the design pumping rates provided in Table 1.
- Conveyance piping: Extracted groundwater from the remediation wells will be conveyed to a single trunk line. Groundwater conveyance piping will be 1.5-inch-diameter SCH 40 PVC.
- Oil/water separator: Within the shipping container will be an H2K Technologies oil/water separator, which will provide 100 percent removal of 20-micron or larger droplets at 25 gpm.
- Diffused aeration tank: VOC removal will be accomplished using an H2K Technologies model DTA-3 Diffused Aeration Tank capable of 94 percent removal of lighter hydrocarbons, such as BTEX and MTBE, and 50 percent removal of heavier hydrocarbons, such as naphthalenes, at 20 gpm. The diffused aerator allows the system to operate in heavy fouling conditions, which should minimize maintenance from precipitation of total dissolved solids (TDS). The tank will be constructed of 304 stainless steel, including three aeration chambers, 15 aeration diffusers, and a cover. The DTA-3 includes a 90 scfm blower that passes through the aeration chambers (270 scfm equivalent flow). It will be stand-mounted so that fluids will gravity drain from the oil/water separator, through the diffused aeration tank, and into the clarifier.
- Inclined plate clarifier: Solids, including inorganic constituents, will be removed using an H2K model IPC-80 inclined plate clarifier constructed of 304 stainless steel. The clarifier is designed for 90 percent removal of 20-micron and larger solids at a flow rate of 20 gpm, and includes an adjustable skimming weir and a solids collection sump.
- Treated water discharge pump: A discharge pump will be included to pump treated water to the municipal sanitary sewer manhole connection (AMT model 489, ¾-hp, 3-phase).
- *Product storage tank:* Free product extracted from the treatment process will be stored in a steel 300-gallon capacity, double-walled storage tank located outside of the enclosure, but within the fenced area.

- Control panel: All remediation equipment will be integrated to the control panel to provide automatic system operation. The control panel will have a C-More 7-inch color touch screen HMI interface. An Allen Bradley Micrologix 1400 PLC will be installed inside the control panel with input and output as required for system operation. The submersible pump control panel will also be integrated, so as to shut off submersible pump operation with any remediation equipment alarms.
- Instrumentation and monitoring: Pressure gauges and sample ports will be present on each vessel's inlet and outlet.
- Process valves and piping: Each vessel will have a manual isolation valve at the inlet.
 Connection piping within the enclosure will consist of SCH 80 PVC and fittings.

The exact remediation equipment components and configuration within the enclosure will be determined during implementation of the FRP, and a detailed description will be provided in an as-built report, including drawings of the interior enclosure. These equipment drawings will be available during the final PSTB walkthrough prior to system startup.

4.5 Remediation Wells, Trenching, and Pipe Installation

4.5.1 Extraction Wells

The proposed remediation system will require connection of 10 existing wells and associated conveyance piping and trenching. Due to the use of nested wells, a total of 20 screened intervals will be used for remediation (Table 1). The areal extent of the remediation well network precludes running dedicated conveyance lines back to the equipment compound. Therefore, isolation valves, instrumentation, and controls for each well and zone will be located within a combination of wellhead and/or valve vaults as shown on the drawings (Appendix C). Valves at each wellhead will be used to optimize soil vapor and groundwater flow for specific zones. Hinged vaults will be flush-mounted, spring-assisted, H-20 traffic-rated, and surrounded by a 6-inch-thick concrete pad (Appendix C).

4.5.2 Conveyance Line Trenching and Pipe Installation

Details of conveyance piping trenches are shown on Drawing C-2 (Appendix C). The SVE and groundwater conveyance piping will be placed below ground in trenches at a minimum burial depth of 3 feet, supported by plastic spacers. In addition, two sections of road borings will be required to connect wells on the west side of Prince Street to the remediation system (Figure 10 and Appendix C). Conveyance piping below roadways will have a minimum burial depth of

4 feet. All PVC conveyance piping shall be pressure tested per specification Section 22 05 03 02 prior to backfilling.

In order to minimize accumulation of condensate, SVE conveyance lines will be installed to slope toward sumps that have been strategically located throughout the project area based on topography. For valves to be comfortably accessed from the surface, piping cannot feasibly slope back to the wellhead. Sumps (conveyance line cleanouts) will be provided at each end of the roadway borings, at the SVE manifold, and between wells BW-8 and RW-2 (Appendix C).

Piping circuits will be backfilled in accordance with the specifications (Appendix F) either with on-site soils (followed by compaction) or flowable fill. Paved surfaces will be machine-cut and replaced with material and thickness similar to existing conditions. The only non-paved area planned for conveyance pipe installation is the landscape median where RW-1 is located and where the entry pit will be located for the roadway borings. Gravel and vegetation in this area will need to be replaced when system installation is complete.

Due to the shallow depth of the trenching and piping, it is not anticipated that contaminated media will be encountered during installation of the remediation system. All of the wells are located on private land, but some piping is located under public roadways. A traffic control plan will be required when working near public roadways, and will be provided by a third-party contractor. Utility service lines (electric and natural gas) will be extended from existing services located near York Drive. Potential roadwork for these services, if needed, will be handled by the utility companies.

When the system is completed, each SVE zone will have an isolation valve, a sample port, a vacuum gauge, and a threaded plug for an insertion type flow meter, as shown in the drawings (Appendix C). The sample port will be used for collecting air samples and as a secondary measuring point for applied well vacuum.

4.6 Utility Requirements/Utility Clearances

Both Xcel Energy and Farmers Electric Co-op provide electrical service in Clovis. DBS&A will specify which provider will be used for this project in the FRP implementation work plan. A new three-phase, 200-amp electrical service connection will be required for the remediation system; this connection will be supplied by the power pole located on the north side of York Drive through 3-inch-diameter conduit. This connection will likely require an 150-kVA pad-mounted transformer with a bushing mount utility meter. Power for individual well pumps and controls

will be routed from this single service to the wellheads. One shared 2-inch-diameter PVC conduit will be used for the source area wells, and a separate shared 2-inch-diameter PVC conduit will be used for the downgradient wells.

NM Gas Company (NM Gas) is the provider for natural gas service at the site. NM Gas will tie into an existing service line located in the Albertson's Market parking lot, and will install a new gas meter south of the proposed equipment compound. Based on system requirements, initial approval has been received from NM Gas.

DBS&A contracted with Lydick Engineering & Surveyors (Lydick) in Clovis, New Mexico to obtain subsurface utilities shown in the drawings (Appendix C). New Mexico One Call will also be contacted prior to subsurface excavation activities. The locations of utilities uncovered during installation of the remediation system will be shown on the record drawings following implementation of the FRP.

4.7 As-Built Report Preparation and Submittal

Following implementation of the FRP, record drawings signed and sealed by DBS&A's Engineer of Record will be prepared and submitted to the NMED PSTB project manager as part of an asbuilt report. The report will conform to the requirements of 20.5.119.1925.D NMAC and will include, but not be limited to, the following:

- Area/vicinity map
- Detailed site diagram with locations of underground utilities and other subsurface structures
 on or adjacent to the site's property boundaries, buildings, monitor wells, storage tanks and
 lines, sumps, impoundments, pit areas, water lines, and other relevant structures
- Summary of site conditions
- Any deviations from the drawings and specifications included in the FRP
- Tabulation of pertinent data including, but not limited to, flow rates, pressures, temperatures, contaminant concentrations, and groundwater elevations at startup
- Boring logs and well completion diagrams
- Inventory of purchased equipment
- Discussion of the data collection methods

- Laboratory results with chain of custody records and laboratory quality assurance/quality control (QA/QC) reports
- Photographic documentation of critical construction junctures
- Characterization of wastes, including handling and disposal
- Elevation survey results
- Detailed description of remedial system and as-built drawings
- Discussion of system startup and shakedown
- Identification and explanation of operational adjustments made for optimum system performance
- Discussion of the remedial system's performance criteria
- Summary and recommendations
- Familiarity statement by the DBS&A qualified representative

4.8 Operations

Operation of the remediation system will include initial startup activities and regular maintenance. Safety controls will be installed to automatically shut down the system under certain circumstances, including malfunction or failure of any integral system component or loss of power. System monitoring objectives include tracking the progress of mass removal, maximizing treatment efficiency, and documenting compliance with permits issued for this project. Controls will also be implemented to protect equipment from weather and vandalism.

Progress of the source area abatement will be evaluated by monitoring the concentration of VOCs in the extracted air—from both the system as a whole and from individual remediation wells. The total mass of VOCs and chemical composition of extracted vapors will be quantified and tracked. To document hydrocarbon recovery efficiency, influent and effluent vapor will be tested daily for the first week of operations, weekly for the remainder of the first month, and biweekly thereafter. Extracted vapor concentrations are expected to be at their highest levels during the first month of system operation.

To ensure that the project objectives are achieved, an authorized representative of DBS&A will have direct supervisory control over all aspects of the project. All drilling, construction, and equipment setup activities conducted during the project will be performed under the direction

of a New Mexico licensed professional engineer. All activities proposed in this FRP will be conducted in accordance with DBS&A standard operating procedures (SOPs), applicable federal and state regulations, and frequent communication with the PSTB project manager and other stakeholders.

4.9 Contingency Plan

If there is a change in site conditions that threatens public health, safety, or the environment, DBS&A will reevaluate the extraction well network. The most likely change in conditions would be a substantial change in groundwater elevation or flow direction due to demand from municipal supply and overall regional groundwater mining. Additional wells could be installed to maintain control of both the LNAPL and dissolved-phase plumes, and to protect regional drinking water sources. Conveyance piping has been sized to allow future flow from additional wells, if needed.

5. Remediation System Operation and Maintenance

5.1 Overview

Operation and maintenance (O&M) of the remediation system and monitoring of subsurface conditions is required at regular intervals to accomplish the following tasks:

- Collect data on system operation
- Maximize the system's mechanical performance
- Optimize operating configurations
- Document mass removal and compliance with air emissions standards
- Document groundwater quality in response to system operation
- Perform general equipment preventive maintenance
- Demonstrate that the remediation system is complying with City requirements for industrial discharge.

5.2 Extracted Soil Vapor

Hydrocarbon concentrations in extracted soil vapor and treated vapor discharge will be measured to document system effectiveness, regulatory compliance, and hydrocarbon recovery

rates. Total ionizable VOC concentrations will be measured using a PID during each O&M event. DBS&A proposes that influent and effluent air samples from the system be collected and analyzed for total petroleum hydrocarbons (TPH) and BTEX using EPA methods 8015B and 8021, respectively, on the following schedule:

- Startup and shakedown: Collect system influent/effluent samples within 4 hours of startup and again approximately 48 hours after startup.
- Second week to end of first month: Collect system influent/effluent samples weekly until the end of the first month of operation.
- Remainder of first quarter and subsequent quarters of O&M: Collect one influent and one
 effluent sample every two weeks.

Field and laboratory analytical data will be used to optimize system operation and to calculate system efficiency, extraction rates, emission rates, and quantities of recovered hydrocarbons.

5.3 Extracted Groundwater

Hydrocarbon concentrations for raw and treated water will be measured to document system effectiveness, regulatory compliance, and hydrocarbon recovery rates. DBS&A will also provide information necessary to document compliance with the approved discharge of treated groundwater. Specific requirements will be provided in the FRP implementation work plan, but may include the following:

- Periodic (monthly) flow discharge readings
- Laboratory testing of treated groundwater discharge to be performed weekly during the first month and biweekly thereafter, similar to the vapor sampling schedule
- Notification of any system changes or faults

To meet City discharge requirements, raw and treated water samples will be collected and analyzed for the site COCs. In addition, diffused aeration tank effluent vapor samples will be collected on the same sampling schedule and analyzed for VOCs and TPH using EPA methods 8021 and 8015, respectively. Samples will be analyzed at Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico. Field and laboratory analytical data will be used to optimize system operation, demonstrate compliance with discharge requirements, and calculate system efficiency, extraction rates, emission rates, and quantities of recovered hydrocarbons.

5.4 DPE Treatment System Operation and Maintenance

DPE system startup will require daily site visits for the first five days of operation to document system performance and hydrocarbon recovery rates. During this initial startup period, the system will be adjusted to obtain optimum performance and maximize hydrocarbon removal from the site. Applied vacuum and resultant flow rates and vapor concentrations in each individual SVE well will be recorded using a form similar to the example provided in Appendix G. Vacuum from and fluid levels in surrounding wells will be observed to determine the ROI for each treatment well, if possible (the existing well network may limit data collection).

Because the actual subsurface conditions at the site are difficult to precisely predict, specific SVE well flow rates, operating configurations, and vacuum can only be estimated from data collected during the SVE pilot test (BEI, 2012) and from extraction well design (Appendix D). Actual remediation system performance will be documented in the quarterly O&M reports submitted for the site.

After the startup period, the system will be operated and maintained for optimal efficiency. O&M and evaluation of the DPE system will be performed on a monthly, quarterly, and annual basis. Informal electronic reports on system performance will be provided to the PSTB project manager on a monthly basis. Quarterly reports will be provided both electronically (as a compiled PDF) and in hard copy, unless otherwise requested.

In case of a change in site conditions that threatens public health, safety, and welfare or the environment, the system will be shut down immediately. The change in conditions will be evaluated and, if necessary, modifications will be made to the system and its operations to remedy the risk to the public or the environment.

5.4.1 Biweekly Activities

DBS&A proposes to perform the following activities on a biweekly basis:

- Measure DPE well flow rates and vacuum
- Adjust and maintain vapor flow rates at design specifications
- Adjust flow rates and applied well vacuum to maximize mass removal rates
- Empty knockout tank and dispose of condensate as required
- Collect, recycle, and dispose of LNAPL (if applicable); check and clean filters

- Respond to system shutdowns
- Conduct other miscellaneous activities necessary to ensure efficient and effective system performance
- Perform routine preventive maintenance on all equipment and motors
- Collect influent and effluent vapor samples for laboratory analysis of TPH and BTEX in accordance with EPA methods 8015B and 8021, respectively
- Collect raw and treated water samples and diffused aeration tank effluent vapor samples for laboratory analysis of VOCs and any other parameters specified for industrial discharge
- Record periodic field measurements of temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and oxidation/reduction potential (ORP)
- Calculate system extraction and emission rates and destruction efficiency

5.4.2 Quarterly Activities

On a quarterly basis, DBS&A will evaluate the efficacy of coalescing media and filters, and will replace those materials that exhibit a decrease in performance. DBS&A will also prepare and submit a report to the PSTB documenting all O&M activities and groundwater monitoring results for the previous quarter. Reports will include the following:

- Identification and explanation of any operational adjustments made for system optimization
- Discussion of actual system operation and effectiveness compared to expected parameters used for the remedial design
- Evaluation of contaminant reduction
- Familiarity statement by the DBS&A project manager
- Description of actions taken or future plans for the recovery of contaminant mass
- Summary and recommendations

5.5 One Year of Quarterly Monitoring and Reporting

Subsequent to system installation, DBS&A will initiate quarterly groundwater monitoring in accordance with DBS&A SOPs. Up to 22 wells associated with the site will be gauged during each monitoring event. All wells that do not contain LNAPL will be sampled. In the event that remedial activities cause a decrease in site concentrations, the sampling program may be

adjusted in future years. For example, contaminant concentrations in upgradient wells BW-1 through BW-3 and cross-gradient wells BW-9 and BW-10 have consistently been below laboratory reporting limits, and those wells could be eliminated from the regular sampling program.

Fluid levels will be gauged using an electronic interface probe to determine if LNAPL is present and to determine the depth to water. If detected by the interface probe, the LNAPL thickness will be measured to within 0.01 foot. The interface probe will be decontaminated before each measurement using a solution of deionized water and soap.

Groundwater monitor wells are sampled using HydraSleeve no-purge groundwater sampling systems. HydraSleeve samplers remain closed due to water pressure until they are retrieved. The upward motion of retrieval opens the HydraSleeve's check valve, and the bag fills from the top. When the HydraSleeve sample bag is full, the check valve closes, allowing the sample to be collected from a discrete depth, reducing turbidity of the sample, and preventing water above (or below) the desired sample zone from entering the sample bag. The sample bag is pierced with a straw to transfer the sample to laboratory-provided sample bottles. Groundwater field parameters (DO, ORP, EC, pH, and temperature) will be measured using a YSI Professional or equivalent device after sample collection is complete.

Bottled groundwater samples will be labeled and preserved on ice in an insulated cooler for delivery to HEAL for analysis. Groundwater samples will be analyzed for VOCs using EPA method 8260B (full list) and EDB using EPA method 504.1. Groundwater samples will be accompanied by full chain of custody documentation at all times.

Following completion of each quarter of sampling and O&M and upon receipt of laboratory analytical reports, DBS&A will prepare and submit to the NMED PSTB project manager a quarterly monitoring report conforming to 20.5.119.1926 NMAC. The report will include, but not be limited to, the following:

- Area/vicinity map
- Detailed site diagram with locations of buildings, monitor wells, storage tanks and lines, sumps, impoundments, pit areas, water lines, and other relevant structures
- Summary of site conditions
- Discussion of the sampling collection procedures
- Laboratory results with chain of custody records and quality assurance information

- Tabulation and graphs of recent and historical (including baseline) groundwater elevations,
 LNAPL levels (if applicable), and contaminant concentrations in each well, such as the following tables and graphs:
 - Groundwater analytical chemistry
 - Soil vapor analytical chemistry
 - Fluid level measurements and groundwater elevations
 - ♦ Summary of LNAPL recovery
 - System operations data
 - Cumulative mass removal
 - Well circuit soil vapor field screening data
 - Groundwater elevation and LNAPL thickness over time for each well containing LNAPL
 - Groundwater elevations and COC concentrations for key wells
- Groundwater elevation map
- Groundwater contaminant and isoconcentration maps with contaminant concentrations for each well (baseline data will be included as a separate appendix in each report)
- Identification and explanation of any operational adjustments made for system optimization
- Discussion of actual system operation and effectiveness compared to expected parameters used for the remedial design
- Evaluation of contaminant reduction
- Familiarity statement by the DBS&A project manager
- Description of actions taken or future plans for the recovery of contaminant mass
- Summary and recommendations

5.6 Health and Safety Requirements

DBS&A has updated the current site-specific health and safety plan (HASP) for the proposed field activities at the site related to the remediation system installation and operation pursuant to the requirements of CFR 1910.120. The current HASP is provided as Appendix H. A copy of the HASP will be kept on-site during all field activities.

23

6. Permits

6.1 Temporary Water Right Use Agreement

Treated water will be discharged to the sanitary sewer in Clovis, which is ultimately routed to a direct potable reuse system. Therefore, extracted groundwater will be put to beneficial use. This will require an application to the OSE to change place and purpose of use. DBS&A worked with the City and has already received OSE approval to borrow required water rights at no additional cost, other than required utility costs associated with the industrial discharge. Drafts of OSE Form WR-06 and a potential water right use agreement were provided to PSTB in June 2020, and are included in Appendix I.

6.2 Air Quality Bureau Notice of Intent

DBS&A reviewed current guidance from the NMED Air Quality Bureau (AQB) regarding air permitting, which states that "facilities that emit less than 10 tons per year of any criteria pollutant do not need an air quality permit nor do they need a Notice of Intent (NOI)." After the system is implemented, DBS&A will monitor remediation system emissions, which are typically multiple orders of magnitude below regulatory standards, and will submit the relevant paperwork if required. However, a draft NOI permit application has not been included in this FRP.

6.3 Office of the State Engineer Well Permits

Permits from the OSE may be required in the future if additional wells are constructed at the site. Permit applications will be submitted upon approval of the work plan for well installation, and permit approvals will be provided with subsequent reports.

7. Notifications

DBS&A has provided public notice in accordance with 20.5.119.1923.D.10 NMAC, as follows:

Legal notice of the submission of the FRP will be published twice in the *Eastern New Mexico News*, a newspaper of general circulation in Curry County, on July 14 and 21, 2021. The format for the legal notice follows the guidelines dictated in 20.5.119.1923.D.10.b NMAC.
 The legal notices were submitted to PSTB for prior approval and translation. The certified

affidavit of publication for each legal notice will be provided to the PSTB project manager following the second date of publication and issuance of the affidavit.

- A notice containing the specified information listed in the regulation will be posted at the Former Y Station site at 721 Commerce Way in Clovis, New Mexico, at the current location of the Optical Source retail outlet. Additional signage will be posted on the prominent "Shopping Center" sign on the east side of Prince Street across from the Optical Source and on the recycling dumpsters at the Albertson's grocery store, near the proposed location of the treatment equipment. Signs will be posted the week of July 19, 2021; photographs of sign placement will be emailed to the PSTB project manager.
- In accordance with the above-cited regulation, DBS&A provided notice of submission of the FRP by certified mail to adjacent property owners. DBS&A mailed a total of 25 certified letters on July 9, 2021. The list was compiled from Curry County Assessor data. DBS&A will update the PSTB project manager when return receipts from the certified letters are received.

A copy of the text of the legal notices (English and Spanish), a list of certified addresses, and a map indicating which residences and businesses received certified letters are provided in Appendix J.

8. Implementation Schedule

A schedule for implementing this FRP is provided in Appendix K. Implementation milestones include the following:

- Approval of the FRP
- Procurement of major remediation equipment
- Installation of conveyance piping
- Installation of remediation equipment
- System startup
- Submittal of the final as-built report and record drawings
- Quarterly O&M and reporting

9. Evaluation of Remedial Actions

Remediation system performance will be evaluated annually in accordance with 20.5.119.127 NMAC. The system evaluation will be incorporated into the fourth quarter monitoring report and submitted to the NMED PSTB project manager. This evaluation will provide NMED with the information necessary to determine whether the remedial approach undertaken is successful in achieving the remedial action objectives. Key elements of the report include the following:

- Contaminant plume maps with contaminant levels from each well
- Evaluation of DPE system performance based on mass of fuel compounds removed and volume of groundwater treated and discharged
- Summary and recommendations

In the event that the data collected during the first six months of operation suggest that the system as installed has not been effective at removing or reducing contaminant mass, DBS&A may propose an alternative approach or change to the existing remediation plan. A variety of technologies could augment the removal. DBS&A believes that the remedial approach documented in this FRP is a prudent and cost-effective approach to achieve removal of contaminant mass in the most expeditious time frame and to ultimately bring the site to closure.

10. Statement of Familiarity

This FRP was prepared by DBS&A under contract number 18-667-3200-0022 for the Former Y Station site under the PSTB State Lead remediation program. Preparation of all engineering drawings and specifications was conducted under the direction and supervision of Thomas Golden, a New Mexico Licensed Professional Engineer (License #22750).

Thomas Golden, P.E.

July 16, 2021

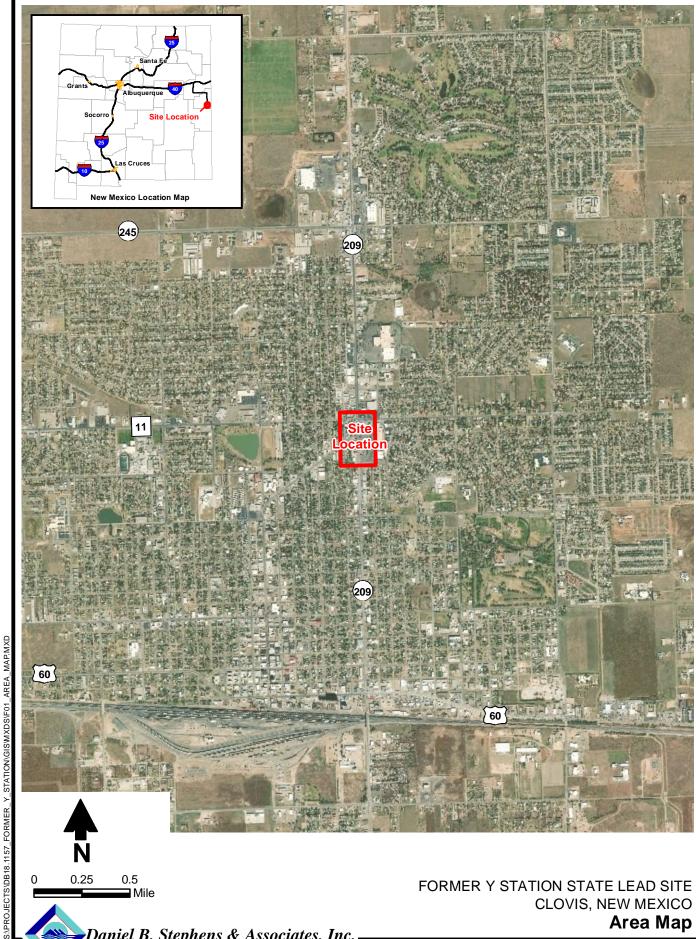
Project Engineer

Date

References

- Brown Environmental, Inc. (BEI). 2012. *Minimum site assessment and feasibility testing report,*Allsups #320 Facility, Clovis, New Mexico. Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau. December 2012.
- Daniel B. Stephens & Associates, Inc. (DBS&A). 2019a. *Preliminary groundwater monitoring report, Former Y Station, 721 Commerce Way, Clovis, New Mexico, Facility ID #53742, Release ID #4746*. Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau. June 27, 2019.
- DBS&A. 2019b. Aquifer test report, Former Y Station State Lead site, 721 Commerce Way, Clovis, New Mexico, Facility ID #53712, Release ID #4746, WPID #4022. Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau. October 24, 2019.
- DBS&A. 2019c. Final well installation and baseline groundwater monitoring report, Former Y Station, 721 Commerce Way, Clovis, New Mexico, Facility ID #53742, Release ID #4746.

 Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau, Roswell, New Mexico. November 21, 2019.
- DBS&A. 2019d. Continued site investigation, groundwater monitoring, and final remediation plan development, Former Y Station State Lead site, Clovis, New Mexico, Facility ID #53712, Release ID #4746. Transmitted by letter from Thomas Golden and James Kelsey to Renee Romero, New Mexico Environment Department Petroleum Storage Tank Bureau, regarding Work plan for site investigation, groundwater monitoring, and FRP development, Former Y Station State Lead site, 721 Commerce Way, Clovis, New Mexico, Facility #53742, Release ID #4746. December 20, 2019.
- DBS&A. 2020. Final well installation and first quarter groundwater monitoring report, Former Y Station, 721 Commerce Way, Clovis, New Mexico, Facility ID #53742, Release ID #4746.


 Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau, Roswell, New Mexico. July 22, 2020.
- DBS&A. 2021. Fourth quarter groundwater monitoring report, Former Y Station, 721 Commerce Way, Clovis, New Mexico, Facility ID #53742, Release ID #4746. Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau, Roswell, New Mexico. May 5, 2021.

- Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey.
- Galloway, S.E. 1972. Urban geology of Clovis. pp. 212-213 *in* Kelley, V.C. and F.D. Trauger (Eds.), *East-Central New Mexico*. New Mexico Geological Society 23rd Annual Fall Field Conference Guidebook.
- Hart, D.L. and D.P. McAda. 1985. *Geohydrology of the High Plains Aquifer in southeastern New Mexico*. U.S. Geological Survey Hydrologic Atlas No. 679.
- New Mexico Environment Department (NMED). 2020. Letter from Dana Bahar to Thomas Golden, DBS&A, regarding Approval of Phase 3 fixed-price workplan for Former Y Station, 721 Commerce Way, Clovis, New Mexico, Facility #: 53742, Release ID #: 4746, WPID #: 4134. February 19, 2020.
- New Mexico Interstate Stream Commission (NMISC). 2016. *Northeast New Mexico regional water plan*. September 2016. New Mexico Interstate Stream Commission/Office of the State Engineer.

Figures

Daniel B. Stephens & Associates, Inc. JN DB18.1157.00

Figure 1

Daniel B. Stephens & Associates, Inc.

6/16/2020

Stephens & Associates, Inc.

10 JN DB18.1157.00

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO

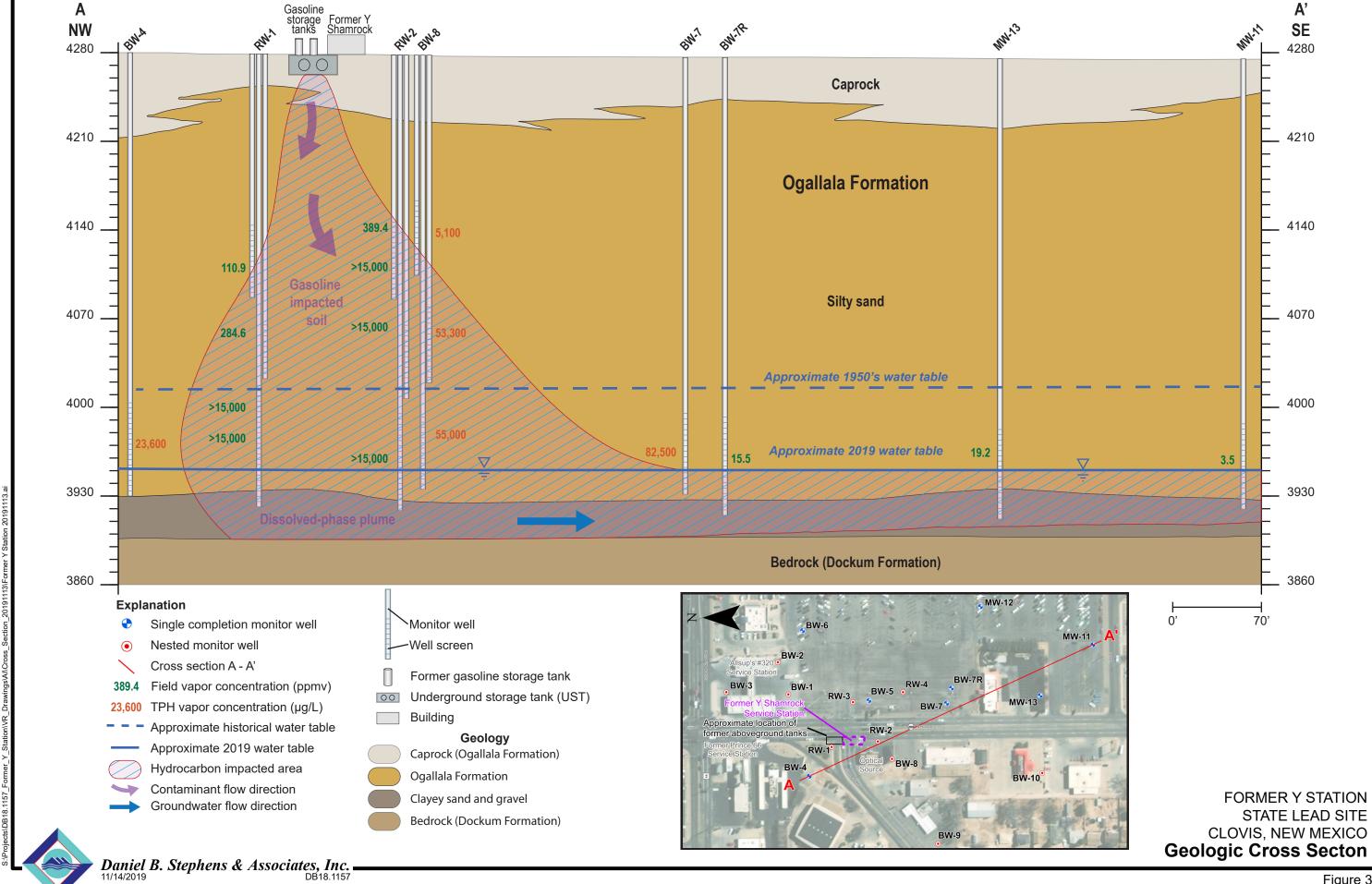


Figure 4

Daniel B. Stephens & Associates, Inc. JN DB18.1157.00

Notes: 1. All concentrations reported in micrograms per liter (µg/L).

- 2. **RED** indicates concentration that exceeds NMWQCC standard.
- 3. ^a Laboratory reporting limit is equal to or greater than the applicable standard.
- 4. Samples presented on this figure were collected using HydraSleeve sampling devices.

Distribution of Dissolved-Phase Contaminants, March 2021

Benzene Isoconcentration Map

March 2021

Figure 6

2. **RED** indicates concentration that exceeds NMWQCC standard.

Daniel B. Stephens & Associates, Inc. JN DB18.1157.00

3. Samples collected on this figure were collected using HydraSleeve sampling devices.

EDC Isoconcentration Map

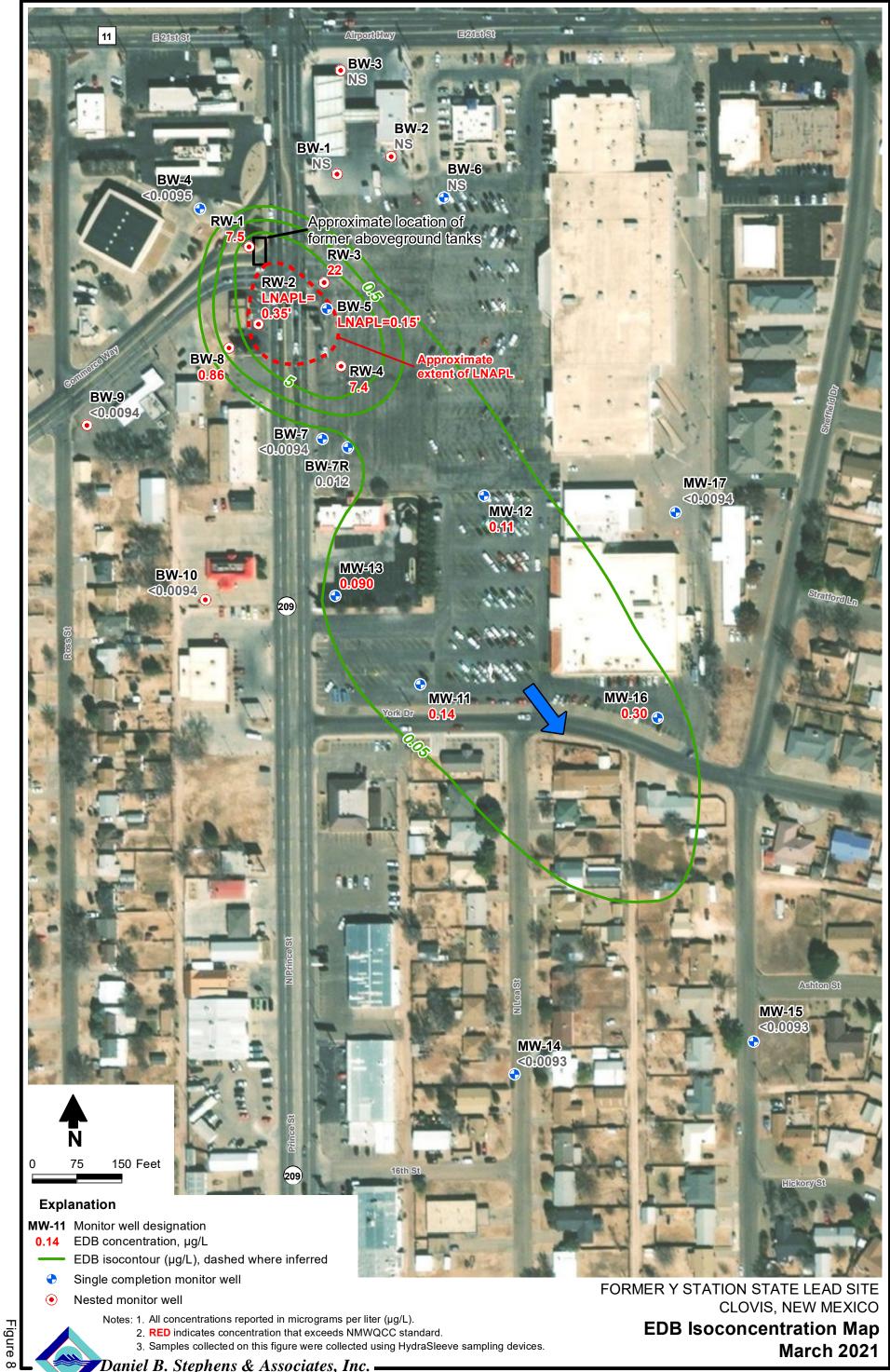
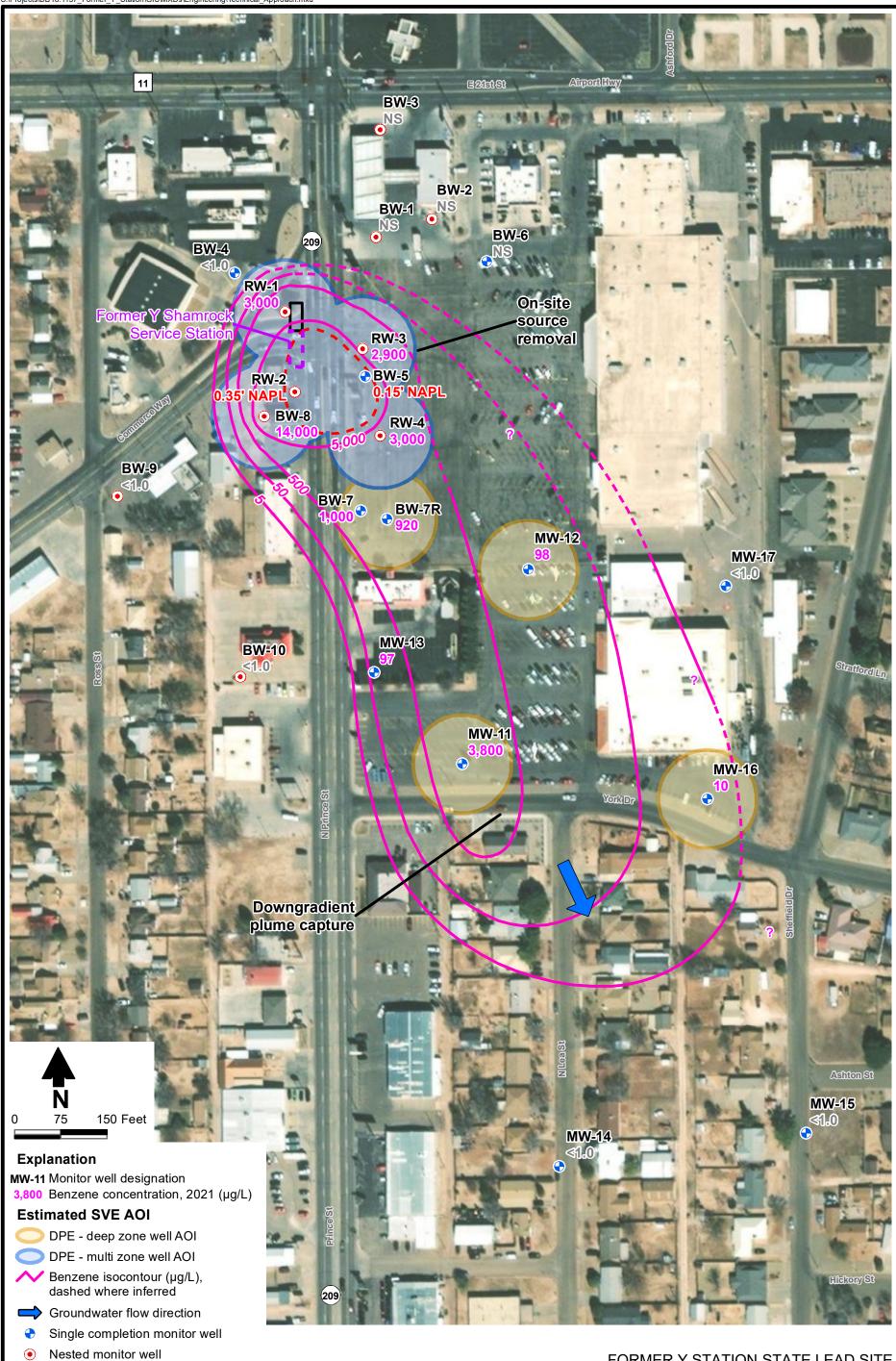

March 2021

Figure 7

2. RED indicates concentration that exceeds NMWQCC standard.

Daniel B. Stephens & Associates, Inc. JN DB18.1157.00

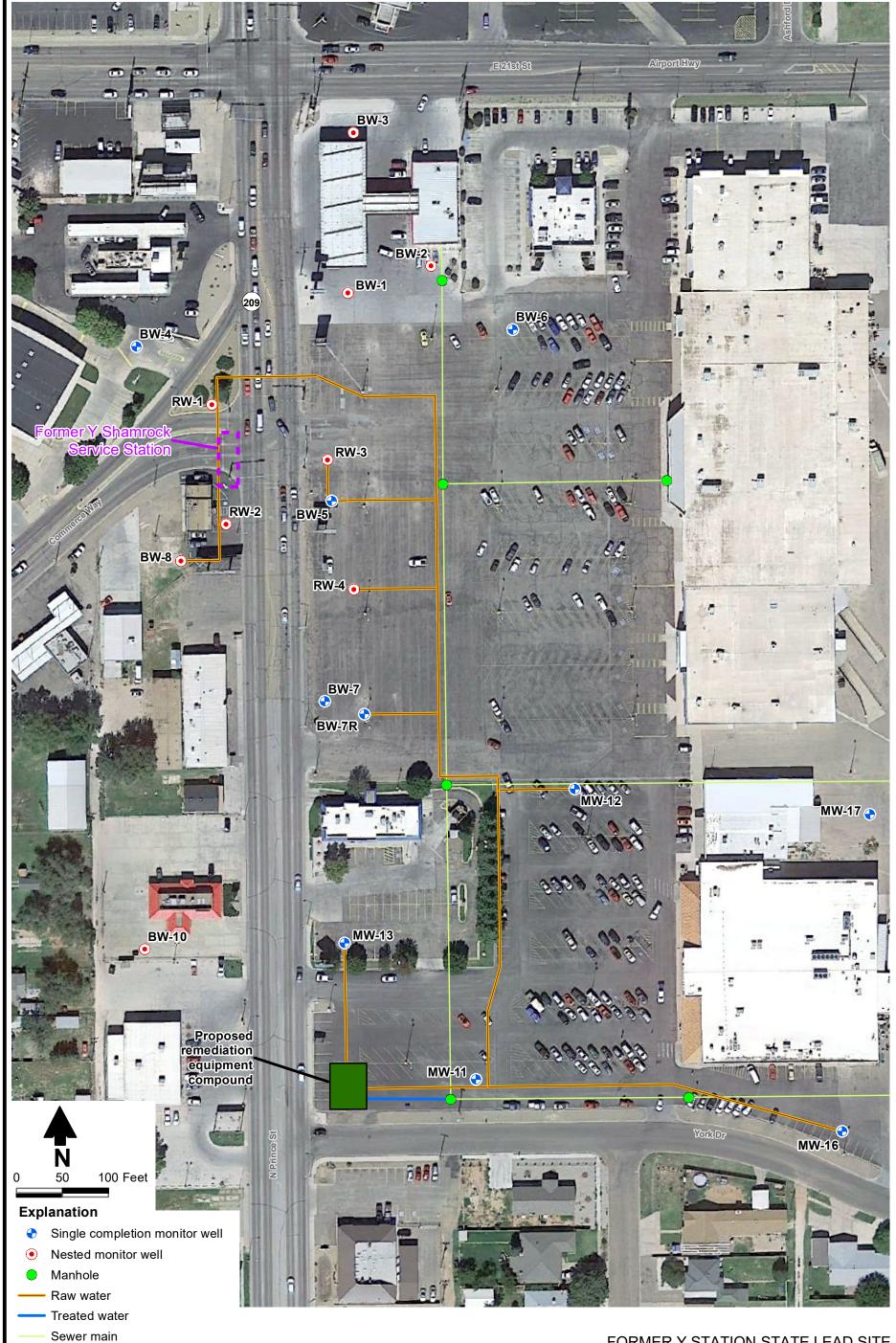
3. Samples collected on this figure were collected using HydraSleeve sampling devices.



2. **RED** indicates concentration that exceeds NMWQCC standard.

Daniel B. Stephens & Associates, Inc. JN DB18.1157.00

3. Samples collected on this figure were collected using HydraSleeve sampling devices.


March 2021

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO

Proposed Technical Approach

Daniel B. Stephens & Associates, Inc. JN DB18.1157.00

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO

Table

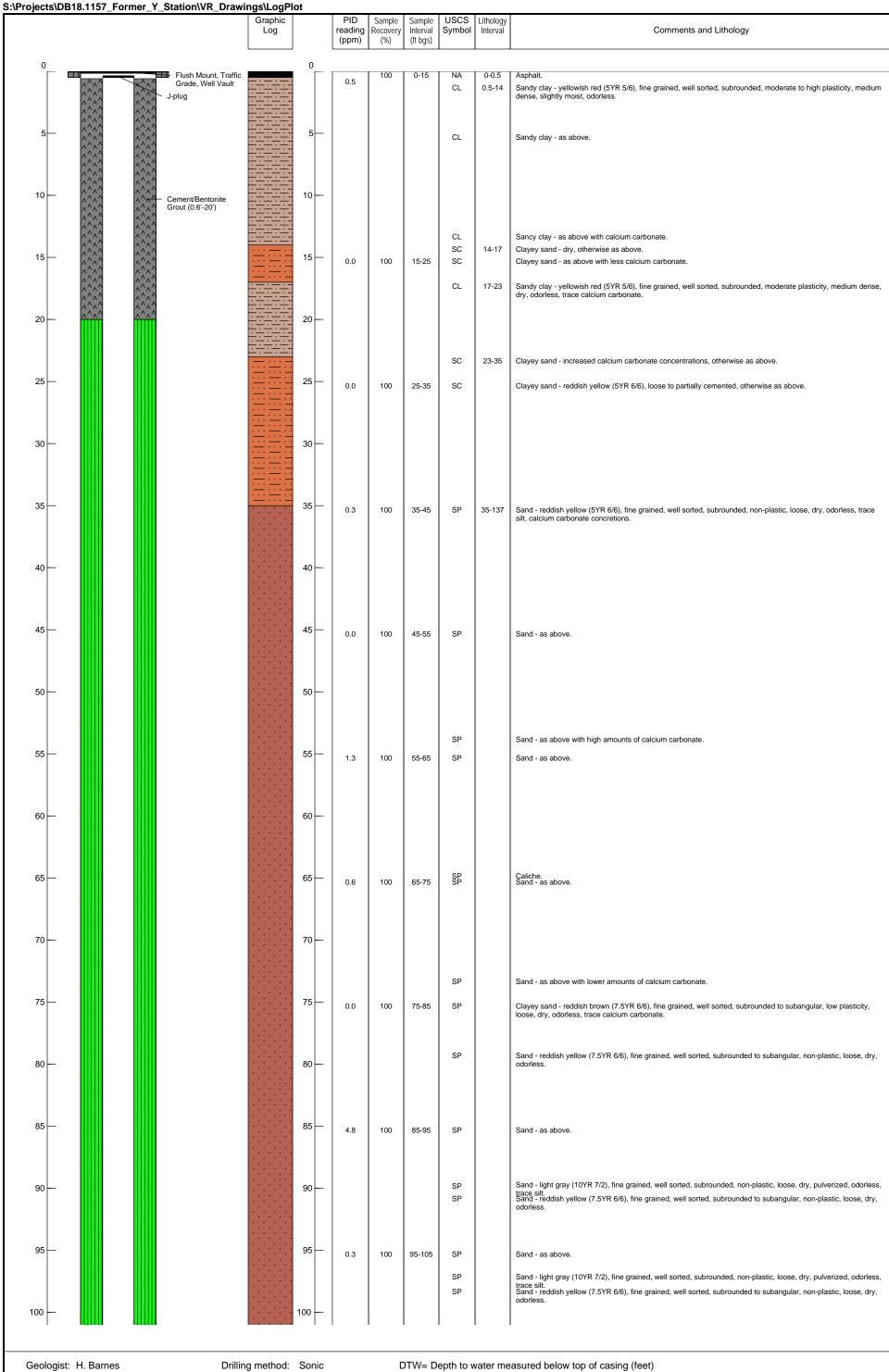
Table 1. Proposed Remediation Wells

147 H	Well Diameter	Well Screen	Depth to Water	Open Well Screen	Extracted Air Flow	Available Drawdown	Design Pumping Rate
Well	(inches)	(feet bgs)	(feet btoc)	(feet)	(scfm)	(feet)	(gpm)
Source Area Wells							
RW-1	2	135.0–195.0	NA	60	60		
	2	215.0–255.0	NA	40	40		
	4	264.9–355.3	330	65	65	25	2.0
RW-2	2	135.0–195.0	NA	60	60		
	2	215.0–275.0	NA	60	60		
	4	289.8–360.1	330	40	40	30	2.0
RW-3	2	135.4–195.4	NA	60	60		
	2	215.0–275.0	NA	60	60		
	4	289.3–359.5	329	40	40	30	2.0
RW-4	2	134.9–194.9	NA	60	60		
	2	214.9–274.9	NA	60	60		
	4	291.2–361.5	330	39	39	31	2.0
BW-8	2	115–175	NA	60	60		
	2	200–260	NA	60	60		
	4	287–347	329	42	42	18	0.0
Downgra	dient Wells						
BW-7R	5	286.8–357.1	329	42	42	28	2.0
MW-11	5	285.5–355.5	327	42	42	28	4.0
MW-12	5	286.5–356.7	330	44	44	26	2.0
MW-16	5	289.0–359.3	330	42	42	28	4.0
		<u> </u>	<u> </u>	Total	976		20.0
Contingency Well							
MW-13	5	287.0–357.0	328	41	41	29	2.0
MW-13	5	287.0–357.0	328	41		29	2.0

Note: Depth to water based on March 2021 data and rounded up to the nearest foot.

bgs = Below ground surface

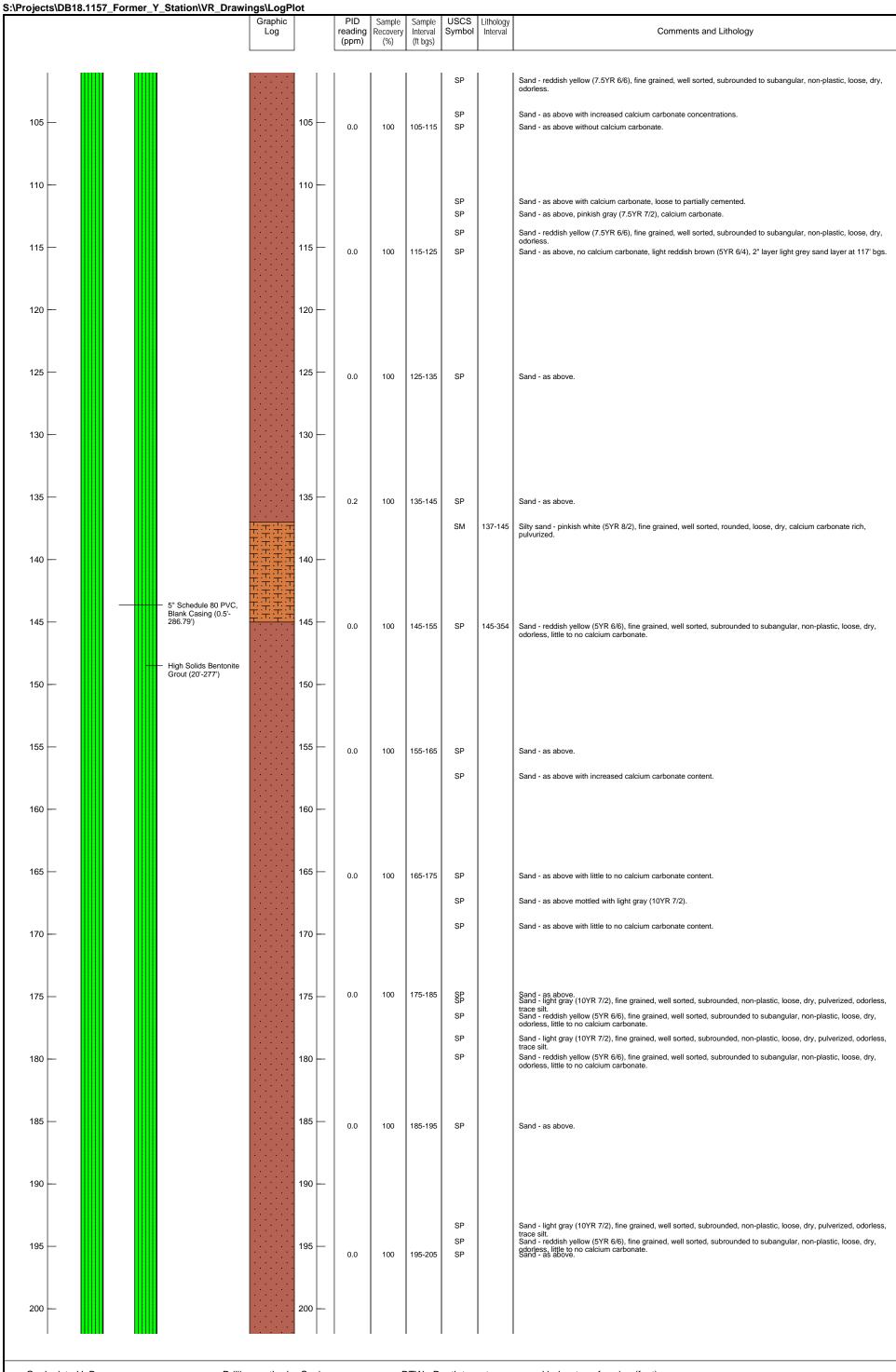
btoc = Below top of the well casing


scfm = Standard cubic feet per minute

gpm = Gallons per minute

NA = Not applicable

Appendix A Boring Logs

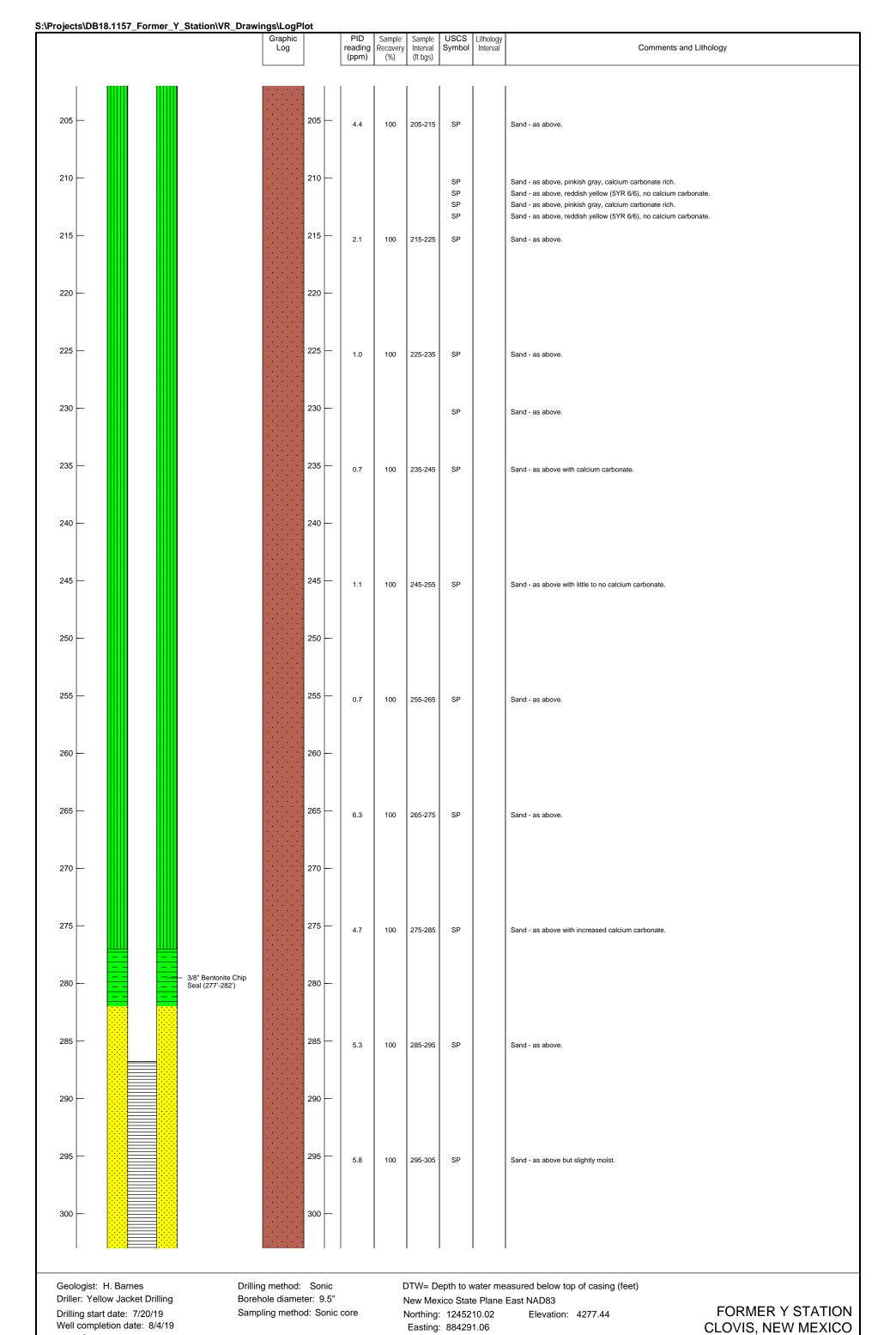

Driller: Yellow Jacket Drilling Date completed: 8/4/19

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core

New Mexico State Plane East NAD83 Elevation: 4277.44

Northing: 124529 Easting: 884291.12

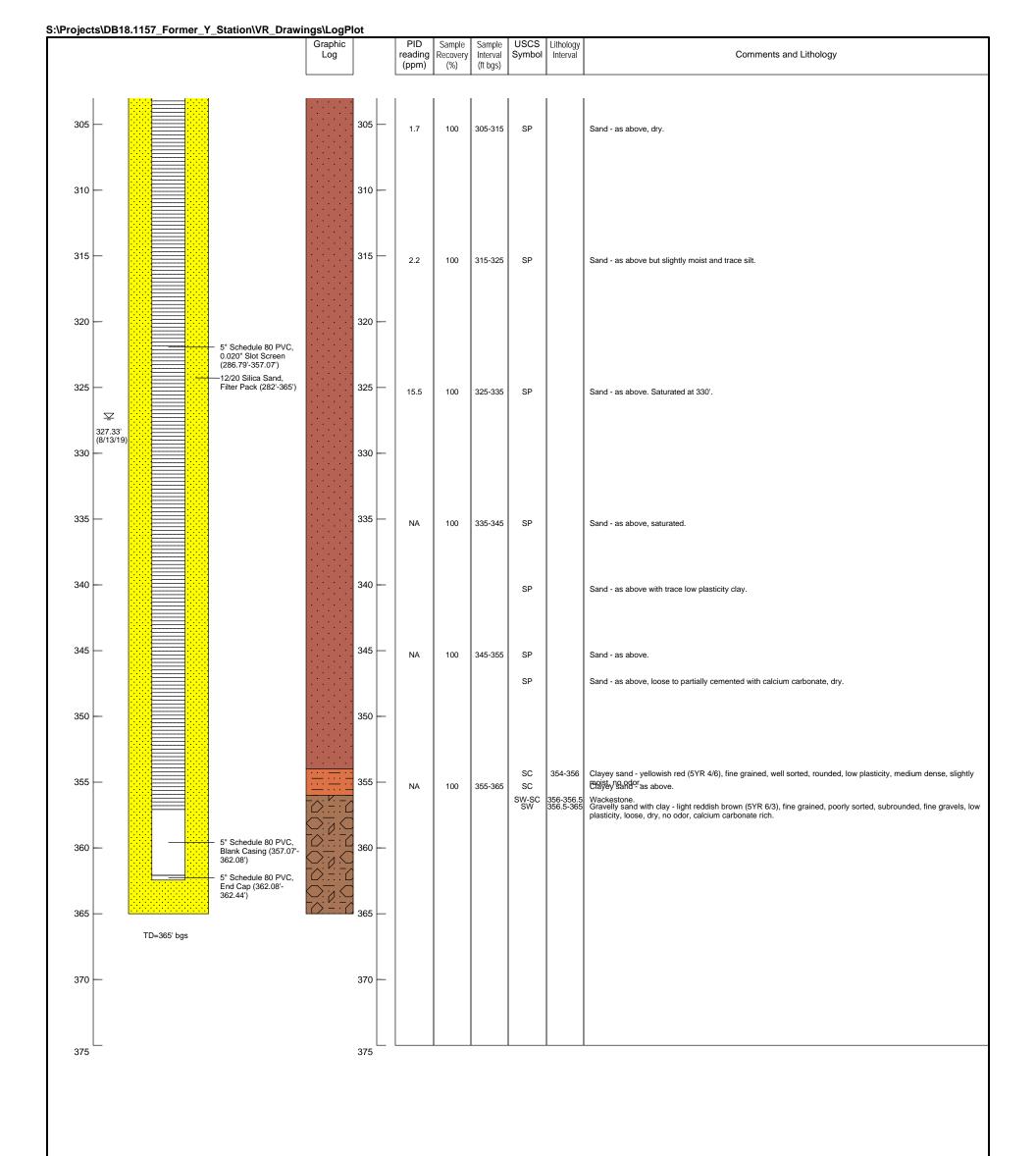
FORMER Y STATION **CLOVIS, NEW MEXICO**



Geologist: H. Barnes Driller: Yellow Jacket Drilling Drilling start date: 7/20/19 Well completion date: 8/4/19 Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83

Northing: 1245210.02 Elevation: 4277.44 Easting: 884291.06


FORMER Y STATION CLOVIS, NEW MEXICO

BW-7R

Daniel B. Stephens & Associates, Inc. –
9/5/2019

Daniel B. Stephens & Associates, Inc. –
DB18.1157.00

Geologist: H. Barnes Driller: Yellow Jacket Drilling Drilling start date: 7/20/19 Well completion date: 8/4/19 Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83

Northing: 1245210.02 Elevation: 4277.44 Easting: 884291.06

FORMER Y STATION CLOVIS, NEW MEXICO

CLIENT: Allsups Petroleum, Inc.

Borehole ID: BW-8

page 1 of 5

DATE OF DRILLING: LOGGED BY: DRILLER: **BOREHOLE DIAMETER: DRILLING METHOD:** SAMPLING METHOD: TOP OF CASING ELEV: DEPTH TO WATER: TOTAL DEPTH: SHALLOW WELL

INTERMEDIATE WELL

DEEP WELL

6%94% Bentonite Cement Grout (tremied In multipe lifts)

11/10-14/15 WJB

John Chavez/Yellowjacket

11 3/4 ARCH

Cuttings/Split Spoon

<u>na</u>

356

2" Sched 80 PVC; Screen 115'-175' 2" Sched 80 PVC; Screen 200'-260' 4" Sched 80 PVC; Screen 287'-347'

5

≥1.1 no

≥0.7 no

≥1.4 no

≥2.1 no

≥1.7 no

≥2.4 no

21.4 no

≥1.8 no

≥2,4 no 🌉

-50

- 60

65

-70

- 25

SURFACE COMPLETION: 18"X18" Manway w/Concrete Pad

USCS - LITHOLOGIC DESCRIPTION

(mdd) (teet) Reading (b Sample (Simplified Lithology Depth (in f Sample Pio Lab

Construction Data

т T

т

T

fill()

Surface Conditions: 0-0.3' Saw cut concrete.

0.3'-3.5' Cuttings/Posthole 0.3'-1.0' (SM/SW) with (SC) Silty fine to medium sand with minor gravel and clay/silt. 1.0'-3.5' (SM/SC) Clayey silty very fine sand, weakly plastic, brown (10YR), soft, slightly moist, no apparent hydrocarbon odor.

3.5'-7.5 Cuttings (SC/ML) Light tan-brown silty clayey very fine sand, plastic, soft, slightly moist, calcium carbonate, no apparent hydrocarbon odor.

7.5'-15.5' Cuttings (SC/CL) Light brown (10YR) silty sandy clay, plastic, slightly moist, no apparent hydrocarbon odor.

15.5'-23.0' Cuttings (SC/ML) Weakly cemented with calcium carbonate, slightly moist, no apparent hydrocarbon odor.

23.0'-26.0' Cuttings (SC/CL) Light brown (10YR) soft, plastic, silty very fine sand-clay mixture, slightly moist, no apparent hydrocarbon odor.

26.0'-28.0' Cuttings (SM/ML) silt-very fine sand with Stage 3 caliche, hard drilling, light tan-white, no apparent hydrocarbon odor.

28.0'-41.0' Cuttings (Caliche), Stage 3+ to 4, dense, massive, hard drilling. light tan-white.

<11/10/15 19:50 Stopped Drilling at 40'.>

<11/11/15 7:20 Blowdown - 1.1 ppm/v, no apparent hydrocarbon odor.>

41.0'-46.0' Cuttings (SM/ML) silt-very fine sand Stage 3+ calcium carbonate with interbeds of Stage 4, slightly moist.

46.0'-51.0' Cuttings (SM) (5YR 6/4) Light red brown, silty very fine sand, unconsolidated at top with localized calcium carbonate nodules, no apparent hydrocarbon odor, slightly moist.

51.0°-63.0° Cuttings (SM/ML) with Stage 2 to Stage 3 -3+ calcium carbonate zones, light tan-white pink, (5YR) slightly moist, no apparent hydrocarbon odor.

63.0'-70.0' Cuttings (SM/ML) Silt-very fine sand, light tan-brown (10YR) localized minor calcium carbonate, slightly moist, no apparent hydrocarbon odor.

70.0'-74.0' Cuttings (SM) silty very fine sand, light brown (7.5YR), unconsolidated, slightly moist.

BROWN ENVIRONMENTAL, INC

CLIENT: Allsups Petroleum, Inc.

Borehole ID: BW-8

page 2 of 5

DATE OF DRILLING: LOGGED BY: DRILLER: **BOREHOLE DIAMETER: DRILLING METHOD:** SAMPLING METHOD: TOP OF CASING ELEV: DEPTH TO WATER: TOTAL DEPTH: SHALLOW WELL

INTERMEDIATE WELL **DEEP WELL** SURFACE COMPLETION: 18"X18" Manway w/Concrete Pad

Construction Data

11/10-14/15 **WJB** John Chavez/Yellowjacket 11 3/4"

ARCH Cuttings/Split Spoon

PID Reading (ppm)/ Lab Sample (ppm)

≥2,1 no

≥1.8 no

≥0.6 no

BW-8 81' (SM) B=<0.033 F=<0.033

na ~327' 356'

2" Sched 80 PVC; Screen 115'-175' 2" Sched 80 PVC; Screen 200'-260' 4" Sched 80 PVC; Screen 287'-347'

Depth (in feet) Sample Interval

80

USCS - LITHOLOGIC DESCRIPTION

74.0'-80.0' Cuttings (SM/SP) Fine to medium sand with trace silt - well sorted, slightly moist, unconsolidated no apparent hydrocarbon odor.

< 10:32 @ 80' Let hole sit until 11:40 and collected split spoon drive sample for PID and lab analysis. >

80.0'-81.5' Split Spoon 1.5' sample. 0.0'-1.5' (SM) Silty very fine to fine sand, unconsolidated, slightly moist, no apparent hydrocarbon odor.

<Blowdown on hole at 11:45 = 1.2 ppm/v, no apparent hydrocarbon odor.>

6%/94% Bentonite-Cemen tGrout tremmied into hole and allowed to setup - 85 -90 ≥1.6 na 🌡 ≥0.9 na 🖺 ≥1.3 no -100 ≥2.1 no **111**=105 ≥1.3 no **110** ≥1.9 na 📕 0.02 Slot Screen 2" Dia Sched 80 PVC -120 ≥2.4 no 📕 -135

141' (SM) B=<0 032 T=<0.032

X=<0.064 M=<0 064 TPH=<3 2 ≥0.9 no

81.5'-143' Cuttings (SM) Silty-very fine sand. Light reddish-brown (7.5YR) unconsolidated, slightly moist, well sorted, no apparent hydrocarbon odor.

<13:39 Let hole equilibrate at 140' - collected split spoon at 15:10.>

140.0'-141.5' Split Spoon 1.5' sample. (SM) (7.5YR) Very fine to fine sand with minor silt, unconsolidated to weakly disseminated calcium carbonate cemented, slightly moist, no apparent hydrocarbon odor.

143'-152' Cuttings (SM/ML) Silt content higher than surrounding with very fine sand, unconsolidated, no apparent hydrocarbon odor, slightly moist.

<15:30-16:45 Rig shutdown @ 150' for 75 minutes. Blowdown - 2.9 ppm/v).

BROWN ENVIRONMENTAL, INC

CLIENT: Allsups Petroleum, Inc.

Borehole ID: BW-8

page 3 of 5

DATE OF DRILLING: LOGGED BY: DRILLER: BOREHOLE DIAMETER: **DRILLING METHOD:** SAMPLING METHOD: TOP OF CASING ELEV: DEPTH TO WATER: TOTAL DEPTH: SHALLOW WELL

INTERMEDIATE WELL

SURFACE COMPLETION:

DEEP WELL

11/10-14/15 **WJB**

John Chavez/Yellowjacket

11 3/4"

ARCH - Stratex / Air Rotary Cuttings/Split Spoon

na

7-327'
356'
2" Sched 80 PVC; Screen 115'-175'
2" Sched 80 PVC; Screen 200'-260'
4" Sched 80 PVC; Screen 287'-347'

18"X18" Manway w/Concrete Pad

USCS - LITHOLOGIC DESCRIPTION

 $\underline{\textbf{152'-161' Cuttings}} \hspace{0.2cm} \textbf{(SM) Silty very fine to fine sand, (7.5YR) brown, slightly moist, unconsolidated, no apparent hydrocarbon odor.}$

161'-165' Cuttings (SM/ML) As above, silt - very fine sand (7.5YR).

165'-238' Cuttings (SM) (7.5YR) Silty very fine to fine sand, unconsolidated, slightly moist, no apparent hydrocarbon odor.

PID Reading (ppm)/ Lab Sample (ppm) Borehole/ Monitor Well Construction Construction Data Depth (in feet) Interval Simplified Lithology 150 ≥1.7 no 0.02 Slot Screen 2" Dia. Sched 80 PVC ≥1.8 no = 155 ≥2.1 no 160 ≥0.9 no 165 ≥2.2 no **□ 170** ≥2.5 no -175 6%/94% Bentonite Cement Grout tremied into hole and allowed to setup 180 ≥1.6 no 📕 185 190 ≥12.4 wo = 195 ≥6.9 no **11-200 Q**1 0.02 Slot Scre Dia Sched 80 ≥1.9 wo Q. ≥1.9 no 215

<188' Rig breakdown, hole sat overnight, blowdown at 10:50 = 0.5 ppm/v, no apparent hydrocarbon odor.>

~200 to 210', minor calcium carbonate cemented, small sandstone nodules.

210'-240' Occasional weathered turpene-like hydrocarbon odor in off gas from hole/cyclone 2-10 ppm/v.

BROWN ENVIRONMENTAL, INC

CLIENT: Allsups Petroleum, Inc.

Borehole ID: BW-8

page 4 of 5

Øy.

er.

93-

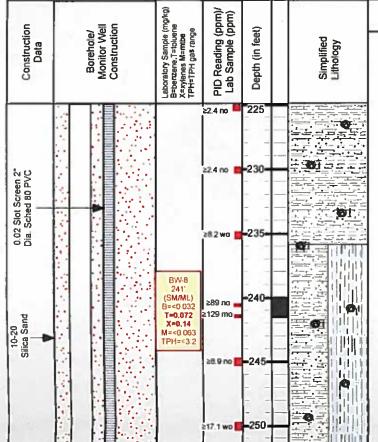
0

DATE OF DRILLING: LOGGED BY: DRILLER: **BOREHOLE DIAMETER: DRILLING METHOD:** SAMPLING METHOD: TOP OF CASING ELEV: DEPTH TO WATER: **TOTAL DEPTH:** SHALLOW WELL INTERMEDIATE WELL **DEEP WELL**

6%94% Bentonite Cement Grout tremed into hole and allowed to setup

entonite Pellets

3/8" Hydrated E Chips and 1/4'


11/10-14/15 **WJB** John Chavez/Yellowjacket 11 3/4" **ARCH** Cuttings/Split Spoon

~327' 356' 2" Sched 80 PVC; Screen 115'-175' 2" Sched 80 PVC; Screen 200'-260' 4" Sched 80 PVC; Screen 287'-347'

SURFACE COMPLETION: 18"X18" Manway w/Concrete Pad

USCS - LITHOLOGIC DESCRIPTION

≥5.9 no 255

≥5.8 no

30.2 wa 36.1 wo

≥8.0 wa

BW-8

(SM/ML) B=<0.030 T=<0.030 X=<0.061

236'-252' (SM/ML) (7.5YR) silt-very fine sand, well sorted, slightly moist with minor calcium carbonate cemented sandstone (SAS) nodules.

<12:30 Hole at 240', stop for lunch and to let hole equilibrate. 14:00 Collected split spoon at 240'-241.5', weathered hydrocarbon odor.>

240.0'-241.5' Split Spoon 1.4' sample. (SM/ML) (7.5YR) Light brown silt to very fine sand, well sorted, slightly moist with ~2-3% calcium carbonate cemented (SAS) nodules, degraded hydrocarbon odor.

<245* Rig down for 25 minutes, blowdown = 68 ppm/v, moderate weathered hydrocarbon odor,>

252'-309' Cuttings (SM) Silty very fine to fine sand (5YR to 7.5 YR) Reddish-light brown, occasional (SAS) concretions, slightly moist.

<270' measured vapor levels in adjacent deep wells BW-4d and BW-5d= 0.01 and 0.07 ppm/v, respectively. Wells under negative pressure.>

280.0' -281.5' Split Spoon 1.4' sample. (SM) (7.5YR) Light brown, silty very fine to fine sand with several prominent concretions, slightly moist, weak hydrocarbon odor, localized (SM/ML) finer grained silt-very fine sand

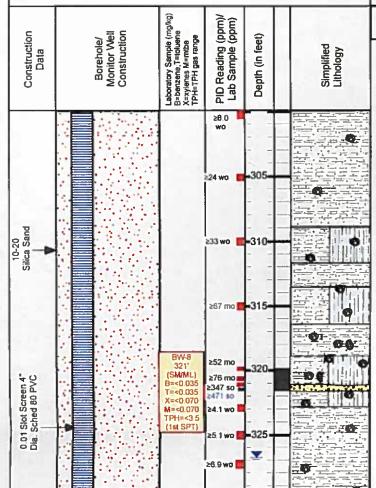
(5YR) Light reddish brown below ~300' depth.

BROWN ENVIRONMENTAL, INC

CLIENT: Allsups Petroleum, Inc. Borehole ID: BW-8

page 5 of 5

DATE OF DRILLING:
LOGGED BY:
DRILLER:
BOREHOLE DIAMETER:
DRILLING METHOD:
SAMPLING METHOD:
TOP OF CASING ELEV:
DEPTH TO WATER:
TOTAL DEPTH:
SHALLOW WELL
INTERMEDIATE WELL
DEEP WELL


SURFACE COMPLETION:

11/10-14/15
WJB
John Chavez/Yellowjacket
11 3/4"
ARCH - Stratex / Air Rotary
Cuttings/Split Spoon
na
~327'
356'

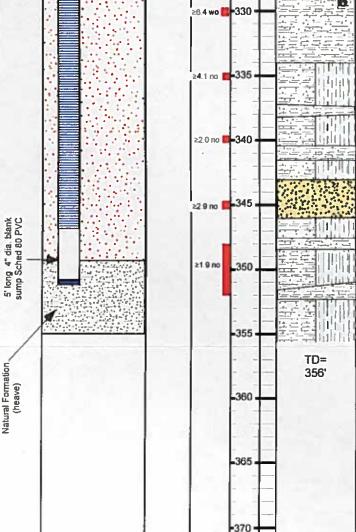
2" Sched 80 PVC; Screen 115'-175' 2" Sched 80 PVC; Screen 200'-260' 4" Sched 80 PVC; Screen 287'-347' 18"X18" Manway w/Concrete Pad

USCS - LITHOLOGIC DESCRIPTION

309'-323' Cuttings (SM) silty fine sand with (SM/ML)silt-very fine sand intebeds, gradational contacts, (5YR) reddish brown, slightly moist, degraded hydrocarbon odor, concretions common-especially in lower 5', possible thin laminar calcium carbonate cemented (SAS) sandstone zones.

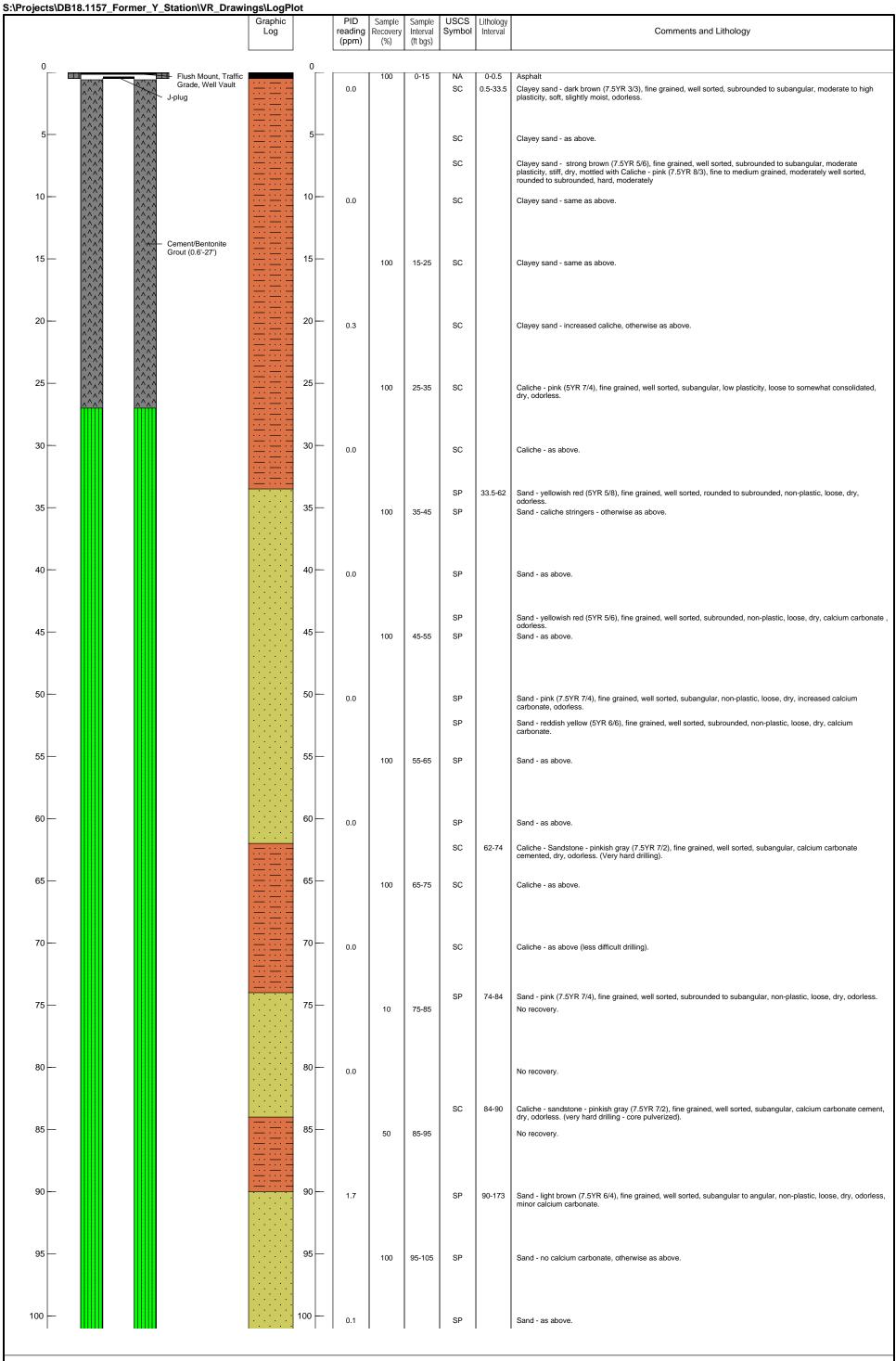
320.0'-321.5' Split Spoon 1st sample collected 11/12/15 at 19:02 1.5' sample. 0.0'-1.5' (ML/SM) Silt-very fine sand (7.5YR) light reddish brown, unconsolidated, slightly moist with moderate highly weathered hydrocarbon odor (more volatile compounds partially stripped out from drilling procedure). Several 1-2" calcium carbonate cemented (SAS) nodules.

Stopped drilling at 320' 11/12/15 at 19:02, let hole sit overnight-collected 2nd split spoon from same depth and continued drilling to total depth.


320.0'-321.5' Split Spoon 2nd sample collected 11/13/15 at 8:35 - refusal 2 times - calcium carbonate zone, dense, hard, not enough sample for lab - PID =471 ppm/v, moderate to strong hydrocarbon odor, ~1" (SM/ML) in spoon. Note: borehole under vacuum - atmospheric air going into borehole.

323'-334' Cuttings (SM) (5YR) Reddish-brown silty very fine to fine sand with some concretions but less than above, moist below ~325', degraded hydrocarbon odor, present.

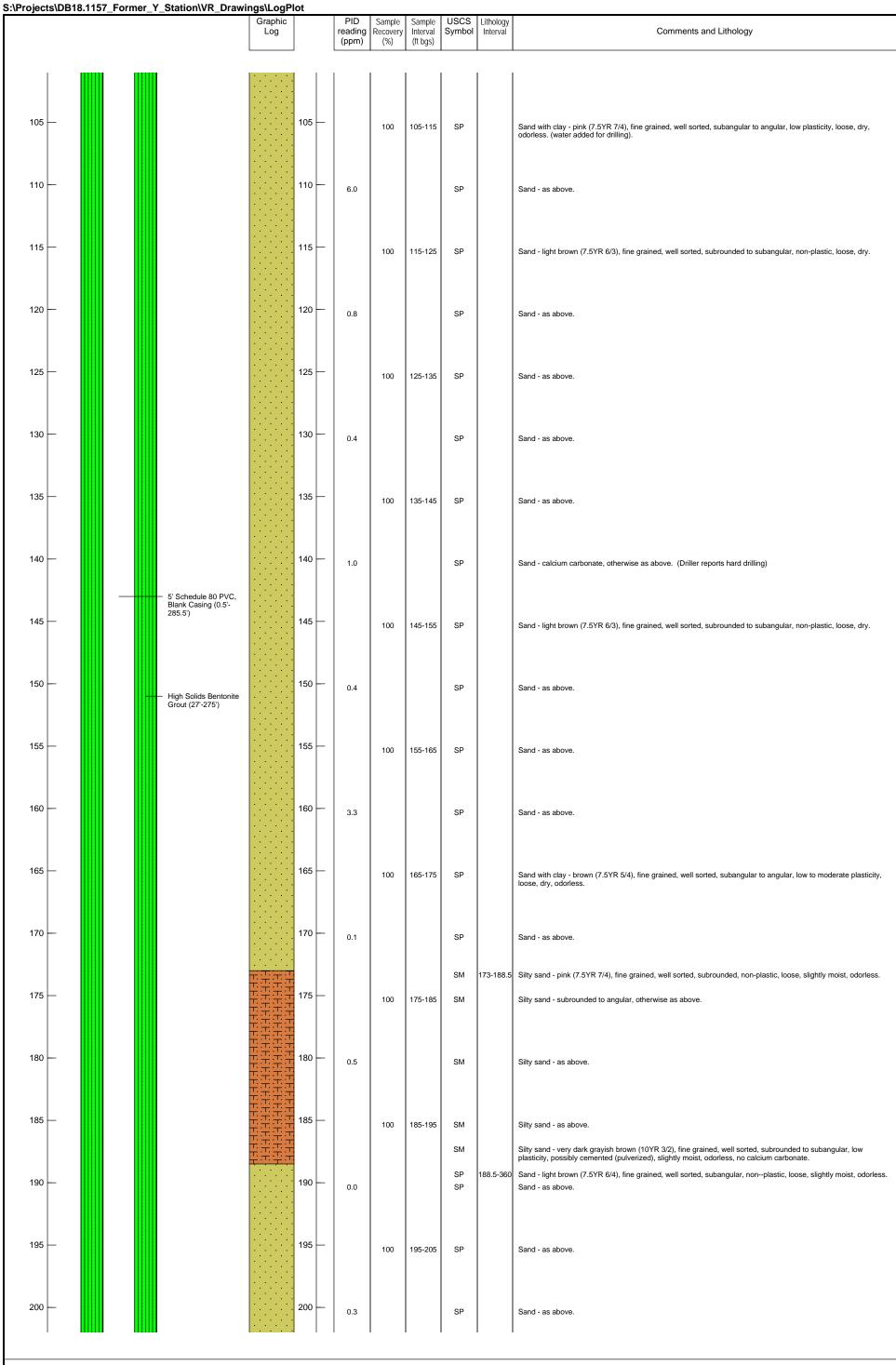
334'-343' Cuttings (SM/ML) Very fine to fine sand-silt, moist, 5YR) red-brown, weathered hydrocarbon odor at top with localized (SM) silty very fine to fine sand intervals (borehole not making much water - having to add water to retrieve cuttings).


343'-346' Cuttings Very hard zone, very fine to fine grained sandstone (SAS) light tan-brown (7.5YR) calcium carbonate cemented.

346'-356' Cuttings Poor cuttings return - soupy, (ML/SM) silt-very fine sand, (7.5) light brown, no apparent hydrocarbon odor, water saturated; likely interbedded (SM), coarse grained zones as above.

1

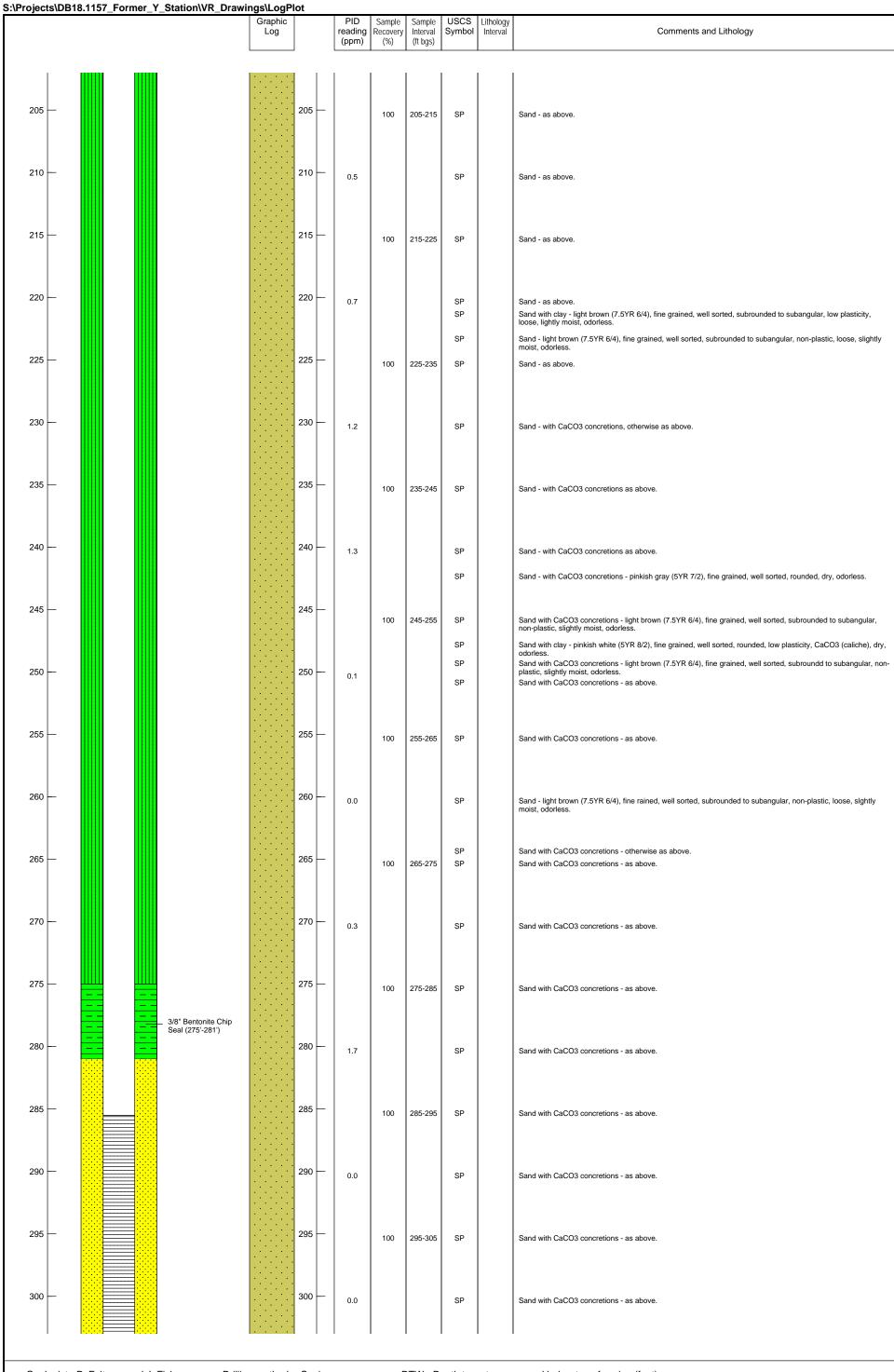
BROWN ENVIRONMENTAL, INC



Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

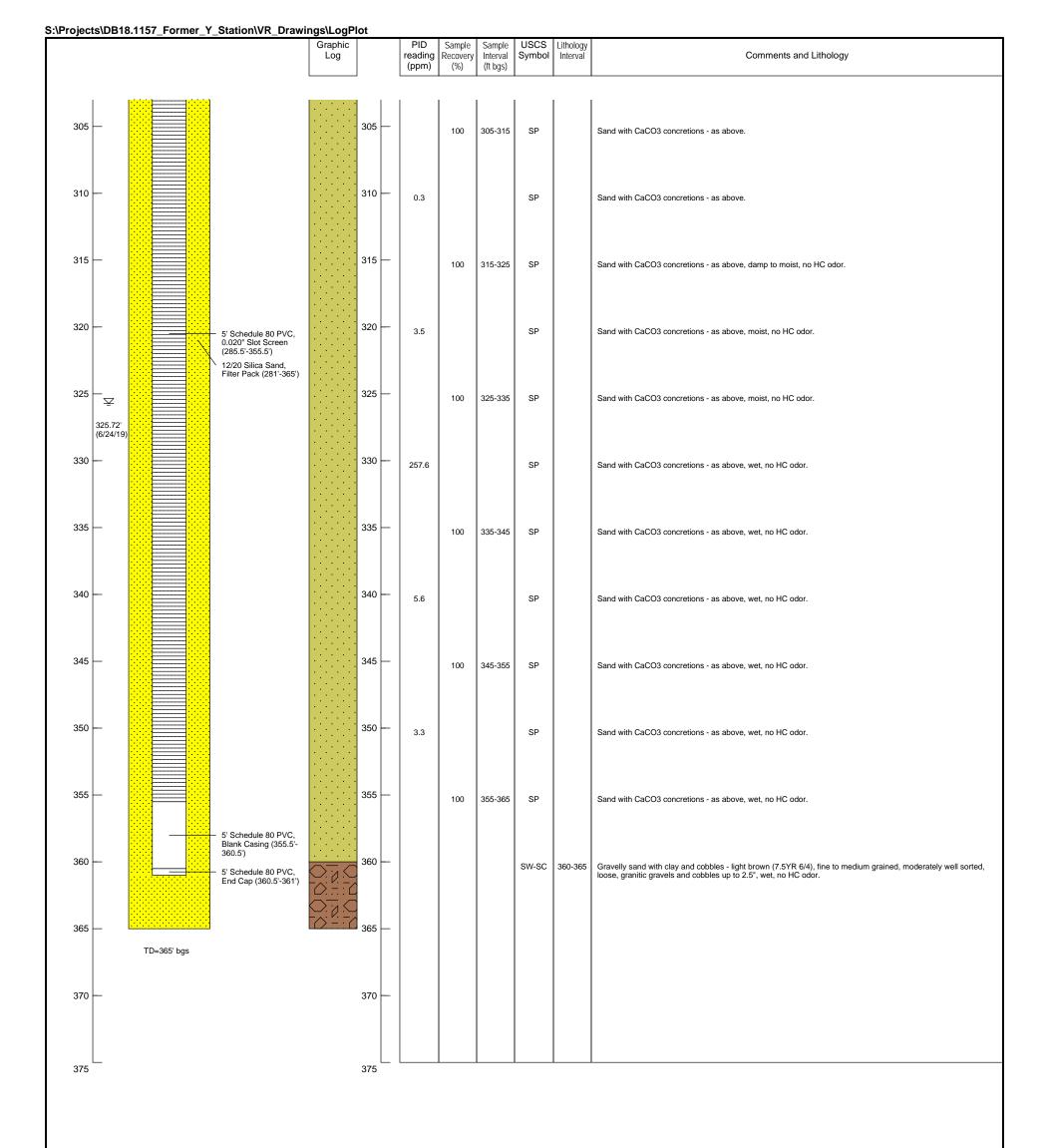
New Mexico State Plane East NAD83 Elevation: 4274.64

Northing: 1244812.45 Easting: 884412.98


FORMER Y STATION **CLOVIS, NEW MEXICO**

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

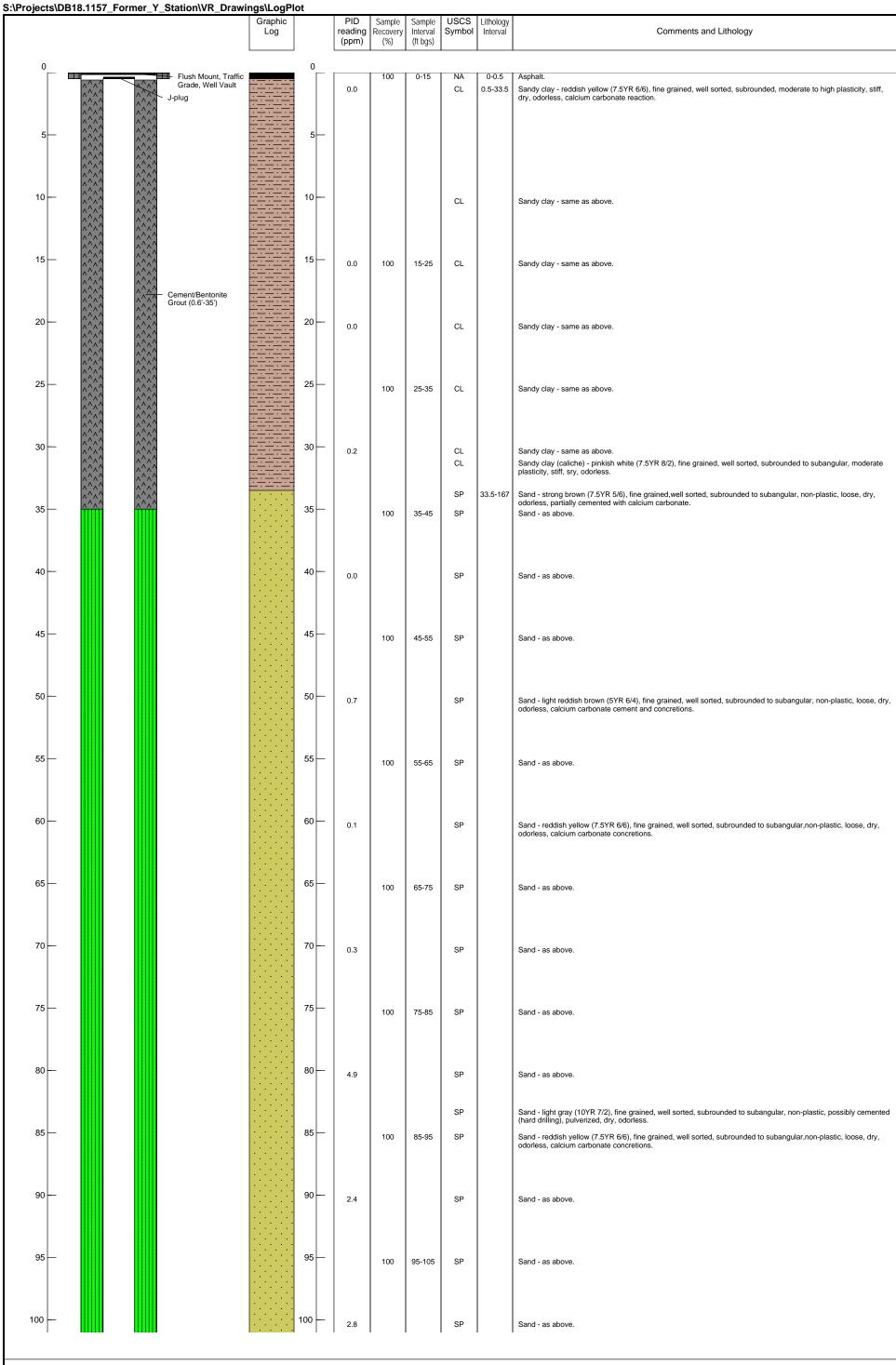
New Mexico State Plane East NAD83 Northing: 1244812.45 Elevation: 4274.64


Northing: 1244812.45 Easting: 884412.98 FORMER Y STATION CLOVIS, NEW MEXICO

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83 Northing: 1244812.45 Elevation: 4274.64

Northing: 1244812.45 Easting: 884412.98 FORMER Y STATION CLOVIS, NEW MEXICO

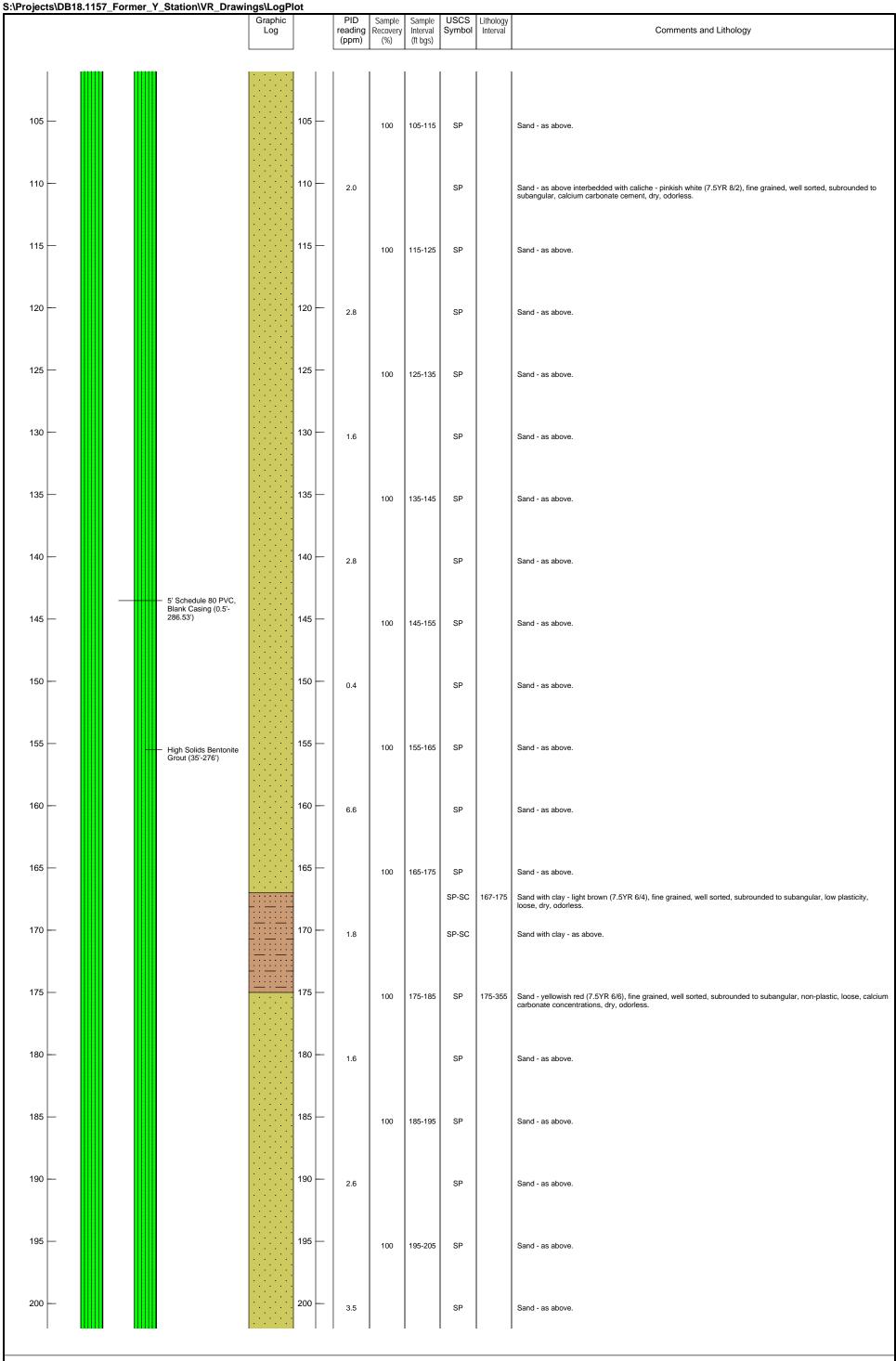


Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

Elevation: 4274.64

New Mexico State Plane East NAD83

Northing: 1244812.45 Easting: 884412.98 FORMER Y STATION CLOVIS, NEW MEXICO MW-11

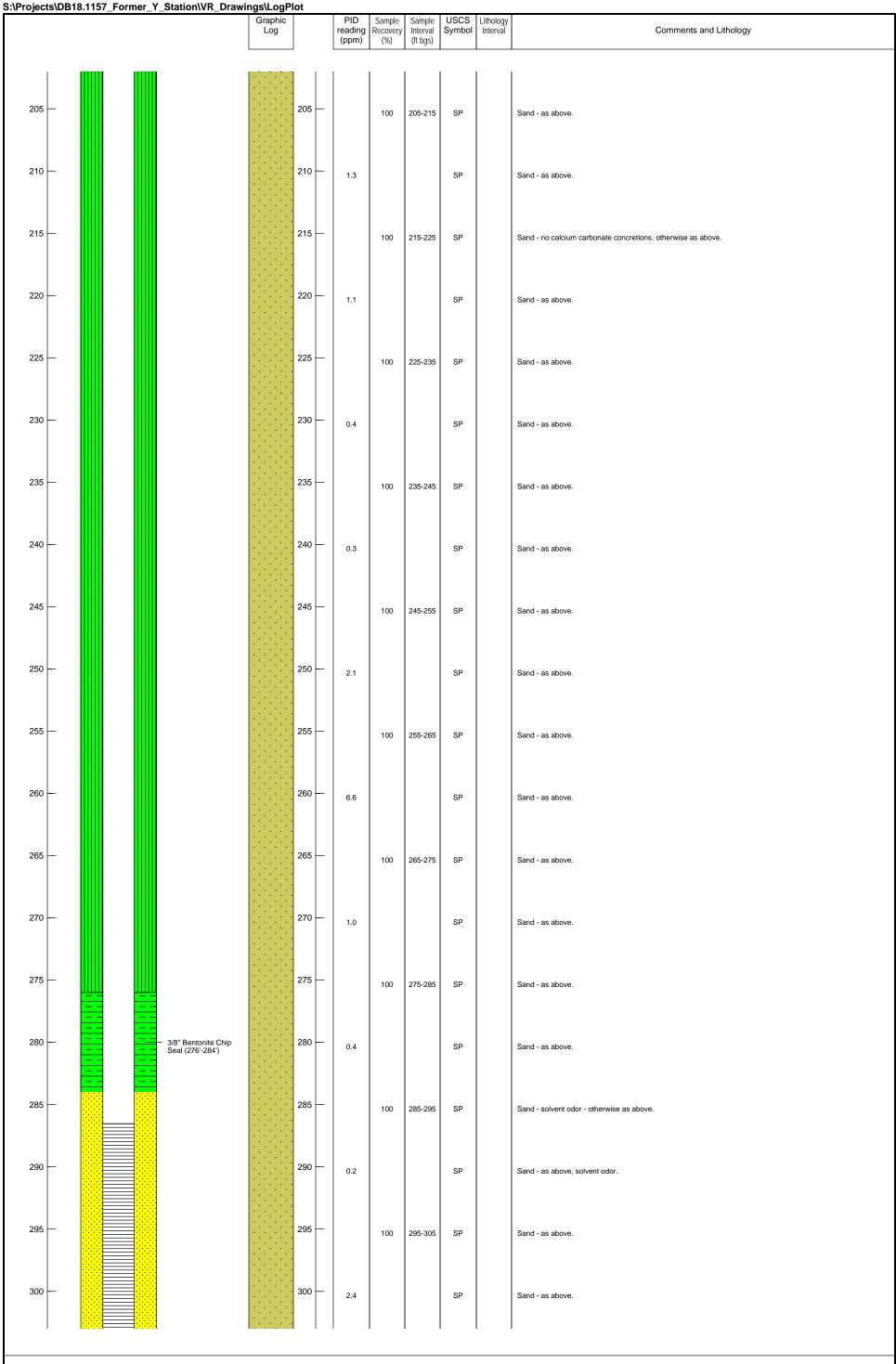

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

Elevation: 4277.60

New Mexico State Plane East NAD83

Northing: 1245128.28 Easting: 884520.19 FORMER Y STATION CLOVIS, NEW MEXICO

MW-12



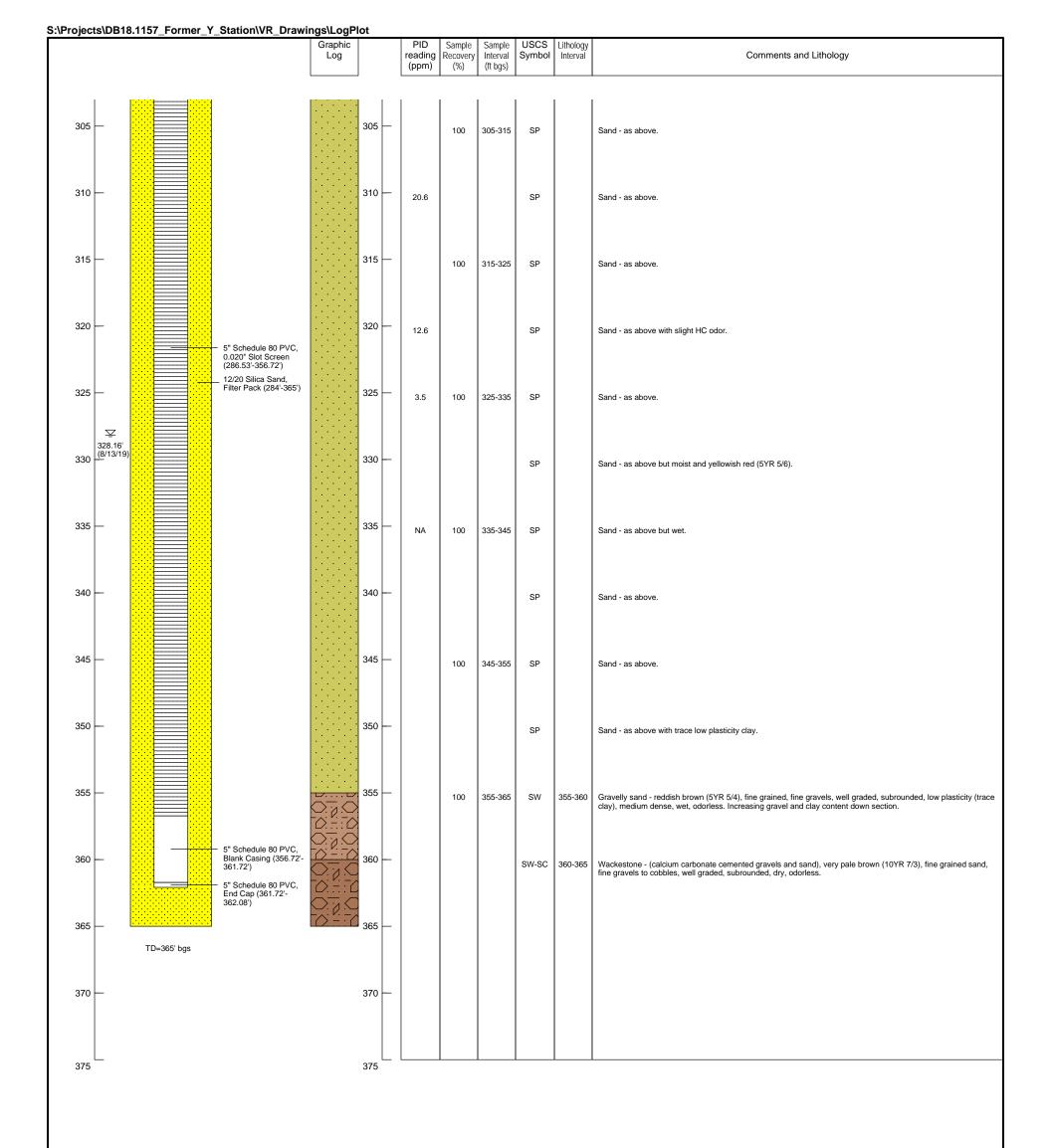
Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83

Elevation: 4277.60 Northing: 1245128.28 Easting: 884520.19

FORMER Y STATION **CLOVIS, NEW MEXICO**

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core

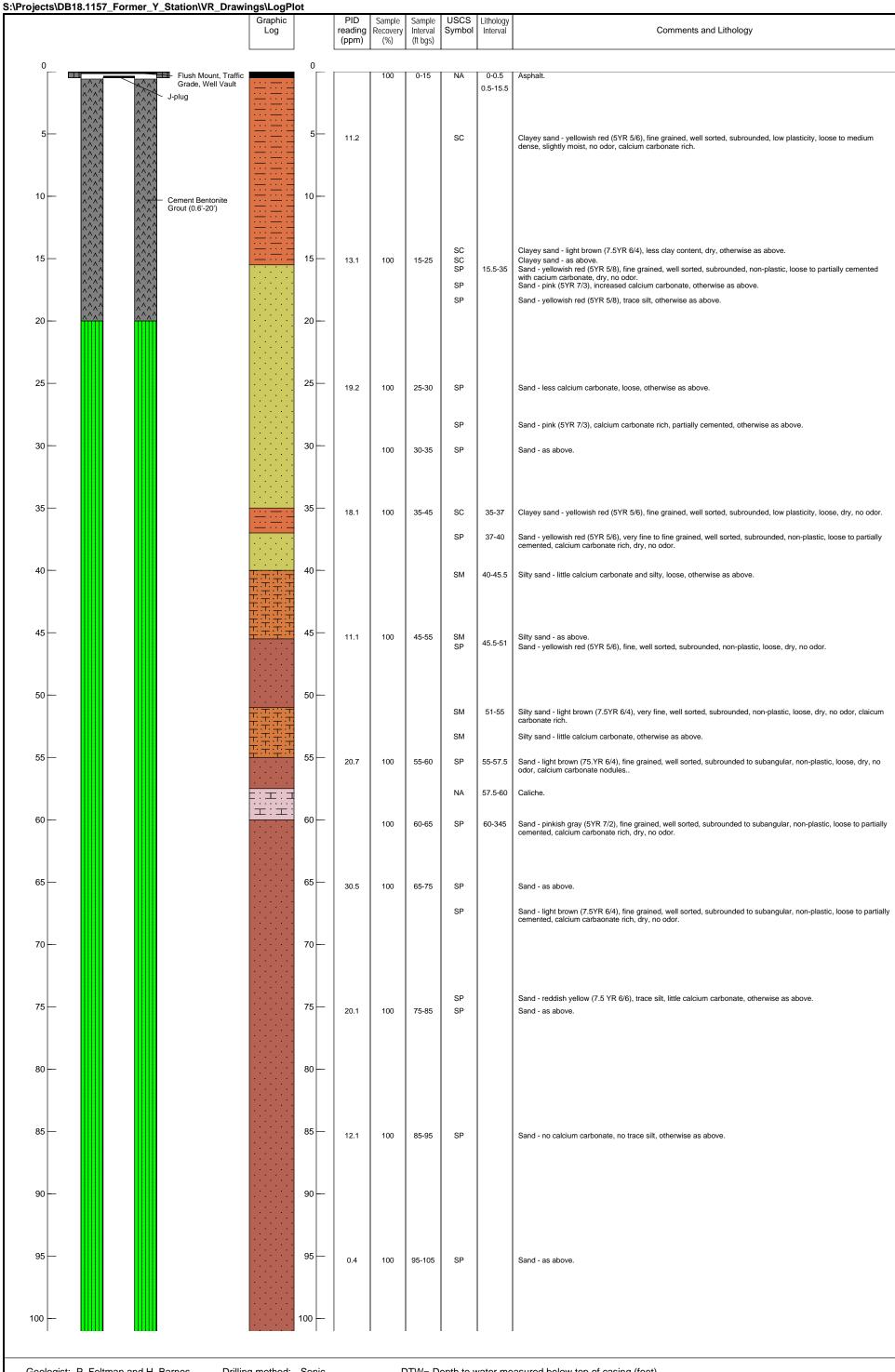

DTW= Depth to water measured below top of casing (feet)

Elevation: 4277.60

New Mexico State Plane East NAD83

Northing: 1245128.28 Easting: 884520.19 FORMER Y STATION CLOVIS, NEW MEXICO

MW-12



Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

Elevation: 4277.60

New Mexico State Plane East NAD83

Northing: 1245128.28 Easting: 884520.19 FORMER Y STATION CLOVIS, NEW MEXICO

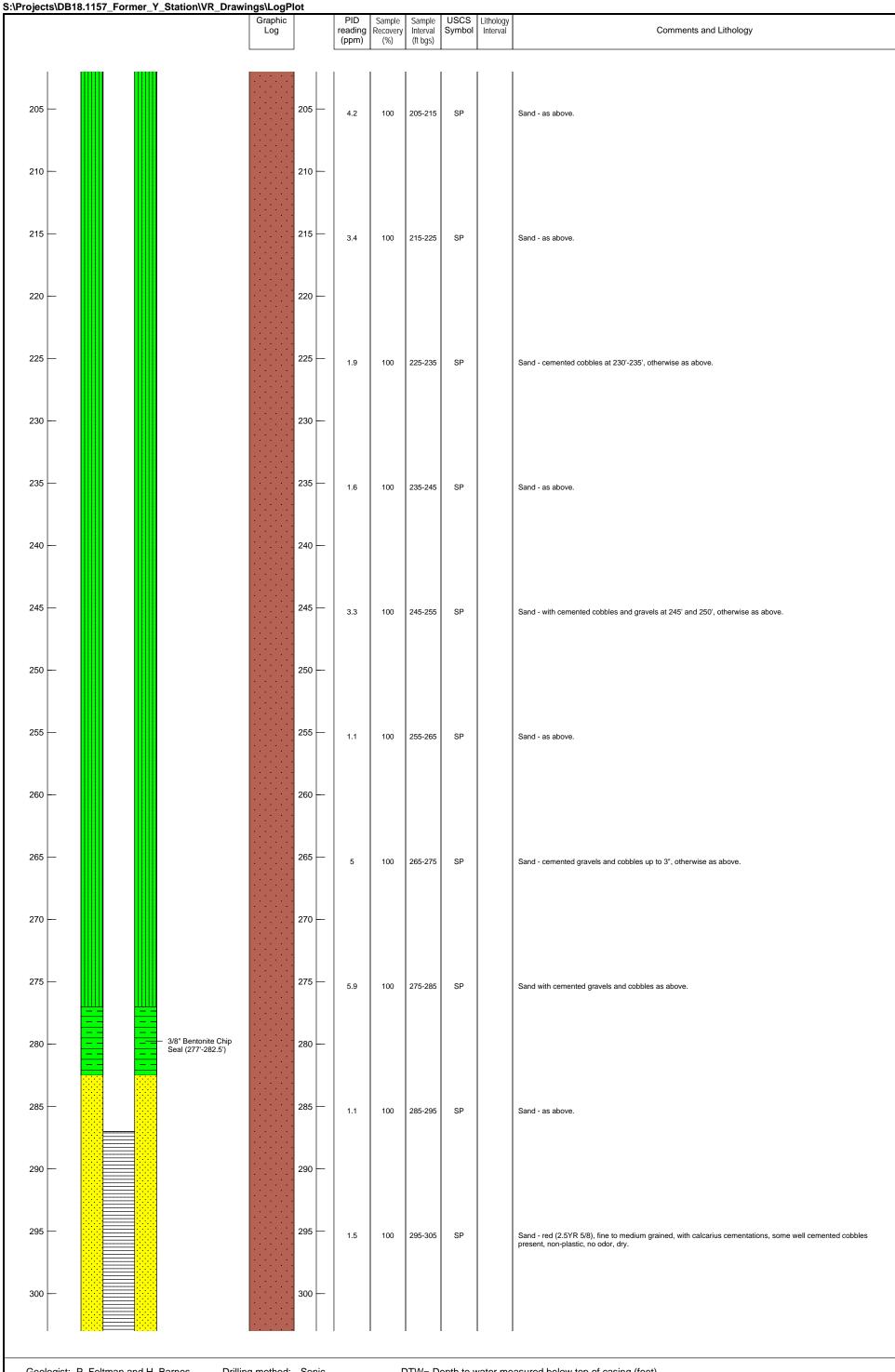
Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

Elevation: 4275.82

New Mexico State Plane East NAD83

Northing: 1244960.74 Easting: 884269.96 FORMER Y STATION CLOVIS, NEW MEXICO

MW-13

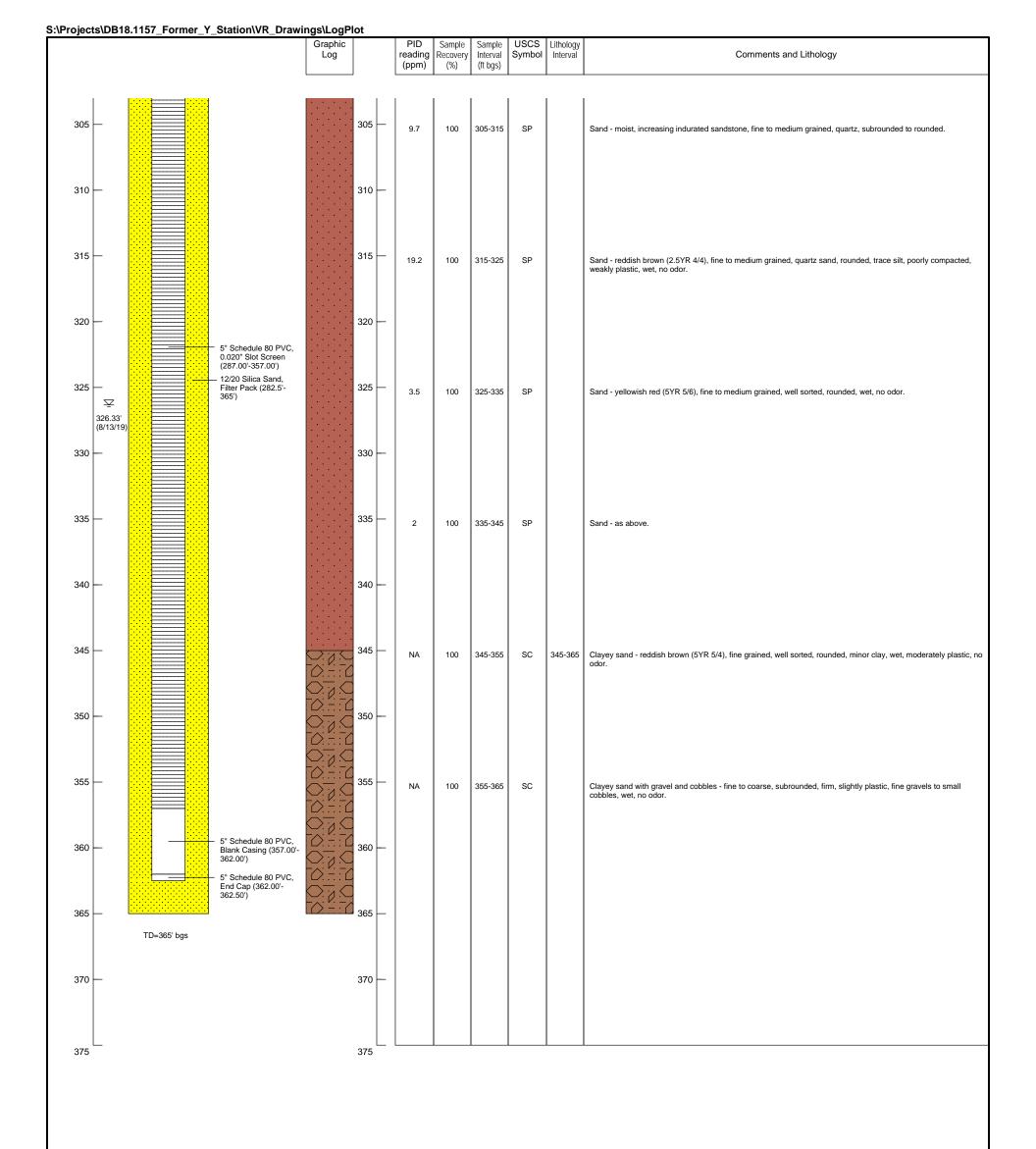

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

Elevation: 4275.82

New Mexico State Plane East NAD83

Northing: 1244960.74 Easting: 884269.96 FORMER Y STATION CLOVIS, NEW MEXICO

MW-13

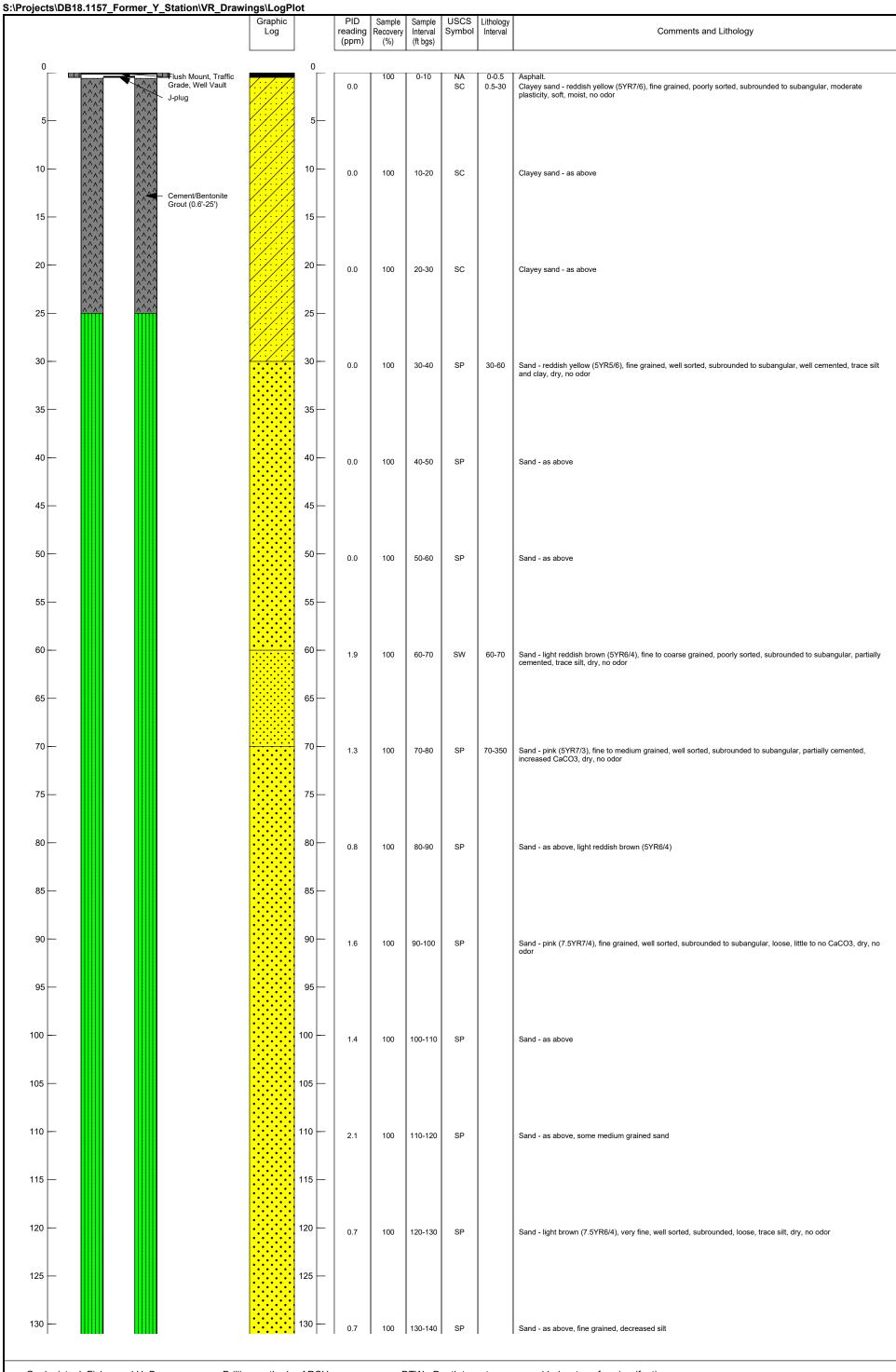


Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

Elevation: 4275.82

New Mexico State Plane East NAD83

Northing: 1244960.74 Easting: 884269.96 FORMER Y STATION CLOVIS, NEW MEXICO

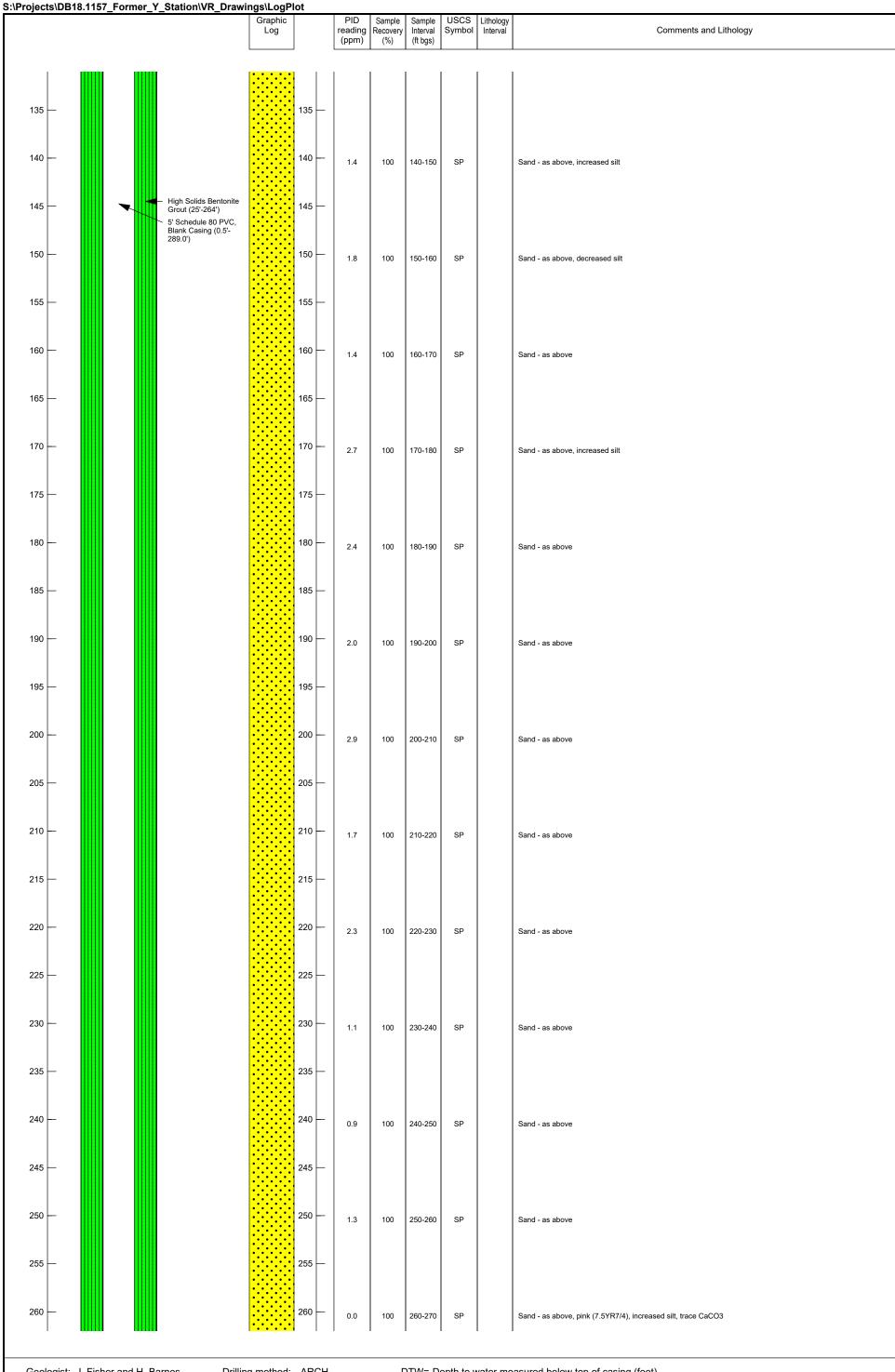


Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

Elevation: 4275.82

New Mexico State Plane East NAD83

Northing: 1244960.74 Easting: 884269.96 FORMER Y STATION CLOVIS, NEW MEXICO MW-13

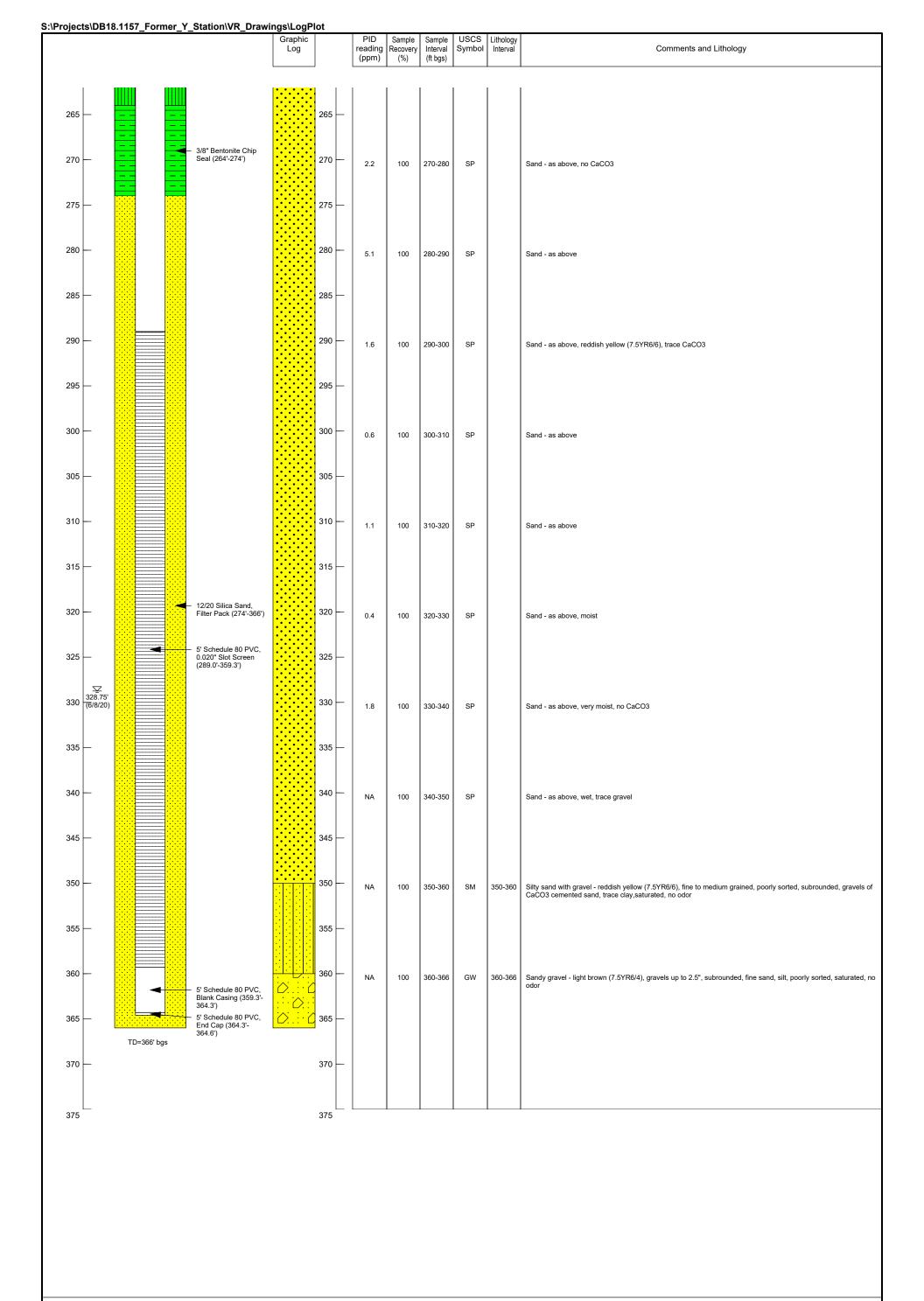

Geologist: J. Fisher and H. Barnes Driller: Yellow Jacket Drilling Drilling start date: 5/29/2020 Well completion date: 5/29/2020

Drilling method: ARCH Borehole diameter: 8.5" Sampling method: Cuttings DTW= Depth to water measured below top of casing (feet)

Elevation: 4276.23

New Mexico State Plane East NAD83

Northing: 1244755.74 Easting: 884811.25 FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO MW-16

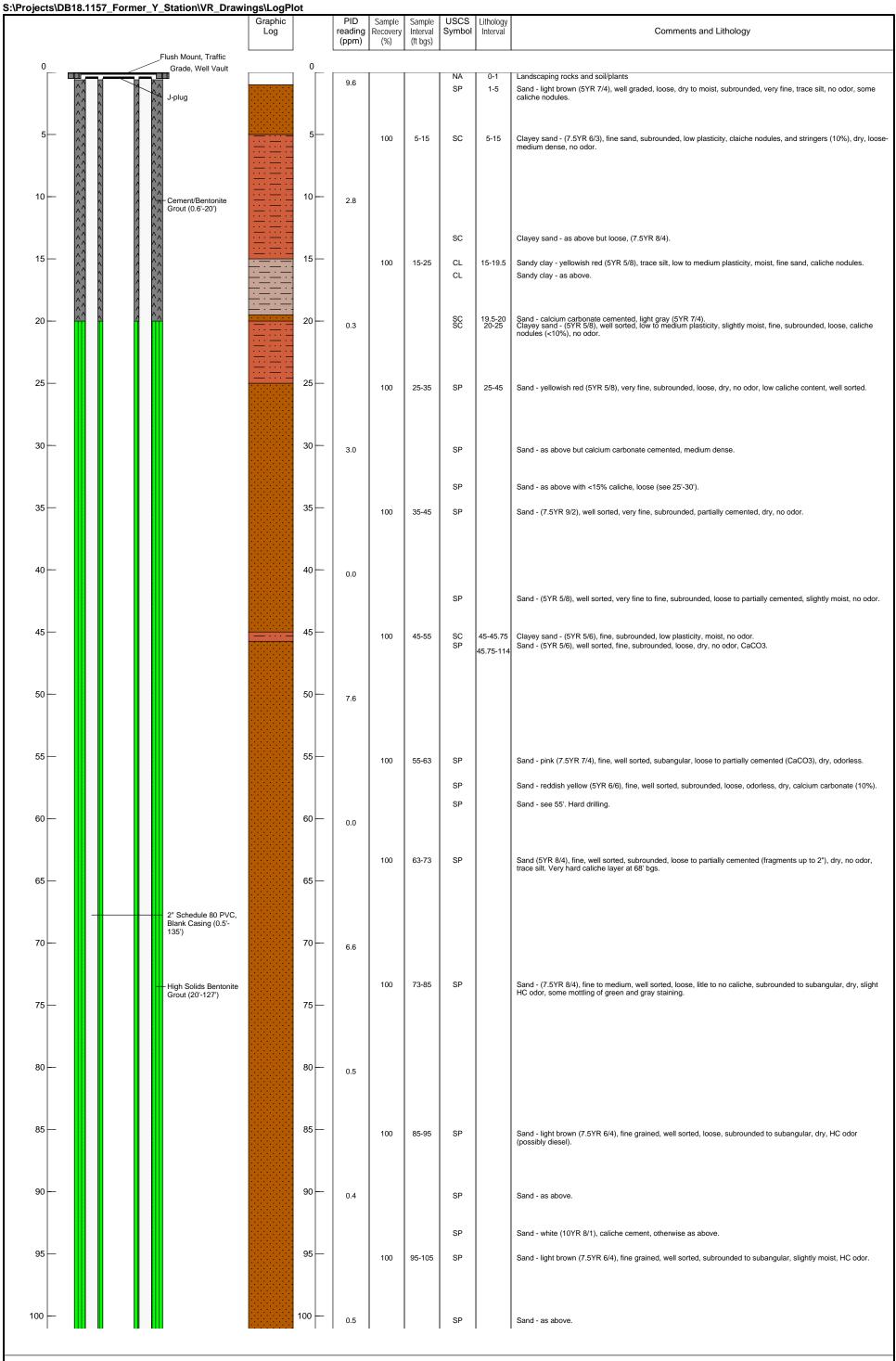


Geologist: J. Fisher and H. Barnes Driller: Yellow Jacket Drilling Drilling start date: 5/29/2020 Well completion date: 5/29/2020 Drilling method: ARCH Borehole diameter: 8.5" Sampling method: Cuttings DTW= Depth to water measured below top of casing (feet)

Elevation: 4276.23

New Mexico State Plane East NAD83

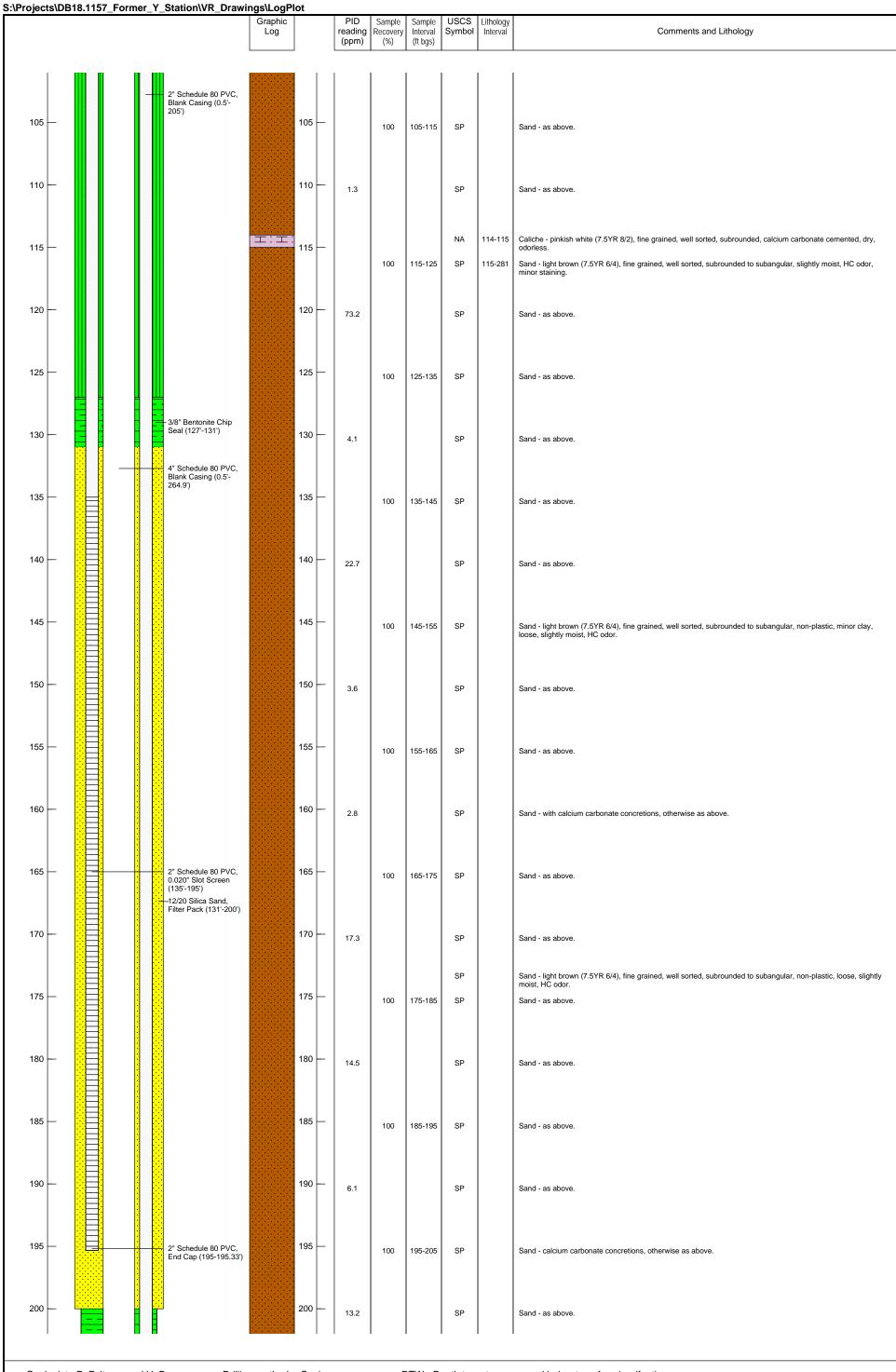
Northing: 1244755.74 Easting: 884811.25 FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO MW-16



Drilling method: ARCH Borehole diameter: 8.5" Sampling method: Cuttings DTW= Depth to water measured below top of casing (feet)

Elevation: 4276.23

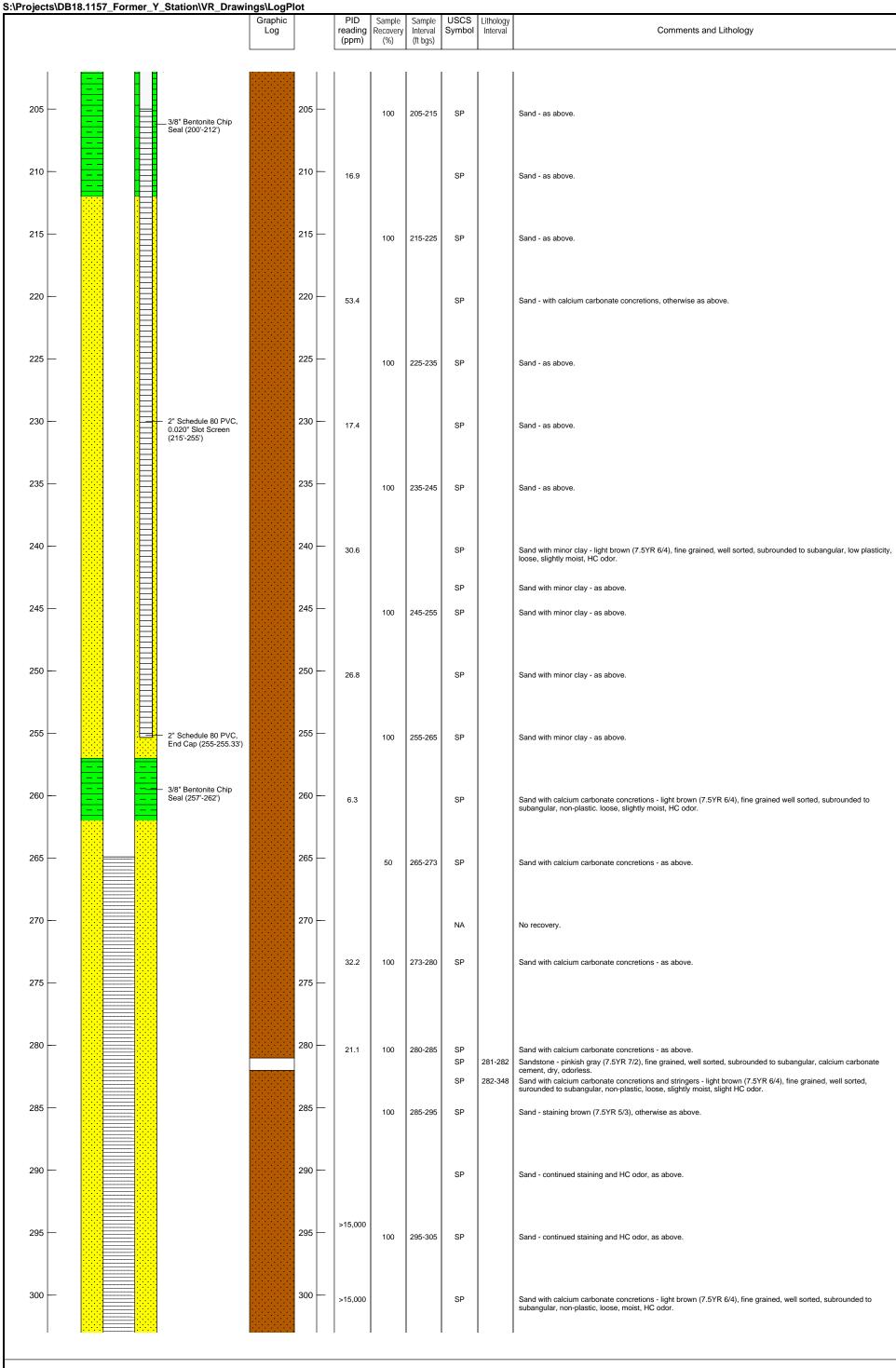
New Mexico State Plane East NAD83


Northing: 1244755.74 Easting: 884811.25 FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **MW-16**

Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83

Northing: 1245546.71 Elevation: 4280.00 Easting: 884125.47

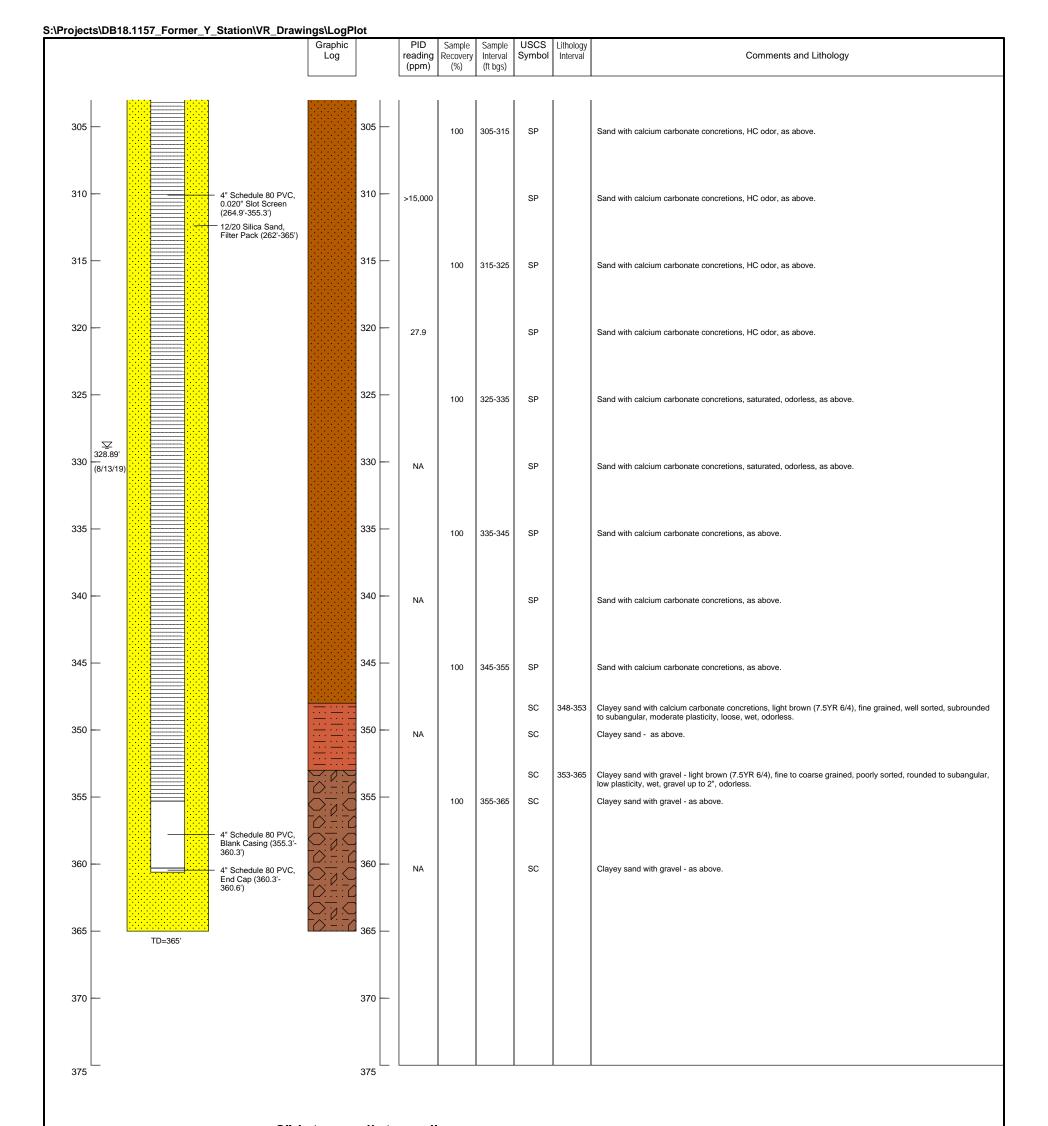

Drilling method: Sonic
Borehole diameter: 10.25"/9.5"
Sampling method: Sonic core

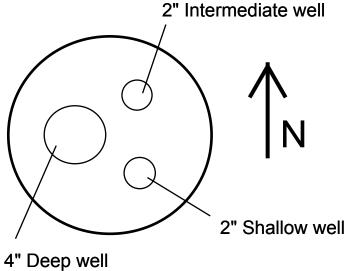
DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83

Easting: 884125.47

Northing: 1245546.71 Elevation: 4280.00

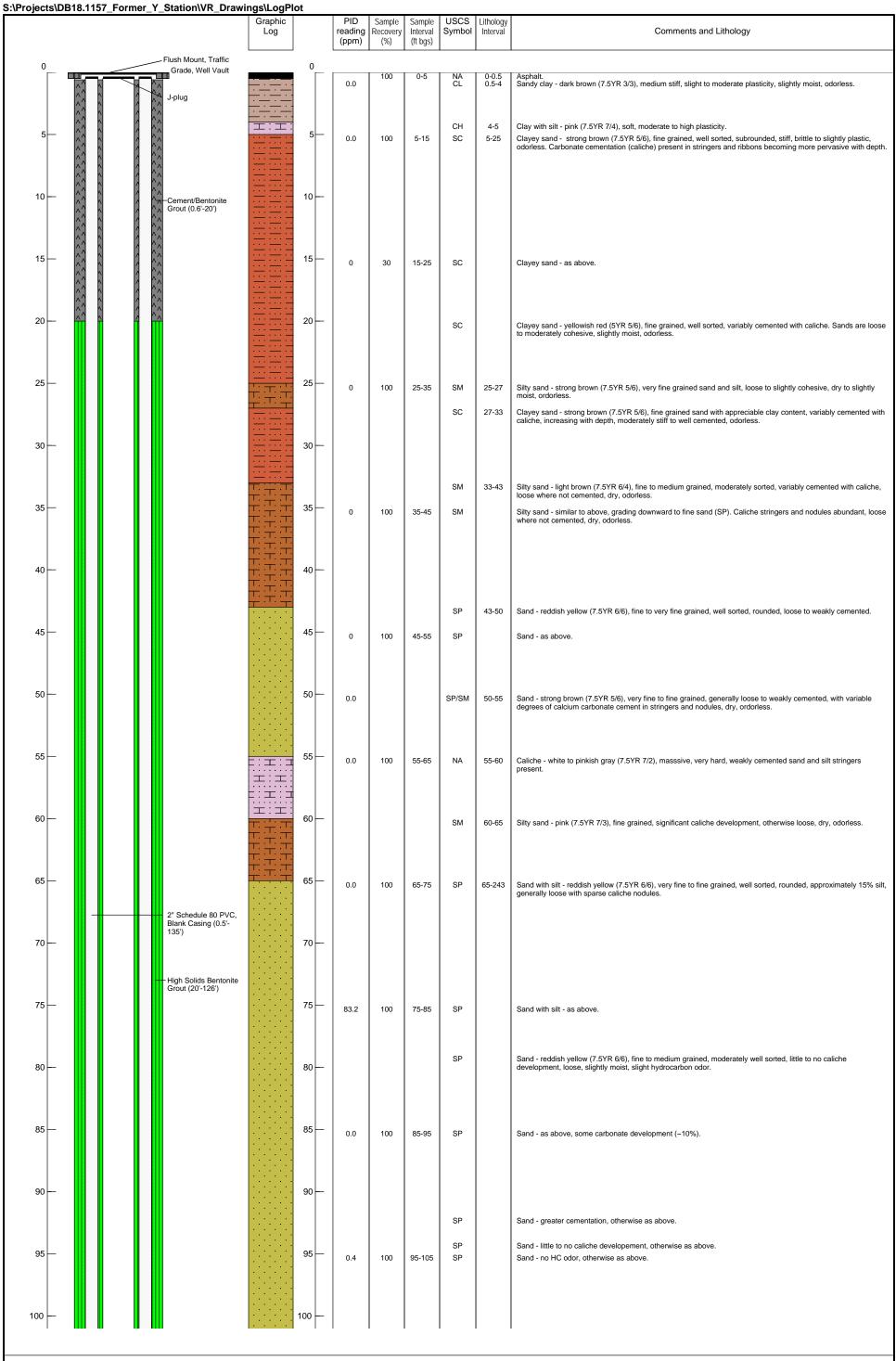



Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core

DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83 Elevation: 4280.00

Northing: 1245546.71 Easting: 884125.47

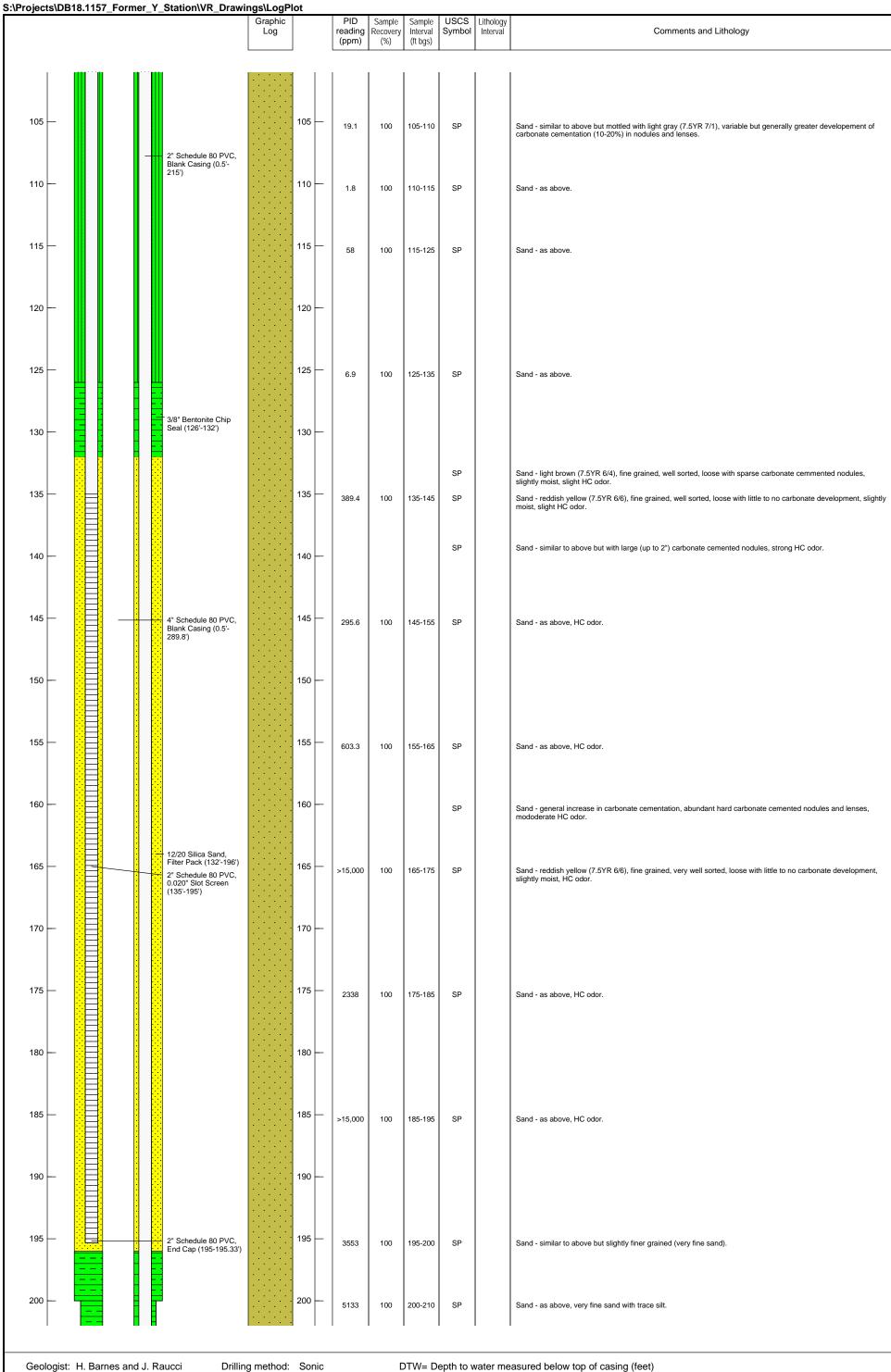


Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83 Northing: 1245546.71 Elevation: 4280.00

Northing: 1245546.71 Easting: 884125.47 FORMER Y STATION CLOVIS, NEW MEXICO

RW-1

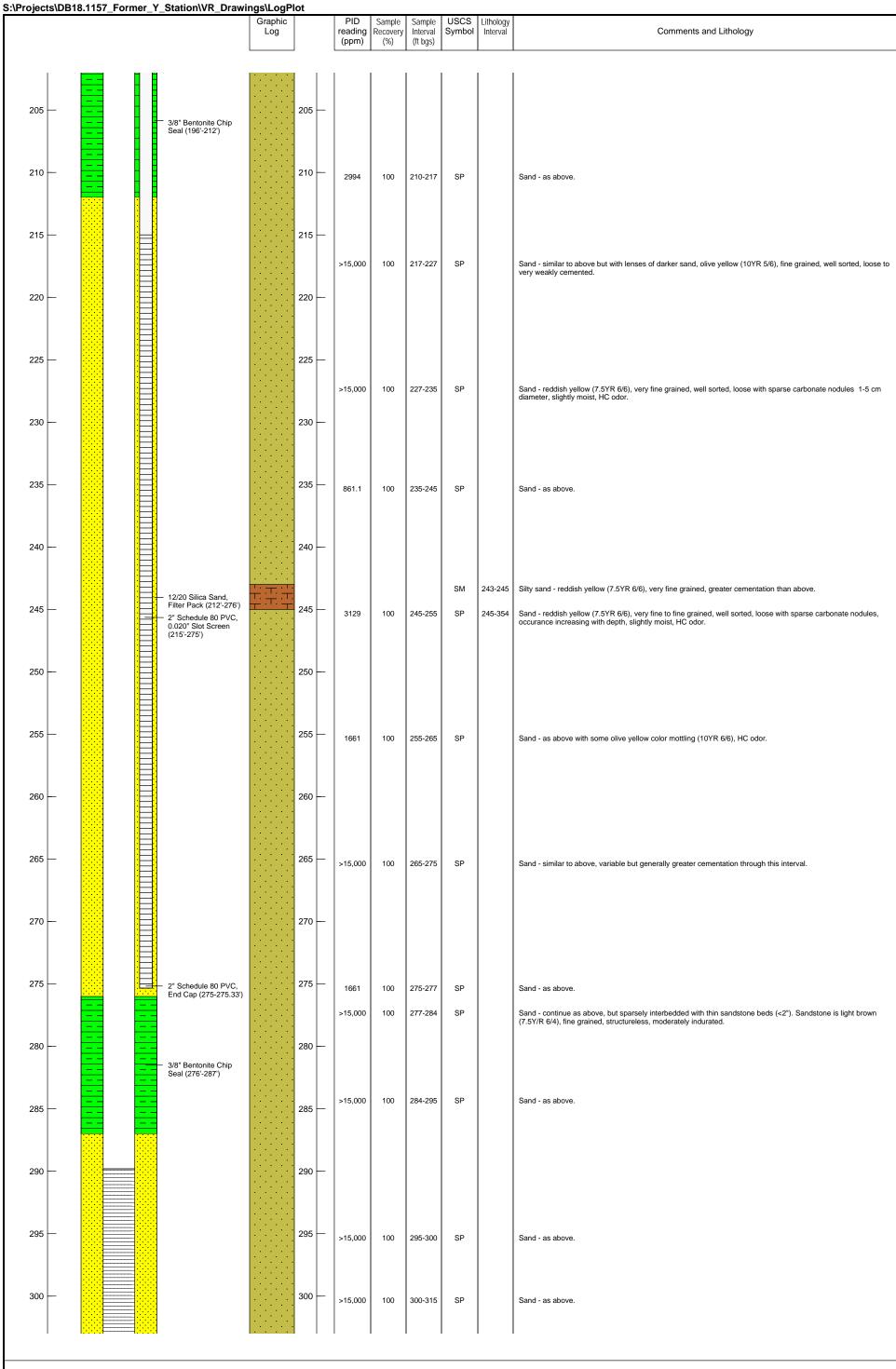


Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83 Northing: 124516.84 Elevation: 4279.70

Northing: 124516.84 Easting: 884140.97 FORMER Y STATION CLOVIS, NEW MEXICO

RW-2


Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core

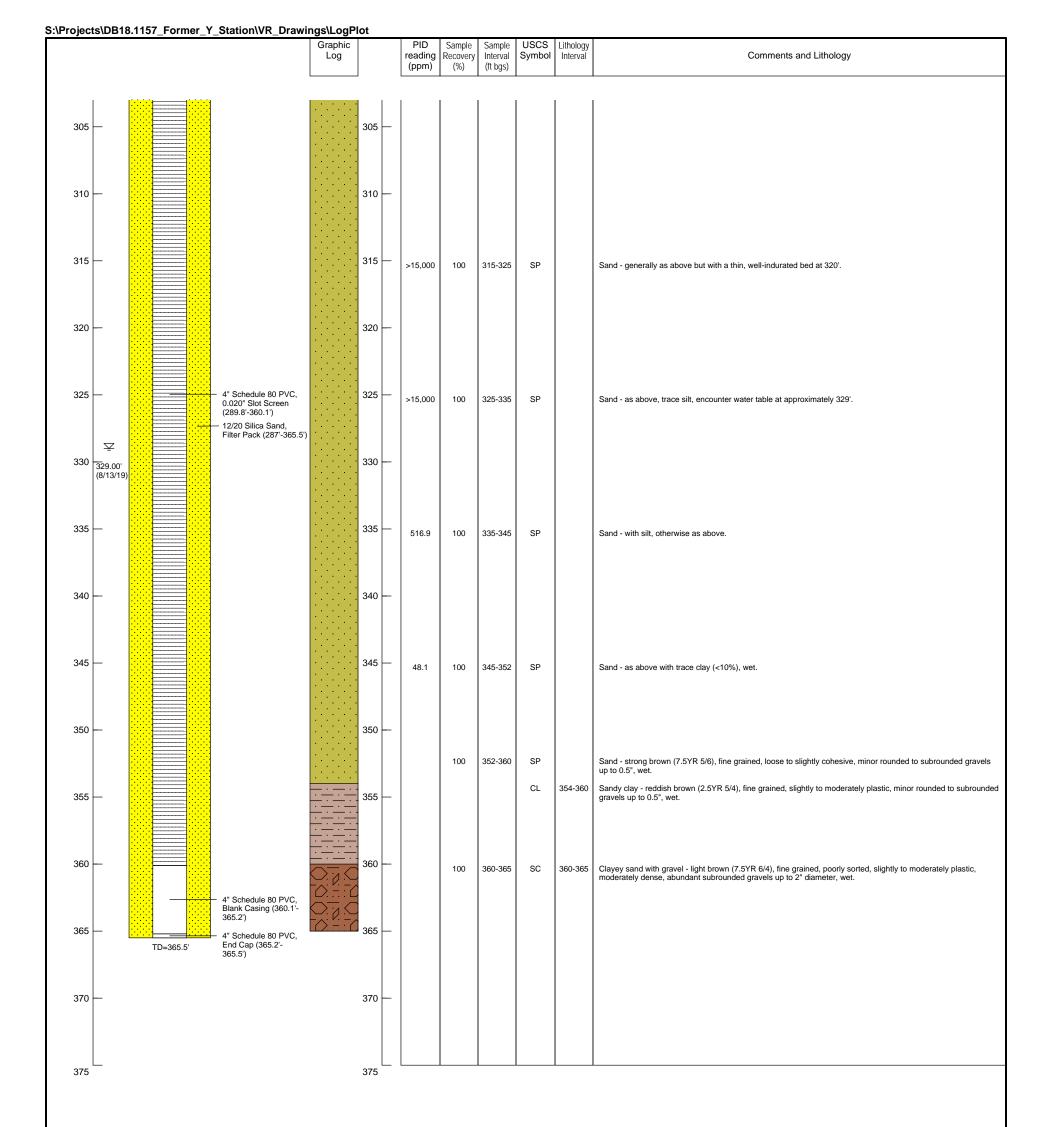
DTW= Depth to water measured below top of casing (feet)

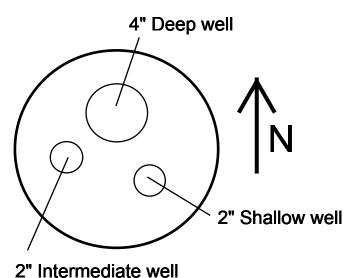
Elevation: 4279.70

New Mexico State Plane East NAD83

Northing: 124516.84 Easting: 884140.97

Drilling method: Sonic
Borehole diameter: 10.25"/9.5"
Sampling method: Sonic core

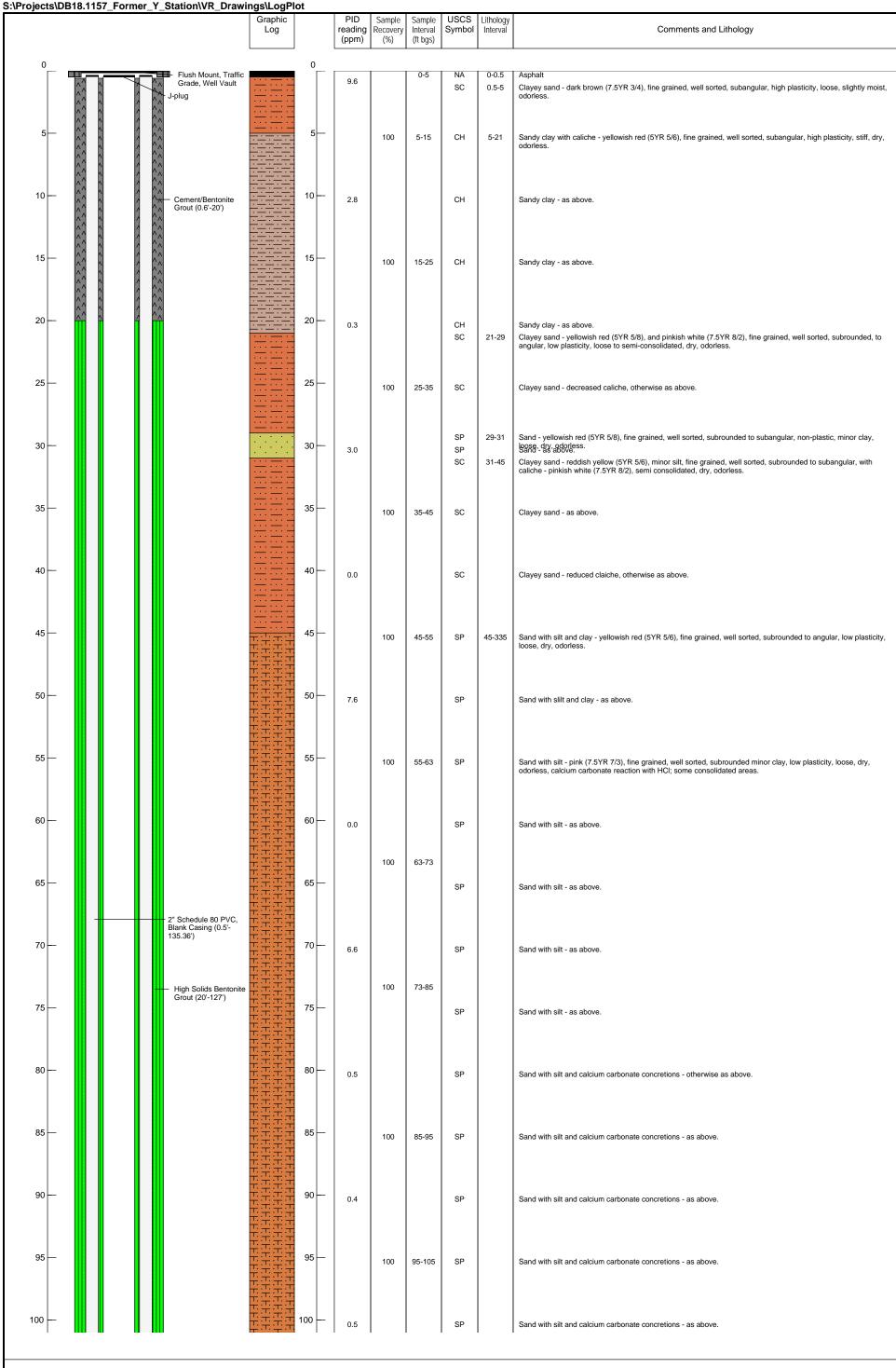

DTW= Depth to water measured below top of casing (feet)


New Mexico State Plane East NAD83

Northing: 124516.84 Easting: 884140.97 Elevation: 4279.70 FORMER

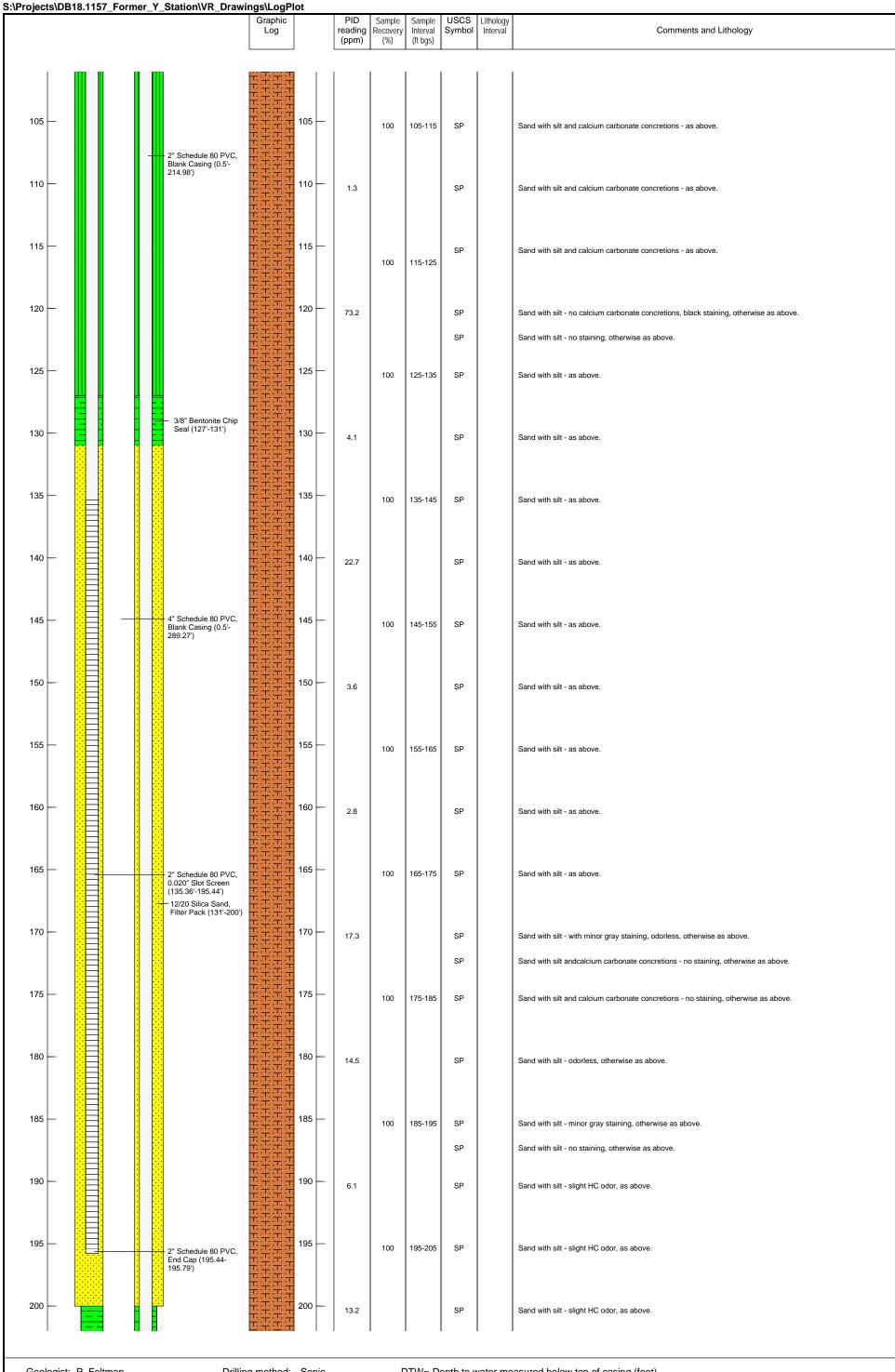
FORMER Y STATION CLOVIS, NEW MEXICO

RW-2



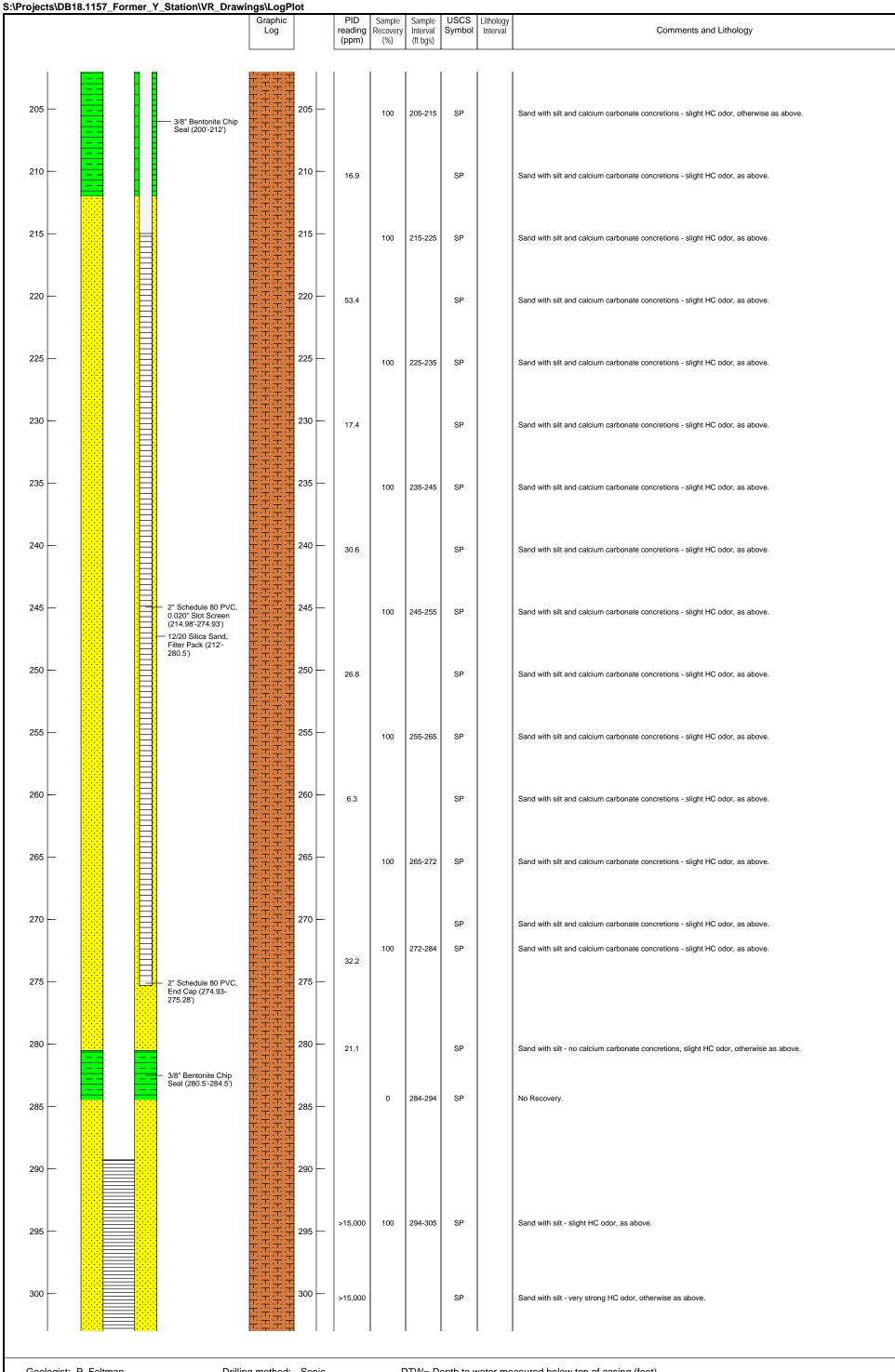
Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)

New Mexico State Plane East NAD83 Northing: 124516.84 Elevation: 4279.70


Northing: 124516.84 Easting: 884140.97

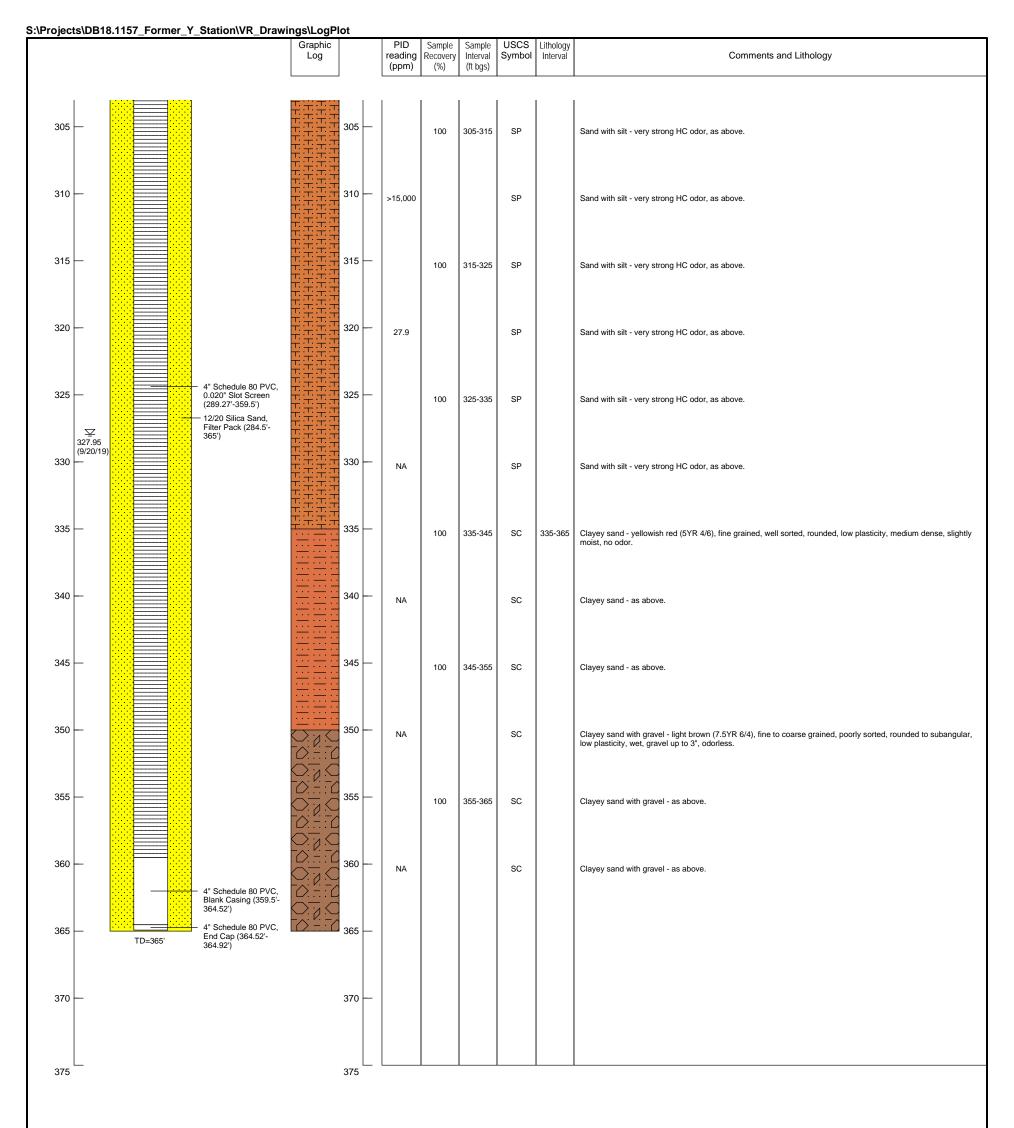
Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet) New Mexico State Plane East NAD83

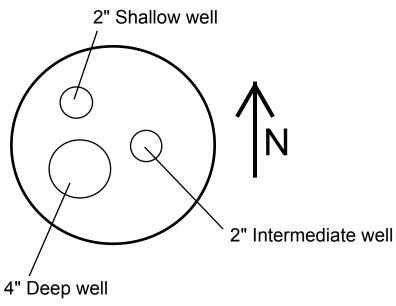
Elevation: 4278.78


Northing: 1245486.71 Easting: 884251.49

Drilling method: Sonic
Borehole diameter: 10.25"/9.5"
Sampling method: Sonic core

DTW= Depth to water measured below top of casing (feet)
New Mexico State Plane East NAD83
Northing: 1245486.71 Elevation: 4278.78

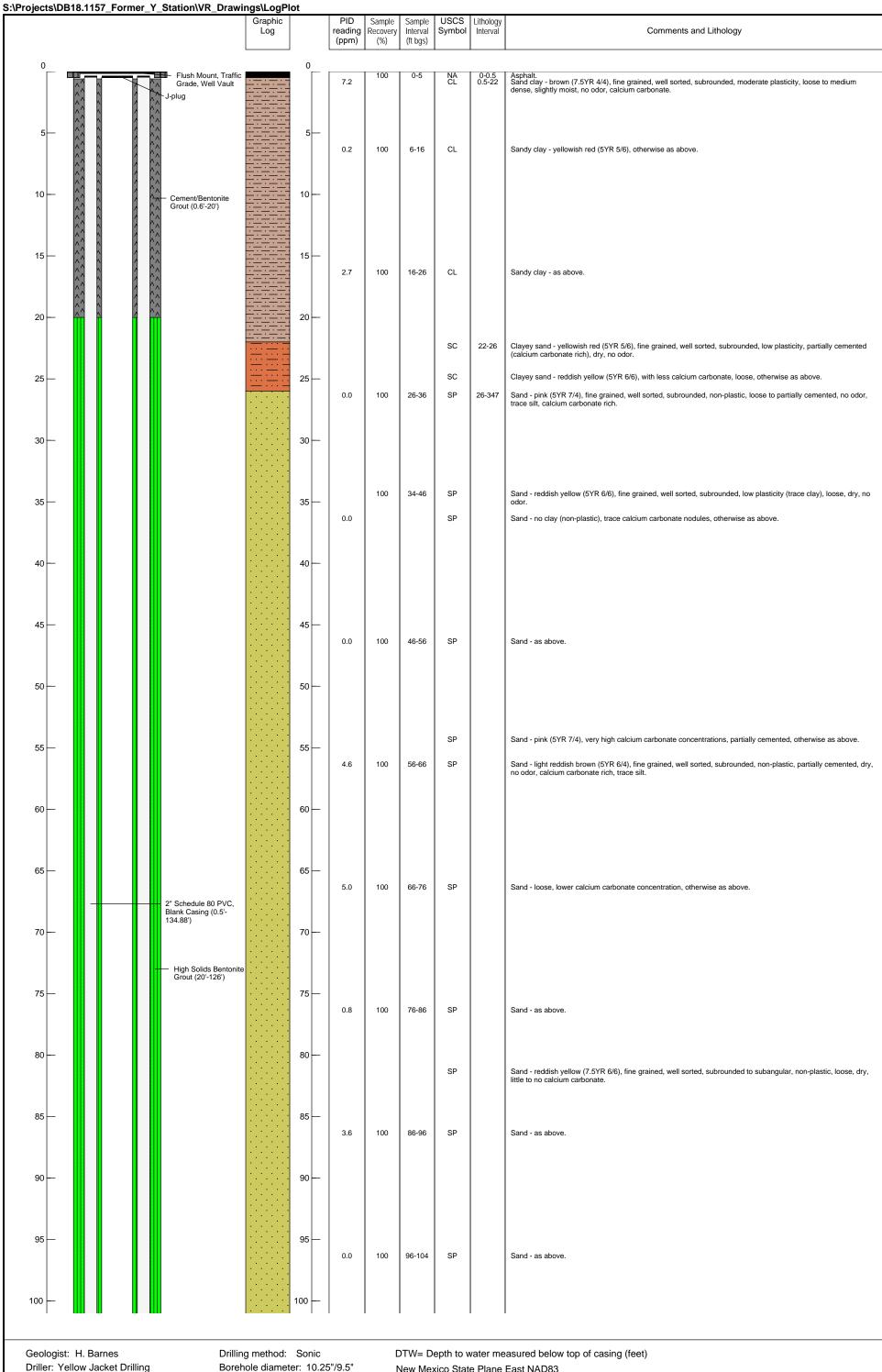

Northing: 1245486.71 Easting: 884251.49



Drilling method: Sonic
Borehole diameter: 10.25"/9.5"
Sampling method: Sonic core

DTW= Depth to water measured below top of casing (feet)
New Mexico State Plane East NAD83

Northing: 1245486.71 Elevation: 4278.78 Easting: 884251.49

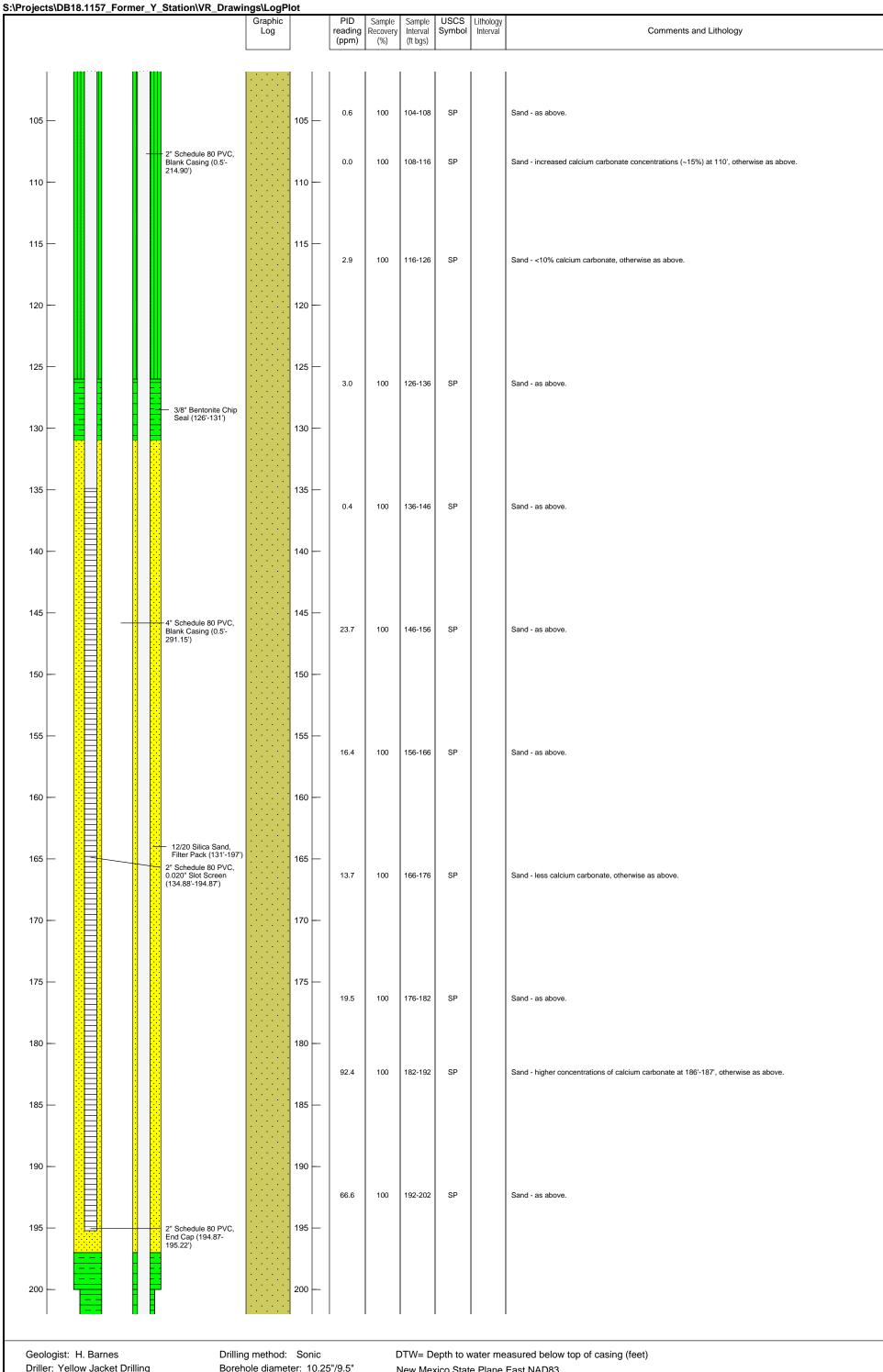


Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet)
New Mexico State Plane East NAD83

Elevation: 4278.78

Northing: 1245486.71 Easting: 884251.49 FORMER Y STATION CLOVIS, NEW MEXICO

RW-3


Drilling start date: 9/9/19 Sampling method: Sonic core Well completion date: 9/9/19 Daniel B. Stephens & Associates, Inc. -

Borehole diameter: 10.25"/9.5"

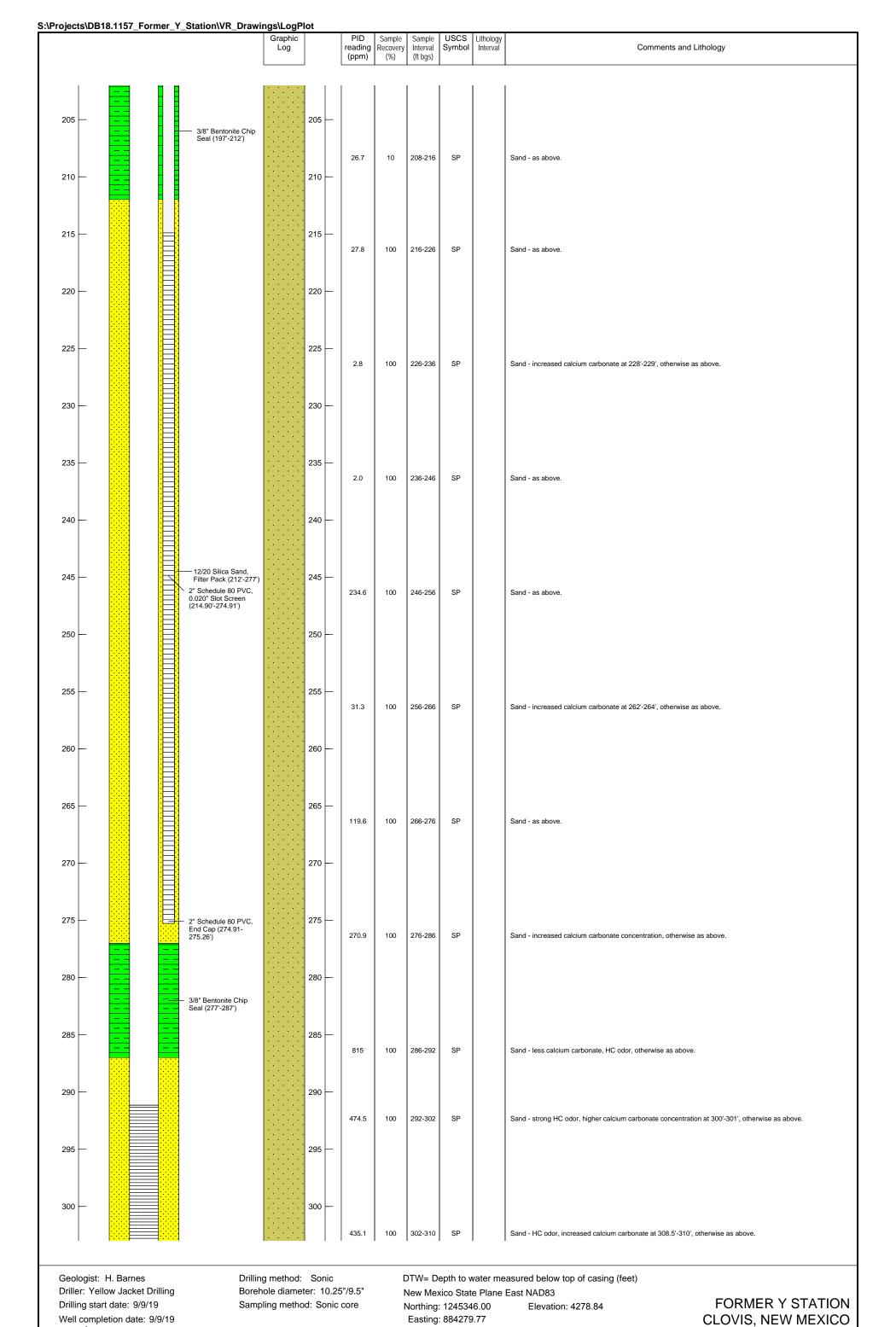
JN DB18.1157.00

New Mexico State Plane East NAD83

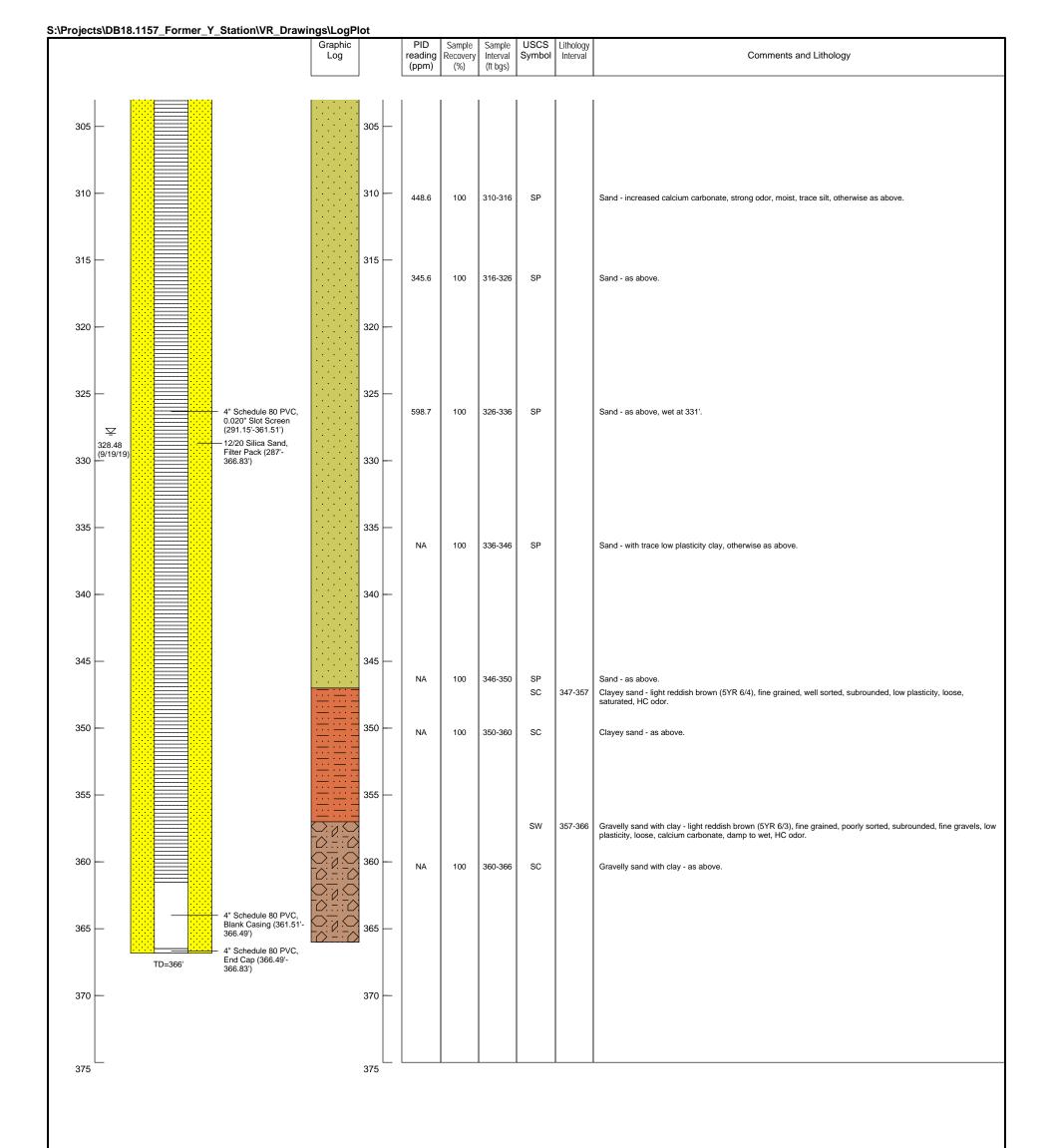
Northing: 1245346.00 Elevation: 4278.84 Easting: 884279.77

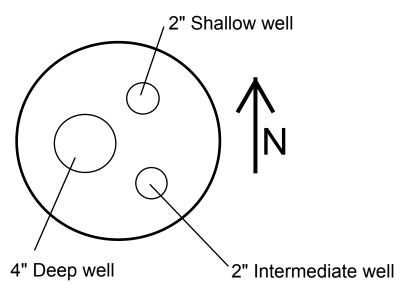
Driller: Yellow Jacket Drilling Drilling start date: 9/9/19 Well completion date: 9/9/19

Borehole diameter: 10.25"/9.5" Sampling method: Sonic core


New Mexico State Plane East NAD83

Elevation: 4278.84


Northing: 1245346.00 Easting: 884279.77


FORMER Y STATION CLOVIS, NEW MEXICO

RW-4

Daniel B. Stephens & Associates, Inc. –
9/26/2019 JN DB18.1157.00

Drilling method: Sonic Borehole diameter: 10.25"/9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet) New Mexico State Plane East NAD83

Elevation: 4278.84

Northing: 1245346.00 Easting: 884279.77

Appendix B

DBS&A Groundwater Modeling Report

Groundwater Model Simulations for Evaluation of the Proposed Remediation Plan in Clovis, New Mexico

Prepared for

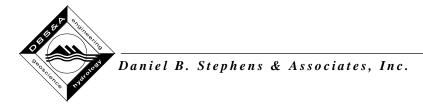
New Mexico Environment Department Petroleum Storage Tank Bureau

September 14, 2020

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109

Daniel B. Stephens & Associates, Inc.


Table of Contents

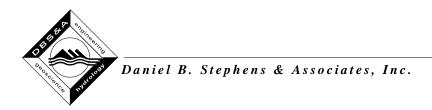
Section		Page
1.	Introduction	1
2.	Model Setup	1
	2.2 Model Boundary Conditions	2
	2.3 Hydraulic Properties	2
3.	Predictive Simulation Results	3
4.	Conclusions	5
Re	eferences	6

List of Figures

Figure

- 1 MODFLOW Model Grid
- 2 MODFLOW Model Boundary
- 3 Minimum Pumping Scenario Groundwater Elevation Contour Map: 5 Year Simulation
- 4 Minimum Pumping Scenario Groundwater Elevation Contour Map: 10 Year Simulation
- Maximum Pumping Scenario Groundwater Elevation Contour Map:5 Year Simulation
- 6 Maximum Pumping Scenario Groundwater Elevation Contour Map: 10 Year Simulation
- 7 Minimum Pumping Scenario Particle Trace and Groundwater Elevation Map: 5 Year Simulation
- 8 Minimum Pumping Scenario Particle Trace and Groundwater Elevation Map: 10 Year Simulation
- 9 Maximum Pumping Scenario Particle Trace and Groundwater Elevation Map: 5 Year Simulation

List of Figures (Continued)


Figure

10 Maximum Pumping Scenario Particle Trace and Groundwater Elevation Map: 10 Year Simulation

List of Tables

Table

1 Extraction Network Proposed Pumping and Drawdown

Groundwater Model Simulations for Evaluation of the Proposed Remediation Plan in Clovis, New Mexico

1. Introduction

This report summarizes groundwater model simulations and particle tracking runs completed to assist with decision making regarding proposed remediation activities at the Former Y Station site in Clovis, New Mexico (the site). Investigations completed since 2011 indicate that this former Shamrock-brand fueling station, centered near the intersection of Prince Street and Commerce Way, is the primary source of a 1,000-foot-long hydrocarbon plume. DBS&A is in the process of designing a remediation system that will include groundwater extraction to reduce the magnitude and areal extent of the dissolved-phase plume. The proposed extraction well network was evaluated relative to the benzene plume delineated from June 2020 sampling activities at the site. The goals of the groundwater modeling effort are to (1) evaluate whether the proposed pumping plan will capture the benzene plume, and (2) to determine the minimum pumping rate at each well necessary for plume capture.

2. Model Setup

A three-dimensional groundwater flow model was developed for the area of the proposed extraction network using the MODFLOW-2005 code (Harbaugh, 2005). The groundwater model simulates a steady-state condition with no extraction. The steady-state model was calibrated using water levels collected on June 8, 2020. Table 1 illustrates the agreement between the model and the observed groundwater elevations. The calibrated steady-state hydraulic head field served as the initial condition for a series of predictive simulations. The modeled simulations assess the effects of drawdown and movement of the benzene plume from the proposed extraction network. Simulations were modeled for 1, 3, 5, 7, and 10 years of groundwater extraction beyond the steady-state base model (Table 1).

Daniel B. Stephens & Associates, Inc.

2.1 Model Grid and Layers

The model was discretized with grid cells and a representative aquifer layer. The grid is oriented such that model columns are approximately parallel to groundwater flow (Figure 1). The model has 504 rows and 367 columns with squares of 20 feet by 20 feet cells. The small model cell size allows for better resolution of the extraction network.

The model was built with one layer that represents the alluvium of the Ogallala aquifer. The top of this layer represents the land surface and was determined from the 10-meter digital elevation model (DEM) of the area. The bottom of the layer was assumed to be 380 feet below the surface elevation. This construct is consistent with the conceptual site model and the geologic conditions indicated by nearby borings and wells.

2.2 Model Boundary Conditions

The northern and southern ends of the model are simulated as constant hydraulic head boundaries with groundwater elevations set to 3964.90 and 3934.86 feet above mean sea level, respectively (Figure 2). These boundaries produce a hydraulic gradient of 0.003 which is consistent with the 2019 and 2020 groundwater elevation data. The boundaries were set far from the extraction network, and therefore should not have much effect on model results. The bottom of the model (bottom of layer 1) and the western and eastern boundaries of the model in both layers are simulated as no-flow boundaries.

2.3 Hydraulic Properties

The thickness of the Ogallala aquifer in this area is approximated at 50 feet and is assumed to be underlain by comparatively impermeable bedrock materials. At the site, groundwater is present within the Ogallala aquifer under unconfined conditions and is encountered at a depth of approximately 330 feet below ground surface (bgs) (DBS&A, 2020). This data justifies the assumption to model the bottom boundary layer at a depth of 380 feet bgs.

A 60-hour constant rate test was conducted at monitor well MW-11 in July 2019 to determine well efficiency, aquifer hydraulic properties, and the theoretical capture zone of the pumped

Daniel B. Stephens & Associates, Inc.

well. Based on the AQTESOLV solutions, drawdown data were consistent with an aquifer transmissivity of approximately 58 square feet per day and a specific yield of 0.20. The transmissivity estimate is equivalent to a hydraulic conductivity of 1.16 feet per day (ft/d) for an aquifer with a 50-foot thickness (DBS&A, 2019).

The results of aquifer testing conducted at monitor well MW-11 indicate aquifer parameters that are consistent with literature ranges for fine-grained silty sand aquifers under unconfined conditions (e.g., Freeze and Cherry, 1979). Although consistent with the site geology, the results of the aquifer test indicate an aquifer that is more than an order of magnitude less transmissive than regional literature estimates for the Ogallala aquifer, which suggested hydraulic conductivities of approximately 70 ft/d (NMISC, 2016).

Laboratory estimates of hydraulic conductivity from remolded sonic core materials range from 1.59 to 11.3 ft/d; the aquifer test results are close to the low end of laboratory estimates. The sample collected from the borehole for monitor well MW-11 yielded a result of 4.54 ft/d, but did not incorporate the clayey sand and gravel interval at the base of the aquifer. DBS&A believes the physical properties analysis and the aquifer testing results to be broadly consistent, as (1) well losses under pumping drawdown conditions may result in a slight underestimate of hydraulic conductivity based on aquifer testing and (2) target remold parameters for the laboratory sample may result in a slight overestimate of hydraulic conductivity from physical properties analysis (DBS&A, 2019).

The groundwater model was used to assess the effects of the proposed extraction network using the horizontal hydraulic conductivity of 1.16 ft/d determined from the hydraulic testing at MW-11. The specific yield and effective porosity were set at 0.20, consistent with literature values for unconfined conditions with sandy, fine-grained aquifer materials (e.g., Freeze and Cherry, 1979; NMISC, 2016).

3. Predictive Simulation Results

Two scenarios were simulated: (1) a minimum pumping scenario to determine the minimum pumping rates required to contain the benzene plume delineated by the June 2020 5-micrograms per liter (ug/L) benzene contour (i.e., to stop from spreading downgradient), and

Daniel B. Stephens & Associates, Inc.

(2) a maximum pumping scenario to determine the highest pumping rates achievable at each well location to maximize capture of the benzene plume. Modeled pumping rates, groundwater elevation, drawdown, and remaining water column height are provided in Table 1 for both scenarios. Pumping rates ranged from 0.5 gallons per minute (gpm) to 4.0 gpm based on July 2019 aquifer test results. Simulated groundwater elevations and associated drawdown were analyzed at each well after 1, 3, 5, 7, and 10 years of constant pumping. The maximum drawdown at the extraction wells following each predictive simulation period is provided in Table 1. Maximum pumping rates were limited by the depth of the screen bottom at each well. A minimum water column of 2 feet was used as the limiting factor for possible pump rates at each well. As would be expected, drawdown beneath the proposed extraction network increases with the maximum pumping scenario (Table 1).

The 5 and 10 year simulation results are provided for both scenarios. Figures 3 and 4 show groundwater elevation contours under the minimum pumping scenario after 5 and 10 years, respectively. Between the 5 and 10 year simulations, drawdown increased at each extraction well (Table 1). The simulated drawdown ranges from 5 feet at RW-1 to 19 feet at MW-12 following the 5-year simulation, and 6 feet at RW-1 to 21 feet at MW-12 following the 10-year simulation.

Groundwater elevation contours under the maximum pumping scenario are provided in Figures 5 and 6. The figures illustrate groundwater flow toward each extraction well. Groundwater flows into the extraction wells faster in the maximum pumping scenario leading to more pronounced cones of depression. Simulated drawdown ranges from 13 feet at BW-8 to 26 feet at RW-3 following the 5-year simulation, and 17 feet at BW-8 to 32 feet at RW-3 following the 10-year simulation.

Particle tracking simulations (Pollock, 1994) were also performed to evaluate the potential time of travel from the previously delineated June 2020 5-ug/L benzene plume contour. Particles were released from the model cells used to represent the 5-ug/L benzene contour line, and were forward tracked until the end of each simulation time period. Figures 7 and 8 show particle traces after 5 and 10 years of continuous pumping for the minimum pumping scenario, and Figures 9 and 10 show particle traces after 5 and 10 years of continuous pumping for the maximum pumping scenario.

Daniel B. Stephens & Associates, Inc.

Particle tracking results are presented with groundwater contours for a more complete conceptual picture of containment movement. Particle tracking provides a prediction for the leading edge of the benzene plume, and the groundwater contours illustrate interior plume movement. Figures 7 and 9 illustrate the advantage of the maximum scenario compared to the minimum pumping scenario. Under the minimum pumping scenario after 5 years of pumping, particle tracking illustrates containment of the June 2020 5-ug/L benzene isocontour; however, the groundwater contours illustrate that interior plume groundwater has not been captured (Figure 7). The maximum pumping scenario after 5 years of pumping predicts containment and capture of the benzene plume (Figure 9).

Based on the results provided in Table 1, and assuming a horizontal hydraulic conductivity of 1.16 ft/d, extraction network pump rates must be within the range of the minimum and maximum pumping scenarios to capture the extent of the June 2020 benzene plume. Applying rates below those listed in Table 1 will result in a smaller capture zone that will not reach the full extent of the target area, while applying rates above those listed in Table 1 will result in water levels dropping below the pump.

4. Conclusions

The constructed groundwater model evaluated a series of parameters in an effort to assess the feasibility of the proposed extraction network. Field and laboratory data provided the estimated range of site hydraulic conductivity of 1.16 to 11.3 ft/d. The value of 1.16 ft/d was used in the analysis as determined from hydraulic testing at MW-11. Modeled pumping rates ranged from 0.5 to 4.0 gpm distributed through the extraction network, with a total of 8 gpm in the minimum pumping scenario and almost 20 gpm in the maximum pumping scenario.

Particle tracking simulations were performed using the model parameters detailed in sections 2 and 3. Figures 7 through 10 illustrate the particle movement from the leading edge of the plume (June 2020 5-ug/L benzene isocontour line) toward the extraction network wells. While both the minimum and maximum scenarios simulate leading edge plume movement, the maximum pumping scenario contains the heart of the plume at a much faster rate than the minimum scenario.

Daniel B. Stephens & Associates, Inc.

The model simulations predict plume containment under both scenarios. Particle tracking and simulated groundwater contours illustrate plume containment and capture under the maximum pumping scenario with 5 years of pumping, whereas the minimum pumping scenario primarily contains the leading edge and minimizes further downgradient contaminant movement. Based on this modeling effort, the maximum pumping scenario is recommended. This analysis does not account for system down time, declining groundwater trends, declining well yields from screen fouling, and/or geologic heterogeneities that may affect hydraulic conductivity or storage. However, model inputs can be refined as additional field data becomes available. Once the extraction system is installed, the extraction network should be monitored to ensure water levels are maintained and do not fall below the pump. The monitoring well network should be sampled regularly to evaluate concentration trends and to allow for necessary modifications to the extraction system.

References

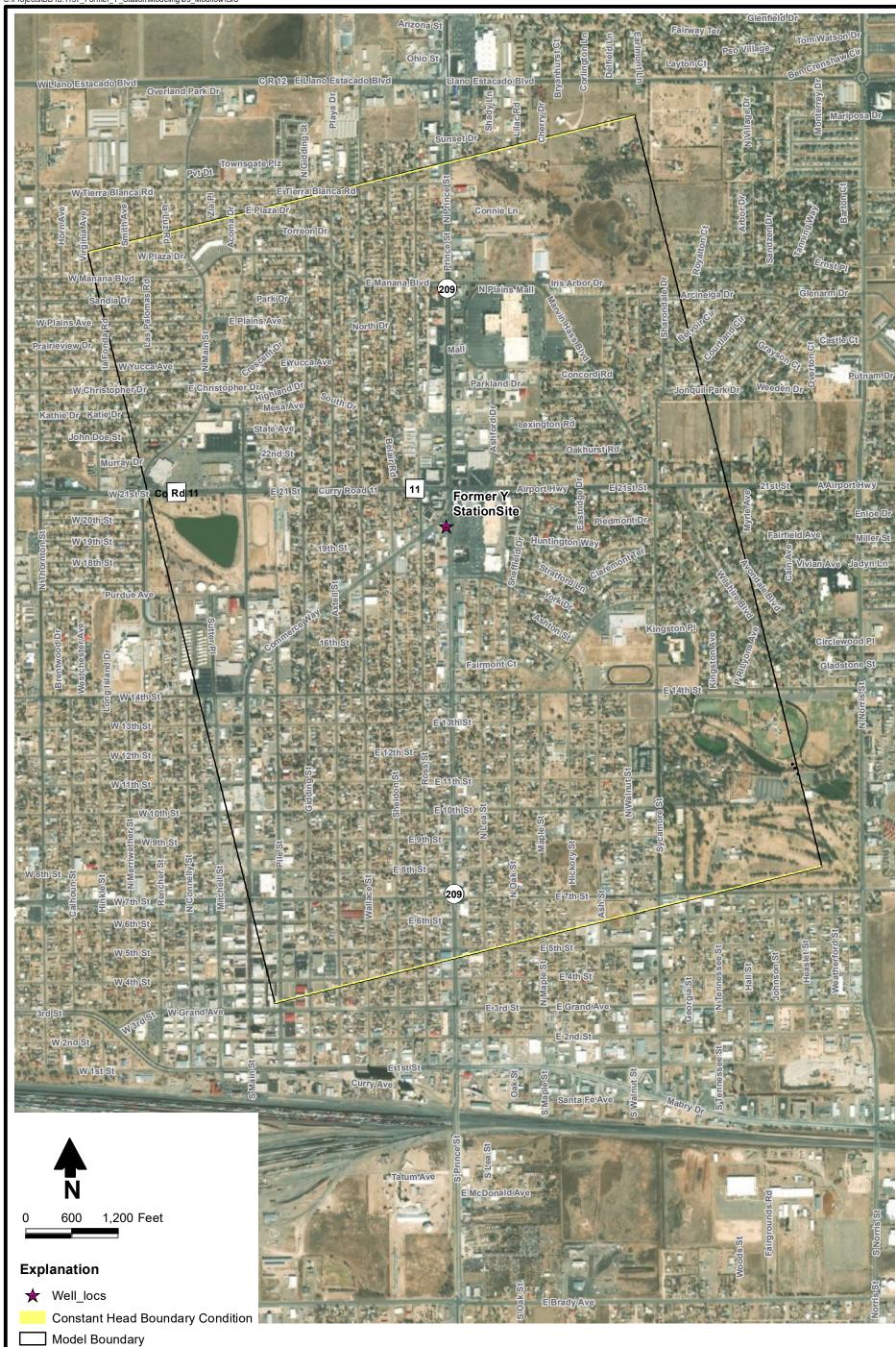
Daniel B. Stephens & Associates, Inc. (DBS&A). 2019. Aquifer test report, Former Y Station State Lead Site, 721 Commerce Way, Clovis, New Mexico. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. October 24, 2019.

DBS&A. 2020. Final well installation and first quarter groundwater monitoring report, Former Y Station State Lead Site, 721 Commerce Way, Clovis, New Mexico. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. July 22, 2020.

Freeze, R.A. and J.A. Cherry. 1979. *Groundwater*. Prentice-Hall, Englewood Cliffs, New Jersey.

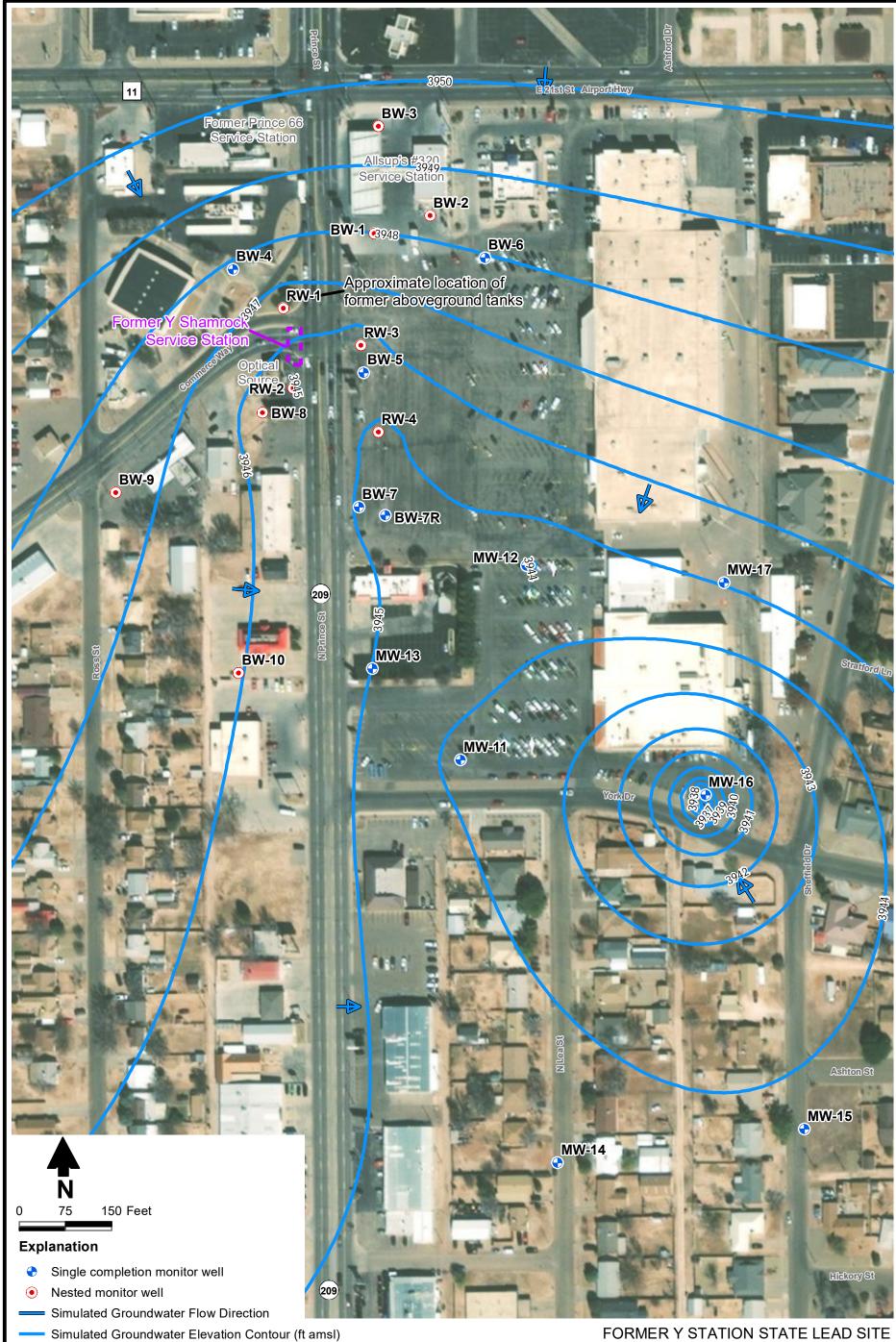
Harbaugh, A.W. 2005. MODFLOW-2005, The U.S. Geological Survey Modular ground-water model—the ground-water flow process. Chapter 16 of Book 6, Modeling techniques, Section A. Ground-water.

New Mexico Interstate Stream Commission (NMISC). 2016. *Northeast New Mexico regional water plan*. New Mexico Office of the State Engineer. September 2016.

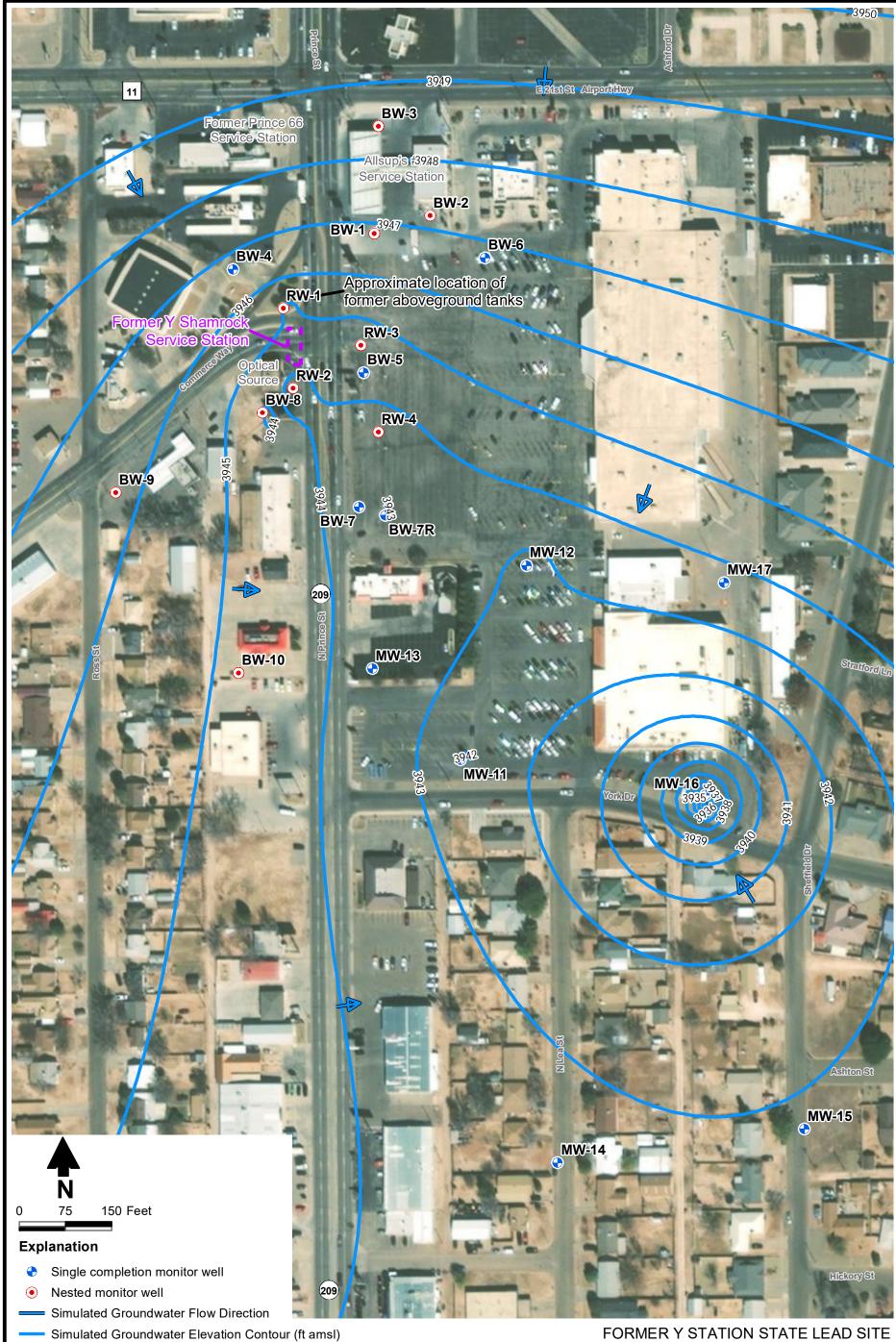

Daniel B. Stephens & Associates, Inc.

Pollock, D.W. 1994. User's guide for MODPATH/MODPATH-PLOT, Version 3: A particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model. U.S. Geological Survey Open-File Report 94-464.

Figures



FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **MODFLOW Model Grid**


Daniel B. Stephens & Associates, Inc. ND DB18.1157.00

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO MODFLOW Model Boundary

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO

Minimum Pumping Scenario Groundwater Elevation Contour Map: 5 Year Simulation

Daniel B. Stephens & Associates, Inc.

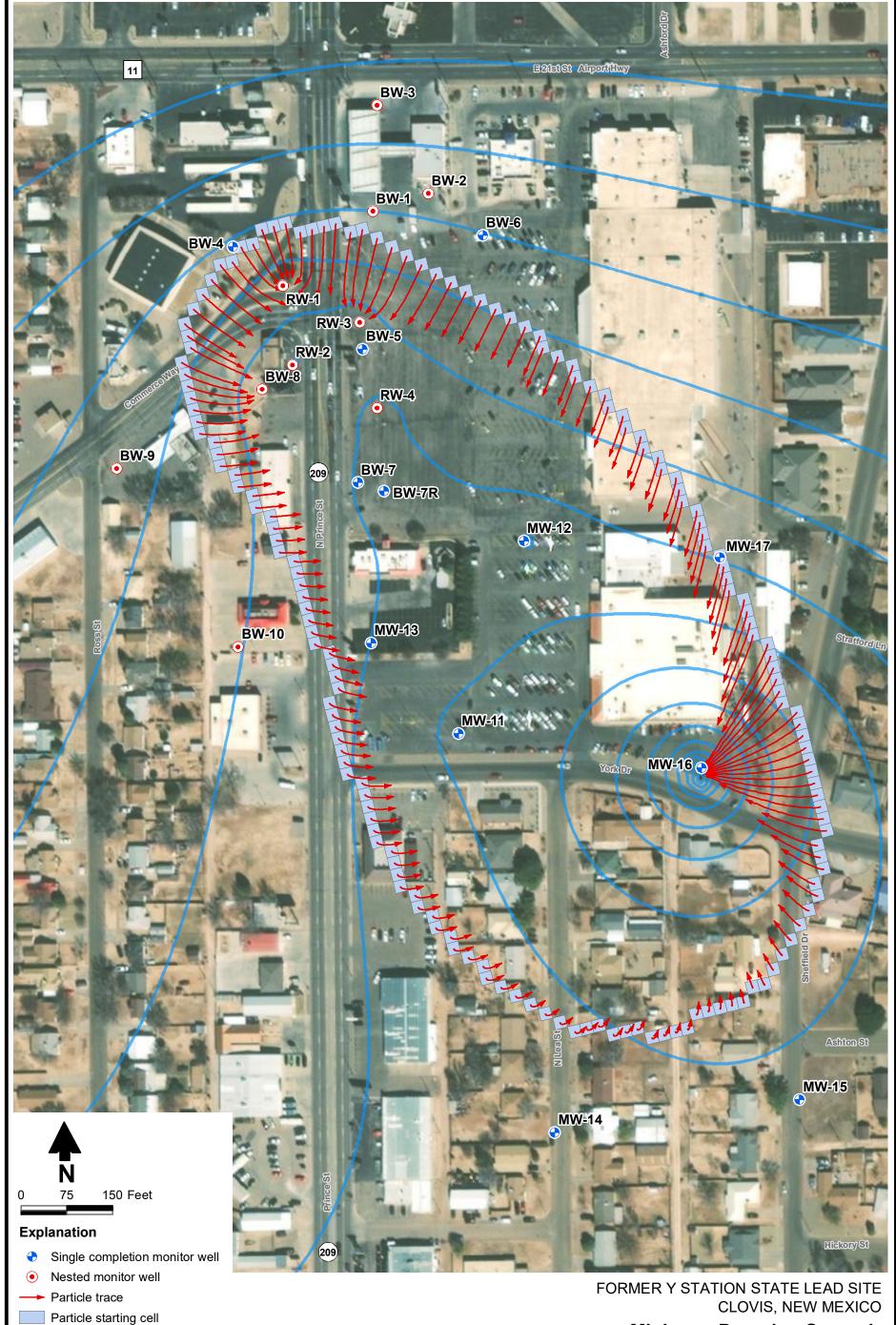
JN DB18.1157.00

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO

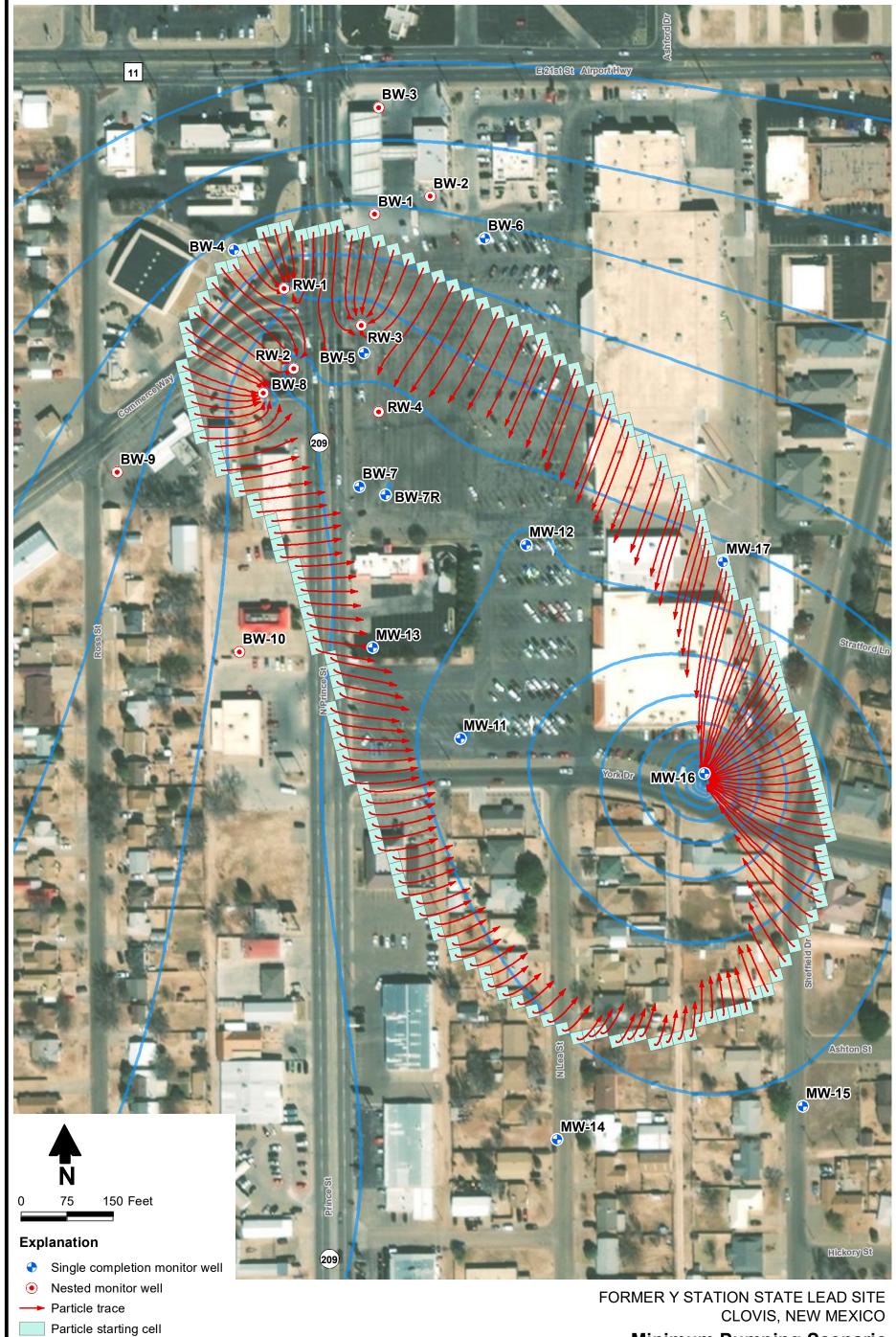
Minimum Pumping Scenario Groundwater Elevation Contour Map: 10 Year Simulation

Daniel B. Stephens & Associates, Inc. 9/11/2020 JN DB18.1157.00

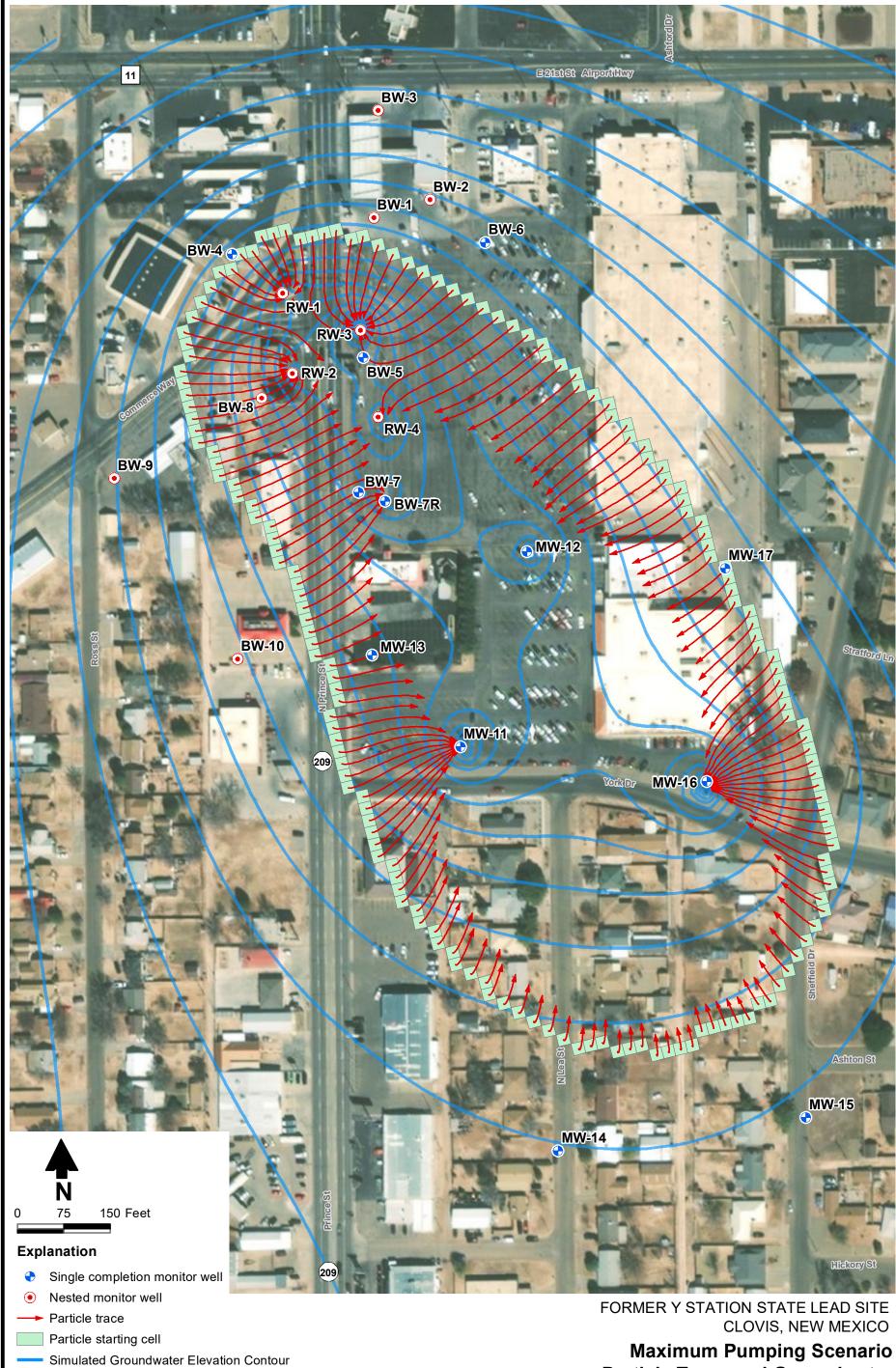
CLOVIS, NEW MEXICO


Maximum Pumping Scenario Groundwater Elevation Contour Map: 5 Year Simulation

Daniel B. Stephens & Associates, Inc. 9/11/2020 JN DB18.1157.00


CLOVIS, NEW MEXICO

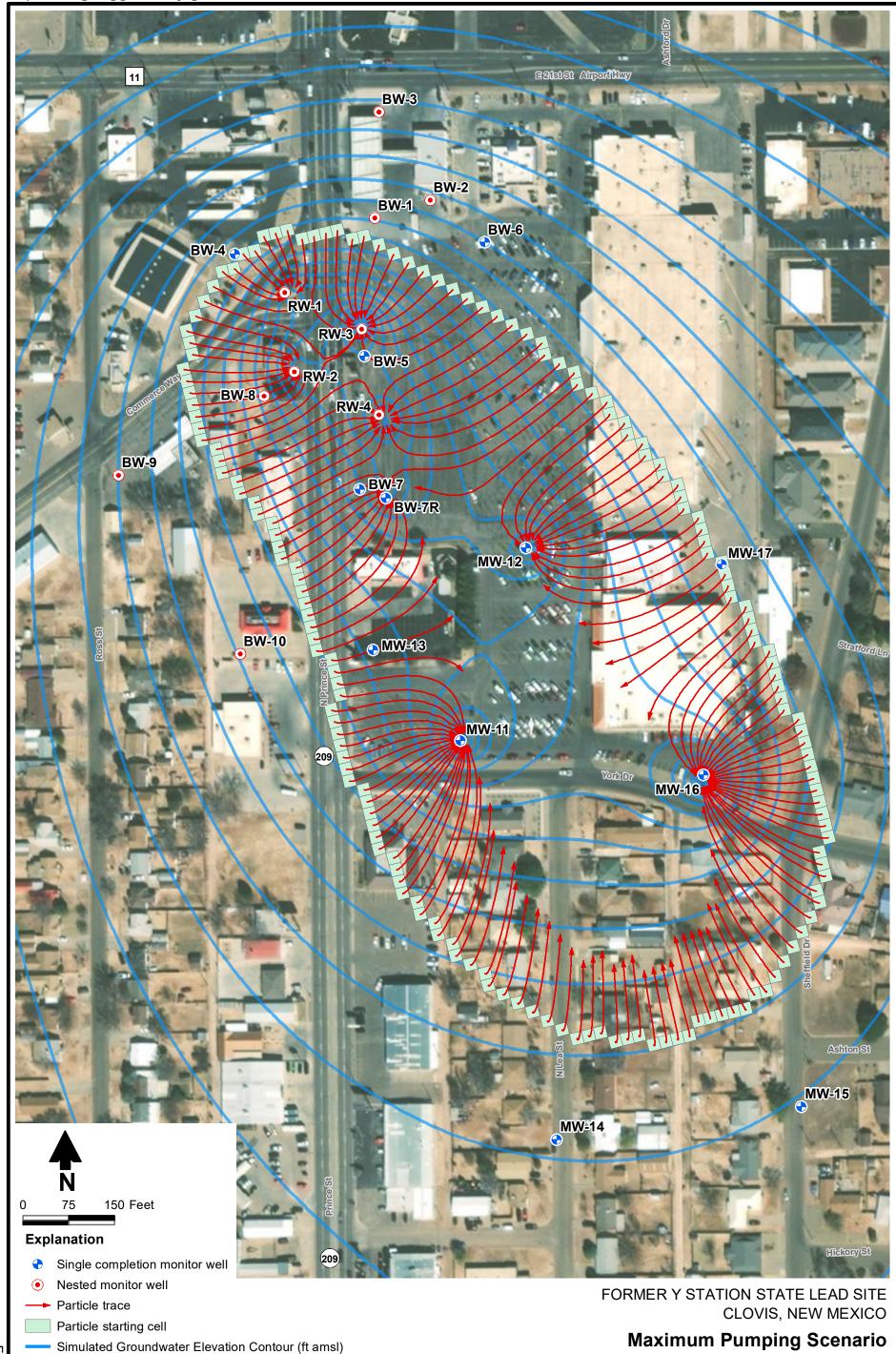
Maximum Pumping Scenario Groundwater Elevation Contour Map: 10 Year Simulation



Minimum Pumping Scenario Particle Trace and Ground Water Elevation Map: 5 Year Simulation

Simulated Groundwater Elevation Contour

Minimum Pumping Scenario Particle Trace and Ground Water Elevation Map: 10 Year Simulation



Daniel B. Stephens & Associates, Inc.

9/14/2020

JN DB18.1157.00

Maximum Pumping Scenario Particle Trace and Groundwater Elevation Map: 5 Year Simulation

Maximum Pumping Scenario Particle Trace and Groundwater Elevation Map: 10 Year Simulation

Daniel B. Stephens & Associates, Inc. 9/14/2020 JN DB18.1157.00

Table

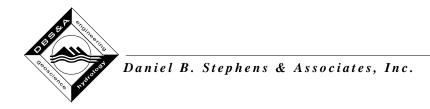


Table 1. Extraction Network Proposed Pumping and Drawdown

		Observed Static	Modeled Static	Well Screen	Available	Simulated Groundwater Elevation at Well (feet amsl)		Modeled Drawdown at Well (ft amsl))	Feet of Water Above			
)A/. II ID	Pump Rate	Water Level ^a	Water Level	Bottom Elevation	Drawdown b	4.3/	0.1/	5 V	7.1/	40.)/	4.37	0.1/	5 V	7.1/	40.1/	Bottom of Well Screen
Well ID	(gpm)	(feet amsl)	(feet amsl)	(feet amsl)	(feet)	1 Year	3 Years	5 Years	7 Years	10 Years	1 Year	3 Years	5 Years	7 Years	10 Years	after 10 Years
Minimum Pur	nping Scenario															
BW-7R	0.5	3949.61	3950	3921	29	3946.4	3944.7	3943.7	3943.0	3942.3	3	5	6	6	7	21
BW-8	0.5	3950.40	3950	3932	18	3946.8	3945.4	3944.6	3943.9	3943.2	3	5	6	6	7	11
RW-1	0.5	3950.78	3951	3925	26	3947.6	3946.3	3945.5	3944.9	3944.3	3	4	5	6	6	19
RW-2	0.5	3950.42	3950	3920	30	3946.7	3945.3	3944.4	3943.8	3943.1	4	5	6	6	7	23
RW-3	0.5	3950.53	3950	3915	35	3947.2	3945.7	3944.9	3944.3	3943.6	3	5	6	6	7	29
RW-4	0.5	3949.99	3950	3918	32	3946.5	3944.9	3944.0	3943.3	3942.6	3	5	6	7	7	25
MW-11	0.5	3948.40	3948	3919	29	3945.5	3943.7	3942.8	3942.1	3941.4	3	4	5	6	7	22
MW-12	0.5	3949.00	3949	3921	28	3946.2	3944.4	3943.4	3942.7	3941.9	3	5	6	6	7	21
MW-16	4.0	3947.48	3948	3917	31	3932.7	3930.3	3929.0	3928.1	3927.1	15	17	19	20	21	10
Maximum Pu	mping Scenario															
BW-7R	1.5	3949.61	3950	3921	29	3939.1	3933.6	3930.5	3928.3	3925.6	10	16	19	21	24	5
BW-8	0	3950.40	3950	3932	18	3944.2	3939.9	3937.4	3935.6	3933.6	6	10	13	15	17	2
RW-1	2.0	3950.78	3951	3925	26	3940.4	3935.9	3933.3	3931.3	3929.0	10	15	17	19	22	4
RW-2	2.0	3950.42	3950	3920	30	3939.0	3934.0	3931.0	3928.8	3926.3	11	16	19	21	24	6
RW-3	2.5	3950.53	3950	3915	35	3934.2	3928.4	3924.8	3922.0	3918.6	16	22	26	28	32	4
RW-4	2.0	3949.99	3950	3918	32	3936.8	3931.0	3927.6	3925.1	3922.1	13	19	22	25	28	4
MW-11	3.5	3948.40	3948	3919	29	3935.7	3930.9	3928.0	3925.8	3923.2	12	17	20	22	25	4
MW-12	2.0	3949.00	3949	3921	28	3938.6	3933.4	3930.3	3928.0	3925.4	10	16	19	21	24	4
MW-16	4.0	3947.48	3948	3917	31	3933.8	3929.6	3926.9	3924.8	3922.3	14	18	21	23	25	5

^a Observed June 8, 2020

gpm = Gallons per minute amsl = Above mean sea level

^b Available drawdown based on modeled static water level


Appendix C

Engineering Drawings

STATE LEAD REMEDIATION FORMER Y STATION

CLOVIS, NEW MEXICO

PREPARED FOR NEW MEXICO ENVIRONMENT DEPARTMENT PETROLEUM STORAGE TANK BUREAU

INDEX OF DRAWINGS

NUMBER	TITLE	REVISION
	GENERAL	
1 G-0 2 G-1 3 G-2	COVER SHEET AND INDEX GENERAL NOTES AND LEGEND GENERAL SITE PLAN	0 0 0
	CIVIL	
	REMEDIATION COMPOUND SITE PLAN CIVIL DETAILS 1 CIVIL DETAILS 2 CIVIL DETAILS 3 BORINGS PLAN AND PROFILE	0 0 0
9 M-1 10 M-2 11 M-3	MECHANICAL PROCESS AND INSTRUMENTATION DIAGRAM MECHANICAL DETAILS 1 MECHANICAL DETAILS 2	0 0 0
	ELECTRICAL ELECTRICAL ONE LINE DIAGRAM	

REV. NO.	DATE	DESCRIPTION	APPROVED BY	DATE OF ISSUE: 07/16/2021	ı
					П
				DESIGNED BY:T, GOLDEN	ı
				DRAWN BY:	П
				CHECKED BY: G. HALL	П
				APPROVED BY: T. GOLDEN	ı
				APPROVED BI	L

721 COMMERCE WAY CLOVIS, NM 88101

STATE LEAD REMEDIATION FORMER Y STATION CLOVIS, NEW MEXICO SHEET 1 OF 11 DWG NO. G-0

COVER SHEET AND INDEX

GENERAL CONSTRUCTION NOTES:

- A. ALL WORK ON THIS PROJECT SHALL BE PERFORMED IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS, ORDINANCES, AND REGULATIONS CONCERNING CONSTRUCTION SAFETY AND HEALTH.
- B. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL REQUIRED CONSTRUCTION. PERMITS AND APPROVALS OF LIKE KIND PRIOR TO START OF CONSTRUCTION.
- C. PROJECT DOCUMENTS CONSIST OF THESE DRAWINGS, PROJECT SPECIFICATIONS, PROJECT CONTRACTS, AND ANY AND ALL SUBSEQUENT EXECUTED PROJECT DOCUMENTATION ISSUED AS, OR WITH, CHANGE ORDERS, AND RFI'S (REQUEST FOR INFORMATION.) THE CONTRACTOR SHALL REVIEW ALL PROJECT DOCUMENTS AND VERIFY ALL DIMENSIONS, CUNITRACION FALL REVIEW ALL PRODUCT DOCUMENTS AND VERTIT ALL DIMENSIONS, QUANTITIES, AND FIELD CONDITIONS. ANY CONFLICTS OR OMISSIONS WITH THE DOCUMENTS SHALL BE REPORTED TO THE ENGINEER/PROJECT MANAGER FOR CLARIFICATION PRIOR TO PERFORMANCE OF ANY WORK IN QUESTION. IN THE EVENT THE CONTRACTOR DOES NOT NOTIFY THE ENGINEER/PROJECT MANAGER, THE CONTRACTOR ASSUMES FULL RESPONSIBILITY AND ANY AND ALL EXPENSE FOR ANY REVISIONS NECESSARY OR CORRECTIONAL WORK REQUIRED.
- D. THE LOCATION OF BURIED UTILITIES ARE BASED UPON INFORMATION PROVIDED TO THE ENGINEER BY OTHERS AND MAY NOT REFLECT ACTUAL FIELD CONDITIONS. EXISTING BURIED UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL USE ANY MEANS APPROVED BY THE ENGINEER/PROJECT MANAGER TO LOCATE UNDERGROUND UTILITIES INCLUDING, BUT NOT LIMITED TO, ELECTRONIC LOCATING EQUIPMENT AND/OR POT HOLING. ANY DAMAGE TO ANY OTHER UTILITIES AND/OR COLLATERAL DAMAGE CAUSED BY THE CONTRACTOR SHALL BE THE FULL RESPONSIBILITY OF THE CONTRACTOR
- E. EXISTING FENCING THAT IS NOT DESIGNATED FOR REMOVAL SHALL NOT BE DISTURBED. ANY FENCING THAT IS DISTURBED OR ALTERED BY THE CONTRACTOR SHALL BE
 RESTORED TO ITS ORIGINAL CONDITION AT THE CONTRACTOR'S EXPENSE. IF THE
 CONTRACTOR DESIRES TO REMOVE FENCING TO ACCOMMODATE CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL OBTAIN THE OWNER'S WRITTEN PERMISSION BEFORE FENCE IS REMOVED. CONTRACTOR SHALL RESTORE THE FENCE TO ITS ORIGINAL CONDITION AT THE EARLIEST OPPORTUNITY TO THE SATISFACTION OF THE OWNER. WHILE ANY FENCING IS REMOVED, THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR SECURITY OF THE SITE UNTIL THE FENCE IS RESTORED.
- F. AT THE END OF EACH WORK DAY, THE CONTRACTOR SHALL CLEAN AND PICK UP THE WORK AREA TO THE SATISFACTION OF THE ENGINEER/PROJECT MANAGER. AT NO TIME SHALL THE WORK BE LEFT IN A MANNER THAT COULD ENDANGER THE WORKERS OR
- G. ALL MATERIALS AND WORKMANSHIP SHALL CONFORM TO PROJECT SPECIFICATIONS AND PLANS, AS AMENDED AND REVISED BY THE ENGINEER. ALL INSTALLATION DETAILS ARE TYPICAL AND MAY BE CHANGED TO BETTER FIT EXISTING LOCAL CONDITIONS UPON APPROVAL BY THE ENGINEER.
- H. ONLY THE CONTRACTOR SHALL BE RESPONSIBLE FOR SAFETY OF ALL WORK. ALL WORK, INCLUDING WORK WITHIN TRENCHES, SHALL BE IN ACCORDANCE WITH THE OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA).
- REFERENCES MADE TO STANDARD SPECIFICATIONS AND STANDARD DRAWINGS REFER TO THE NEW MEXICO CHAPTER OF THE AMERICAN PUBLIC WORKS ASSOCIATION (APWA-NM) STANDARDS FOR PUBLIC WORKS CONSTRUCTION, OR CITY OF CLOVIS STANDARD DWGS.
- J. THE CONTRACTOR SHALL NOT INSTALL ITEMS AS SHOWN ON THESE PLANS WHEN IT IS OBVIOUS THAT FIELD CONDITIONS ARE DIFFERENT THAN SHOWN IN THE PLANS. SUCH CONDITIONS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IN A TIMELY MANNER. IN THE EVENT THE CONTRACTOR DOES NOT NOTIFY THE ENGINEER IN A TIMELY MANNER, THE CONTRACTOR ASSUMES FULL RESPONSIBILITY AND EXPENSE FOR ANY REVISIONS NECESSARY, INCLUDING ENGINEERING DESIGN FEES
- K. EXISTING SITE IMPROVEMENTS WHICH ARE DAMAGED OR DISPLACED BY THE CONTRACTOR SHALL BE REMOVED AND REPLACED BY THE CONTRACTOR AT THE CONTRACTOR'S EXPENSE. REPAIRS SHALL BE APPROVED BY THE OWNER PRIOR TO CONSTRUCTION OF THE REPAIRS. REPAIRS SHALL BE ACCEPTED BY THE OWNER PRIOR TO FINAL PAYMENT.

WORK WITHIN ADJACENT RIGHT-OF-WAY

L. PRIOR TO BEGINNING ANY CONSTRUCTION ACTIVITIES WITHIN ADJACENT RIGHT-OF-WAYS OR WITHIN PROPERTY NOT OWNED BY THE OWNER OF THE PROJECT SITE, THE CONTRACTOR SHALL ASSURE THAT ALL PERMITS AND PERMISSIONS REQUIRED HAVE BEEN OBTAINED IN WRITING.

SURVEY MONUMENTS, PROPERTY CORNERS, BENCHMARKS

- M. THE CONTRACTOR SHALL NOTIFY THE OWNER AT LEAST SEVEN (7) DAYS BEFORE BEGINNING ANY CONSTRUCTION ACTIVITY THAT COULD DAMAGE OR DISPLACE SURVEY MONUMENTS, PROPERTY CORNERS, OR PROJECT BENCHMARKS SO THESE ITEMS MAY BE
- N. ANY SURVEY MONUMENTS, PROPERTY CORNERS, OR BENCHMARKS THAT ARE NOT IDENTIFIED FOR RELOCATION ARE THE RESPONSIBILITY OF THE CONTRACTOR TO PRESERVE AND PROTECT, RELOCATION OR REPLACEMENT OF THESE ITEMS SHALL BE DONE BY THE OWNER'S SURVEYOR AT THE EXPENSE OF THE CONTRACTOR.

DESIGN SURVEY

O. DESIGN SURVEY PERFORMED JUNE 2020 BY LYDICK ENGINEERS AND SURVEYORS, INC. ANY DISCREPANCIES BETWEEN THE ENGINEER'S DESIGN AND SITE SURFACE CONDITIONS SHALL BE BROUGHT TO THE ENGINEER'S ATTENTION IMMEDIATELY.

PAVEMENT

- P. WHEN ABUTTING NEW PAVEMENT TO EXISTING PAVEMENT, CUT EXISTING PAVEMENT EDGE TO A NEAT, STRAIGHT LINE AS NECESSARY TO REMOVE ANY BROKEN OR CRACKED PAVEMENT AND MATCH NEW PAVEMENT ELEVATION TO EXISTING.
- Q. ALL UTILITIES AND UTILITY SERVICE LINES SHALL BE INSTALLED AND APPROVED PRIOR TO PAVING.

R. SHALL BE AS SHOWN ON PLANS.

- S. UTILITY LINES, PIPELINES, OR UNDERGROUND UTILITY LINES SHOWN ON THESE DRAWINGS ARE SHOWN IN AN APPROXIMATE LOCATION ONLY BASED ON THE INFORMATION PROVIDED TO THE ENGINEER BY OTHERS. THIS INFORMATION MAY BE INACCURATE OR INCOMPLETE. ADDITIONALLY, UNDERGROUND LINES MAY EXIST THAT ARE NOT SHOWN.
 THE CONTRACTOR SHALL VERIFY THE LOCATION OF ANY UTILITY LINE, PIPELINE, OR
 UNDERGROUND UTILITY LINE IN OR NEAR THE AREA OF THE WORK IN ACCORDANCE WITH CHAPTER 62. ARTICLE 14-1. THROUGH 14-8. NMSA 1978.
- THE CONTRACTOR SHALL CONTACT THE STATEWIDE UTILITY LOCATOR SERVICE AT 811 AT LEAST FIVE WORKING DAYS BEFORE BEGINNING CONSTRUCTION. AFTER THE UTILITIES ARE SPOTTED, THE CONTRACTOR SHALL EXPOSE ALL PERTINENT UTILITIES TO VERIFY THEIR VERTICAL AND HORIZONTAL LOCATION. IF A CONFLICT EXISTS BETWEEN EXISTING UTILITIES AND PROPOSED CONSTRUCTION, THE CONTRACTOR SHALL NOTIFY THE ENGINEER SO THAT THE CONFLICT CAN BE RESOLVED WITH MINIMAL DELAY.
- U. THE CONTRACTOR SHALL EXERCISE DUE CARE TO AVOID DISTURBING ANY EXISTING UTILITIES, ABOVE OR BELOW GROUND. UTILITIES THAT ARE DAMAGED BY CARELESS CONSTRUCTION SHALL BE REPAIRED OR REPLACED AT THE CONTRACTOR'S EXPENSE
- V. THE CONTRACTOR SHALL COORDINATE ANY REQUIRED UTILITY INTERRUPTIONS WITH THE OWNER AND AFFECTED UTILITY COMPANY A MINIMUM OF FIVE (5) WORKING DAYS BEFORE THE INTERRUPTION.
- W. THE CONTRACTOR SHALL MAINTAIN A RECORD DRAWING SET OF PLANS AND PROMPTLY THE CONTRACTOR SHALL MAINTAIN A RECORD DRAWING SET OF PLANS AND PROMPTLY LOCATE ALL UTILITIES, EXTINIOR OR NEW, IN THEIR CORRECT LOCATION, HORIZONTAL AND VERTICAL. THIS RECORD SET OF DRAWINGS SHALL BE MAINTAINED ON THE PROJECT SITE AND SHALL BE AVAILABLE TO THE OWNER AND ENGINEER AT ANY TIME DURING CONSTRUCTION. RECORD INFORMATION SHALL INCLUDE HORIZONTAL AND VERTICAL COORDINATE CALLOUTS, LINE SIZES, LINE TYPES, BURIAL DEPTHS, AND ALL OTHER PERTINENT INSTALLATION INFORMATION. IN ADDITION ALL ITEMS THAT ARE INSTALLED EXACTLY AS DESCINED SHALL BE NOTED AS SAICH. EXACTLY AS DESIGNED SHALL BE NOTED AS SUCH.

EROSION CONTROL, ENVIRONMENTAL PROTECTION, AND STORM WATER POLLUTION PREVENTION

- X. THE CONTRACTOR SHALL CONFORM TO ALL CURRY COUNTY, STATE OF NEW MEXICO, AND FEDERAL DUST AND EROSION CONTROL REGULATIONS. THE CONTRACTOR SHALL PREPARE AND OBTAIN ANY DUST CONTROL OR EROSION CONTROL PERMITS FROM THE APPROPRIATE REGULATORY AGENCIES.
- Y. THE CONTRACTOR SHALL PROMPTLY REMOVE OR STABILIZE ANY MATERIAL EXCAVATED WITHIN THE RIGHT-OF-WAY OR ADJACENT PROPERTY TO KEEP IT FROM WASHING OFF THE PROJECT SITE.
- Z. THE CONTRACTOR SHALL ENSURE THAT NO SOIL ERODES FROM THE SITE ONTO ADJACENT PROPERTY BY CONSTRUCTION OF TEMPORARY EROSION CONTROL BERMS OR INSTALLING SILT FENCES AT THE PROPERTY LINES (OR LIMITS OF CONSTRUCTION WHERE DESIGNATED) AND WETTING SOIL TO PREVENT IT FROM BLOWING
- AA. WATERING, AS REQUIRED FOR CONSTRUCTION DUST CONTROL, SHALL BE CONSIDERED INCIDENTAL TO CONSTRUCTION AND NO MEASUREMENT OR PAYMENT SHALL BE MADE CONSTRUCTION AREAS SHALL BE WATERED FOR DUST CONTROL IN COMPLIANCE WITH CITY, COUNTY AND STATE ORDINANCES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING WITH THE CITY OF CLOVIS, FOR AVAILABILITY AND USE OF WATER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUPPLYING ALL EQUIPMENT AND MATERIALS NECESSARY FOR OBTAINING, METERING, AND PAYING FOR WATER.
- AB. THE CONTRACTOR SHALL PROPERLY HANDLE AND DISPOSE OF ALL ASPHALT AND CONCRETE REMOVED ON THE PROJECT BY HAULING TO AN APPROVED DISPOSAL SITE IN ACCORDANCE WITH THE REQUIREMENTS OF MORA COUNTY.
- AC. ALL WASTE PRODUCTS FROM THE CONSTRUCTION SITE, INCLUDING ITEMS DESIGNED FOR REMOVAL, CONSTRUCTION WASTE, CONSTRUCTION EQUIPMENT WASTE PRODUCTS (OIL, GAS, TIRES, ETC.), DRILLING MUD AND WATER, GARBAGE, GRUBBING, EXCESS CUT MATERIAL, VEGETATIVE DEBRIS, ETC. SHALL BE APPROPRIATELY DISPOSED OF OFFSITE AT NO ADDITIONAL COST TO THE OWNER. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO OBTAIN ANY PERMITS REQUIRED FOR HAUL OR DISPOSAL OF WASTE PRODUCTS. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO ENSURE THAT THE WASTE DISPOSAL SITE COMPLIES WITH APPROPRIATE REGULATIONS REGARDING THE ENVIRONMENT, ENDANGERED SPECIES, AND ARCHAEOLOGICAL RESOURCES.
- AD. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CLEANUP AND REPORTING OF SPILLS OF HAZARDOUS MATERIALS ASSOCIATED WITH THE CONSTRUCTION SITE.
 HAZARDOUS MATERIALS INCLUDES GASOLINE, DIESEL FUEL, MOTOR OIL, SOLVENTS,
 CHEMICALS, PAINT, ETC. WHICH MAY BE A THREAT TO THE ENVIRONMENT. THE
 CONTRACTOR SHALL REPORT THE DISCOVERY OF PAST OR PRESENT SPILLS TO THE NEW MEXICO HAZARDOUS WASTE BUREAU AT 1-505-476-6000 AND THE ENGINEER.
- AE. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE REGULATIONS CONCERNING SURFACE AND UNDERGROUND WATER. CONTACT WITH SURFACE WATER BY CONSTRUCTION EQUIPMENT AND PERSONNEL SHALL BE MINIMIZED. EQUIPMENT MAINTENANCE AND REFUELING OPERATIONS SHALL BE PERFORMED IN AN ENVIRONMENTALLY SAFE MANNER IN COMPLIANCE WITH CITY, COUNTY, STATE, AND EPA
- AF. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE REGULATIONS CONCERNING CONSTRUCTION NOISE AND HOURS OF OPERATION AS STATED IN THE SPECIFICATIONS OR IMPOSED BY THE OWNER, CITY OR COUNTY AUTHORITIES.

TRAFFIC CONTROL

AG. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED TRAFFIC CONTROL PLANS AND TRAFFIC CONTROL EQUIPMENT. ALL SIGNS, BARRICADES, CHANNELIZATION DEVICES, SIGN FRAMES AND ERECTION OF SUCH DEVICES SHALL CONFORM TO THE REQUIREMENTS OF "MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES FOR STREETS AND HIGHWAYS" LATEST EDITION.
TRAFFIC CONTROL PLANS SHALL BE APPROVED BY THE COUNTY AND NMDOT PRIOR TO

MISCELLANEOUS SYMBOLS:

SYMBOLS ARE NOT SHOWN TO SCALE ON PLAN OR

DETAIL-TITLE CENTERLINE 1" = XXX----- OHP ------ OHP -----EXISTING OVERHEAD FLECTRICAL LINE EXISTING UNDERGROUND ELECTRICAL LINE SEE NOTES 1&2 ——ss ——ss ——ss — EXISTING SEWER LINE EXISTING COMMUNICATION LINE SEE NOTE SEE NOTE ' EXISTING WATER LINE

LEGEND:

- IF SECTION, DETAIL, SCHEMATIC, OR DIAGRAM IS DRAWN ON THE SAME SHEET THAT IT IS TAKEN FROM, THE SHEET NUMBER SHALL BE REPLACED WITH A HYPHEN.
- IF THE SECTION, DETAIL, SCHEMATIC, OR DIAGRAM IS REFERENCED ON MULTIPLE SHEETS, ALL SHEETS SHOULD BE LISTED TO THE OUTSIDE RIGHT OF THE DETAIL—TITLE BUBBLE, AND SEPARATED WITH A COMMA.

NATIVE MATERIAL

CONVEYANCE LINE

EXISTING STRUCTURE

CONCRETE

4

TRENCH ZONE MATERIAL COMPPACT TO 85% (D698)

TRENCH ZONE MATERIAL COMPACT TO 95% (D698)

TRENCH ZONE MATERIAL COMPACT TO 90% (D1557)

EXISTING MAJOR CONTOUR LINE AND FLEVATION DESIGNATION

EXISTING MINOR CONTOUR LINE

EXISTING POWER/LIGHT POLE EXISTING SEWER MANHOLE

EXISTING HYDRANT EXISTING WATER VALVE

EXISTING GUY WIRE

EXISTING SINGLE COMPLETION MONITOR WELL EXISTING NESTED MONITOR WELL

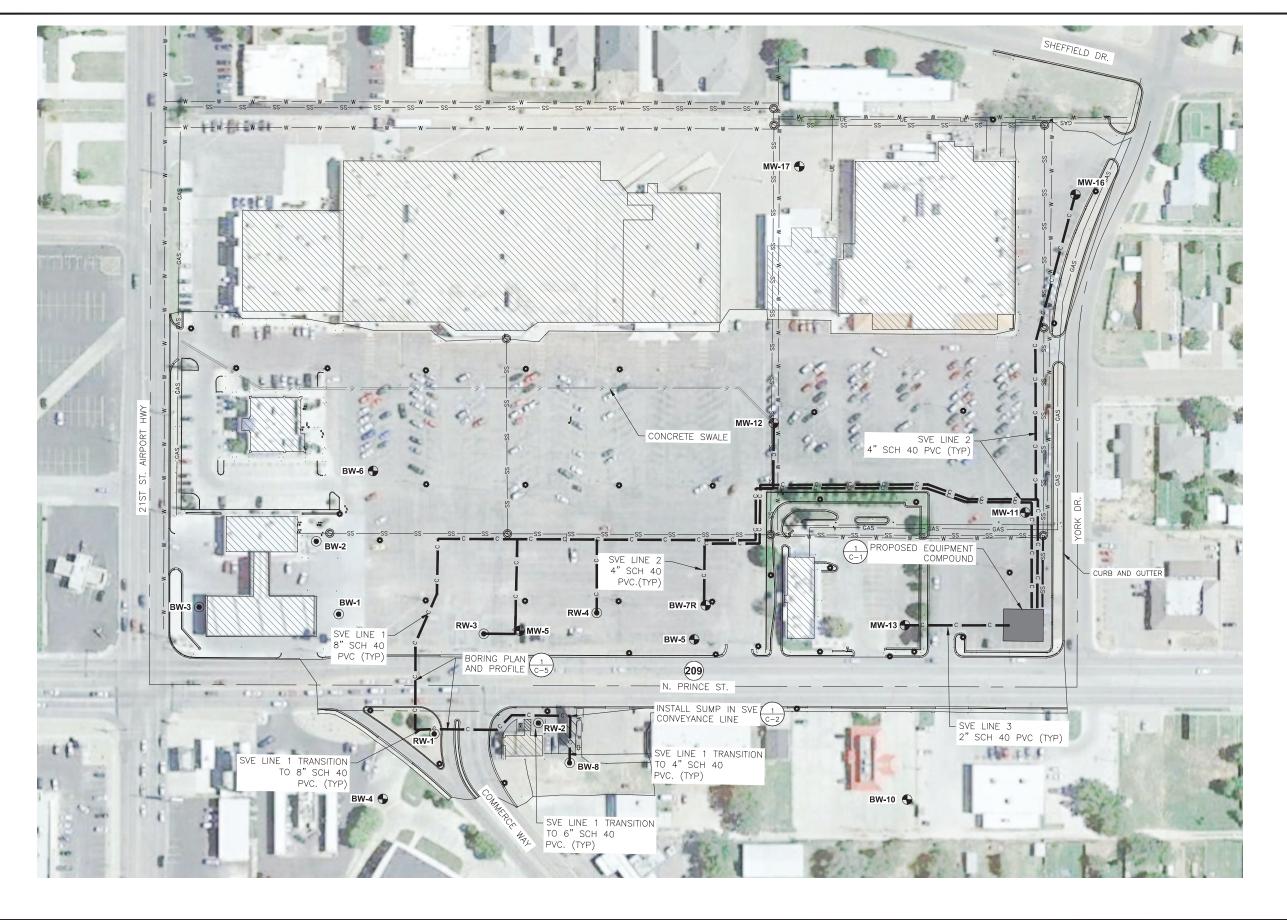
ABBREVIATIONS: AIR RELIEF VALVE AMERICAN SOCIETY FOR TESTING AND MATERIALS ASTM BMP C-C CMP BEST MANAGEMENT PRACTICE
CENTER TO CENTER
CORRUGATED METAL PIPE CMU CONCRETE MASONRY UNIT CARBON STEEL DUCTILE IRON DIAMFTER DUAL-PHASE EXTRACTION DIFFUSED AERATION TANK DRIVEWAY FI BOW EDGE OF PAVEMENT EXISTING FLUSH HYDRANT FLOW MFTFR FLOW QUANTITY INDICATOR FEET ABOVE MEAN SEA LEVEL FT MSI GROUND WATER HIGH DENSITY POLYETHYLENE HANDS OFF AUTO HORIZONTAL INVERT ELEVATION LINEAR FEET MUTUAL DOMESTIC WATER CONSUMER ASSOCIATION MEAN SEA LEVEL MSI NEW MEXICO DEPARTMENT OF TRANSPORTATION
NEW MEXICO ENVIRONMENT DEPARTMENT NMED OW OIL/WATER POTABLE WATER POLY VINYL CHLORIDE REDUCER ROW SCH STA RIGHT OF WAY SCHEDULE STATION STD SVE TBD THR STANDARD SOIL VAPOR EXTRACTION TO BE DETERMINED THREADED UNDERGROUND ELECTRIC VERTICAL VACUUM INDICATOR

CONSTRUCTION LIMITS

REV. NO.	DATE	DESCRIPTION	APPROVED BY	DATE OF ISSUE:	07/16/2021
				DESIGNED BY:	T. GOLDEN
				DRAWN BY:	J. ARELLANO
				CHECKED BY:	G. HALL
				APPROVED BY:	T. GOLDEN

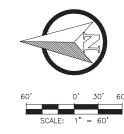
721 COMMERCE WAY **CLOVIS, NM 88101**

STATE LEAD REMEDIATION FORMER Y STATION CLOVIS, NEW MEXICO

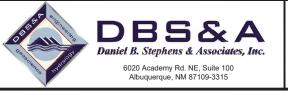

WIDTH

WATER LINE

DWG NO. G-1

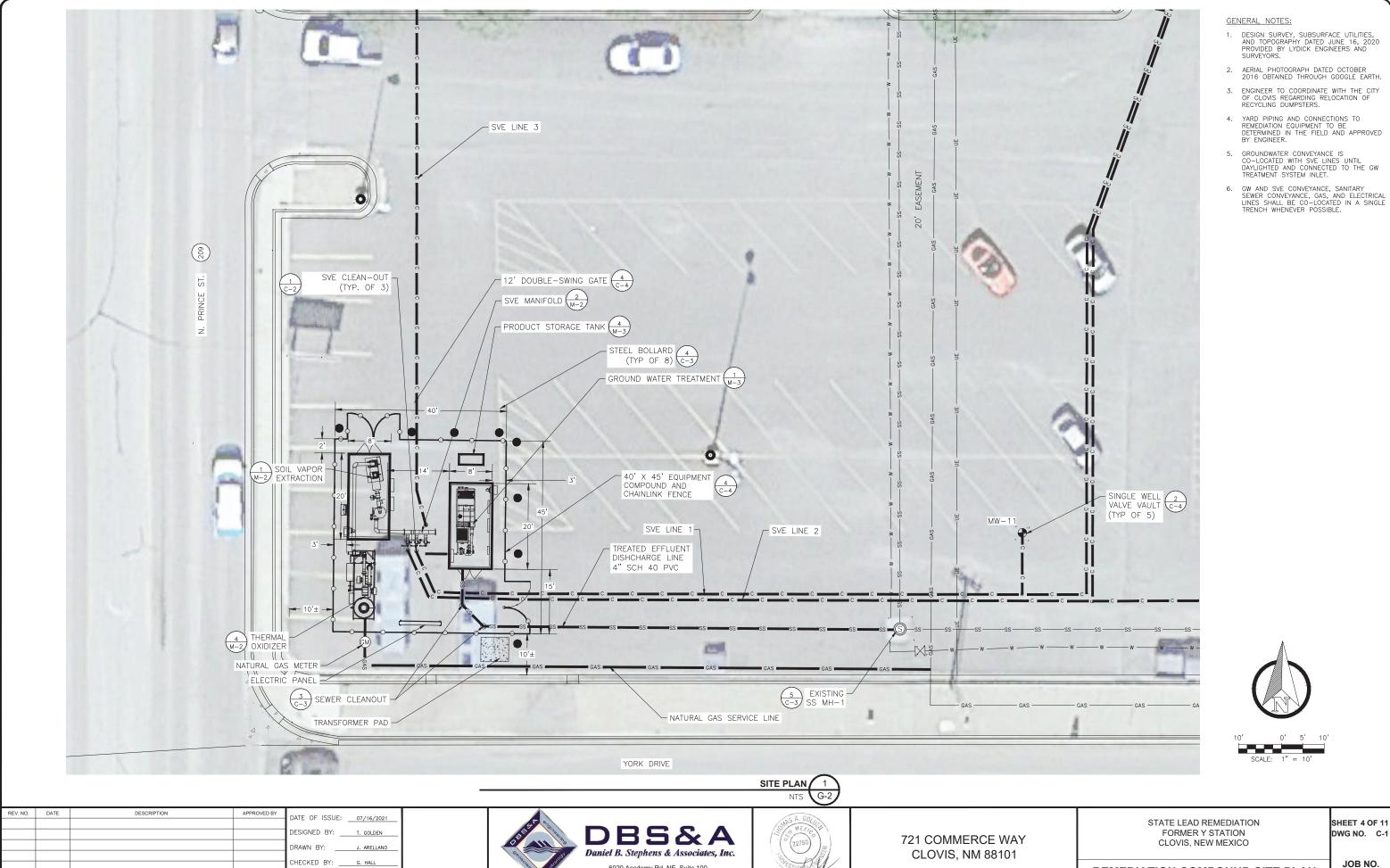

SHEET 2 OF 1

GENERAL NOTES AND LEGEND

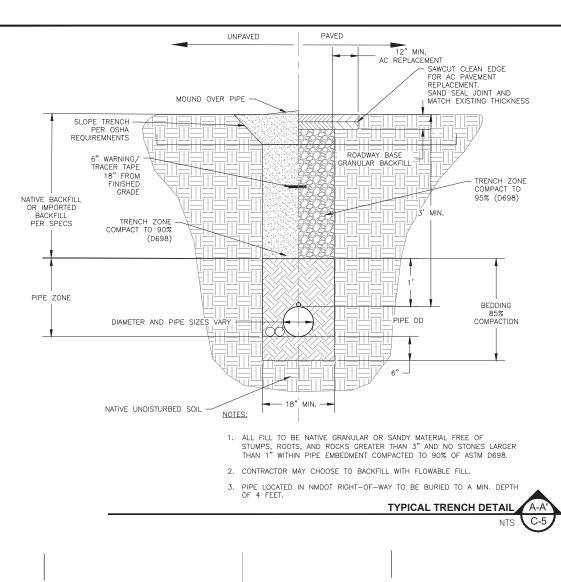


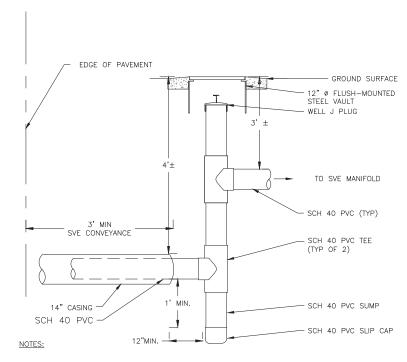
GENERAL NOTES:

- DESIGN SURVEY, SUBSURFACE UTILITIES, AND TOPOGRAPHY DATED JUNE 16, 2020 PROVIDED BY LYDICK ENGINEERS AND SUBVEYORS.
- AERIAL PHOTOGRAPH DATED OCTOBER
 2016 OBTAINED THROUGH GOOGLE EARTH.
- GROUNDWATER CONVEYANCE LINE IS 1.5" SCH 40 PVC, EXCEPT AT WELLHEAD, AND EXTENDS TO ALL WELLS SHOWN, EXCEPT BW-8.
- 4. SVE CONVEYANCE LINES SIZE AND MATERIALS AS INDICATED ON THIS SHEET.
- 5. ELECTRICAL LINES CONSISTS OF 2" CONDUIT FOR 3PHASE WELLS 2.5" CONDUIT FOR SINGLE PHASE WELLS AND 2"CONDUIT FOR COMMUNICATION LINES
- 6. GROUNDWATER CONVEYANCE LINES ARE CO-LOCATED IN THE SAME TRENCH AS THE SVE LINES AND ELECTRICAL LINES ARE A 2" CONDUIT FOR 3-PHASE WELL PUMPS, AND 2" CONDUIT FOR COMMUNICATION LINES.
- 7. CONTRACTOR TO SLOPE SVE CONVEYANCE PIPING TO SUMPS AS SHOWN IN THE DRAWINGS.


0	REV. NO.	DATE	DESCRIPTION	APPROVED BY	DATE OF ISSUE: 07/16/2021	1
ž.					DATE OF 1330E	١.
2					DESIGNED BY:T. GOLDEN	٠
S:\PKWECIS\DB18.					DRAWN BY: J. ARELLANO	.
ž					CLIECKED DV.	
ŝ					CHECKED BY: G. HALL	۱.
- (APPROVED BY:T. GOLDEN	Л

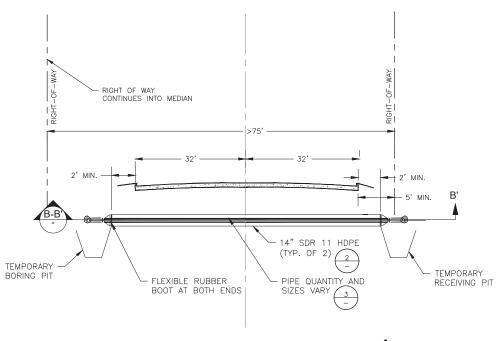
721 COMMERCE WAY CLOVIS, NM 88101 STATE LEAD REMEDIATION FORMER Y STATION CLOVIS, NEW MEXICO SHEET 3 OF 11 DWG NO. G-2

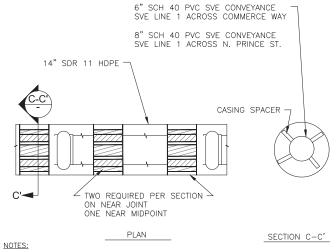

GENERAL SITE PLAN



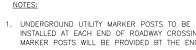
6020 Academy Rd. NE, Suite 100

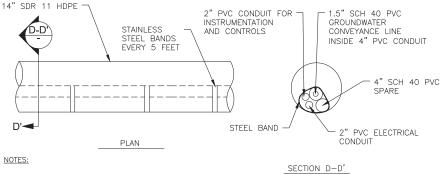
Albuquerque, NM 87109-3315


JOB NO. **REMEDIATION COMPOUND SITE PLAN** DB18.1157.00



- SUMP AND FITTINGS TO MATCH PIPE DIAMETER FOR CONVEYANCE LINE.
 CO-LOCATE 1.5" GROUNDWATER AND SVE CONVEYANCE LINES.
 SUMPS OUTSIDE OF ROADWAY BORINGS WILL NOT HAVE A 14" CASING.


TYPICAL SVE CONVEYANCE LINE CLEAN-OUT



ROADWAY CROSSING (TYP. OF 2)

1. UNDERGROUND UTILITY MARKER POSTS TO BE INSTALLED AT EACH END OF ROADWAY CROSSING.
MARKER POSTS WILL BE PROVIDED BT THE ENGINEER.

INSTALLED AT EACH END OF ROADWAY CROSSING MARKER POSTS WILL BE PROVIDED BT THE ENGINEER.

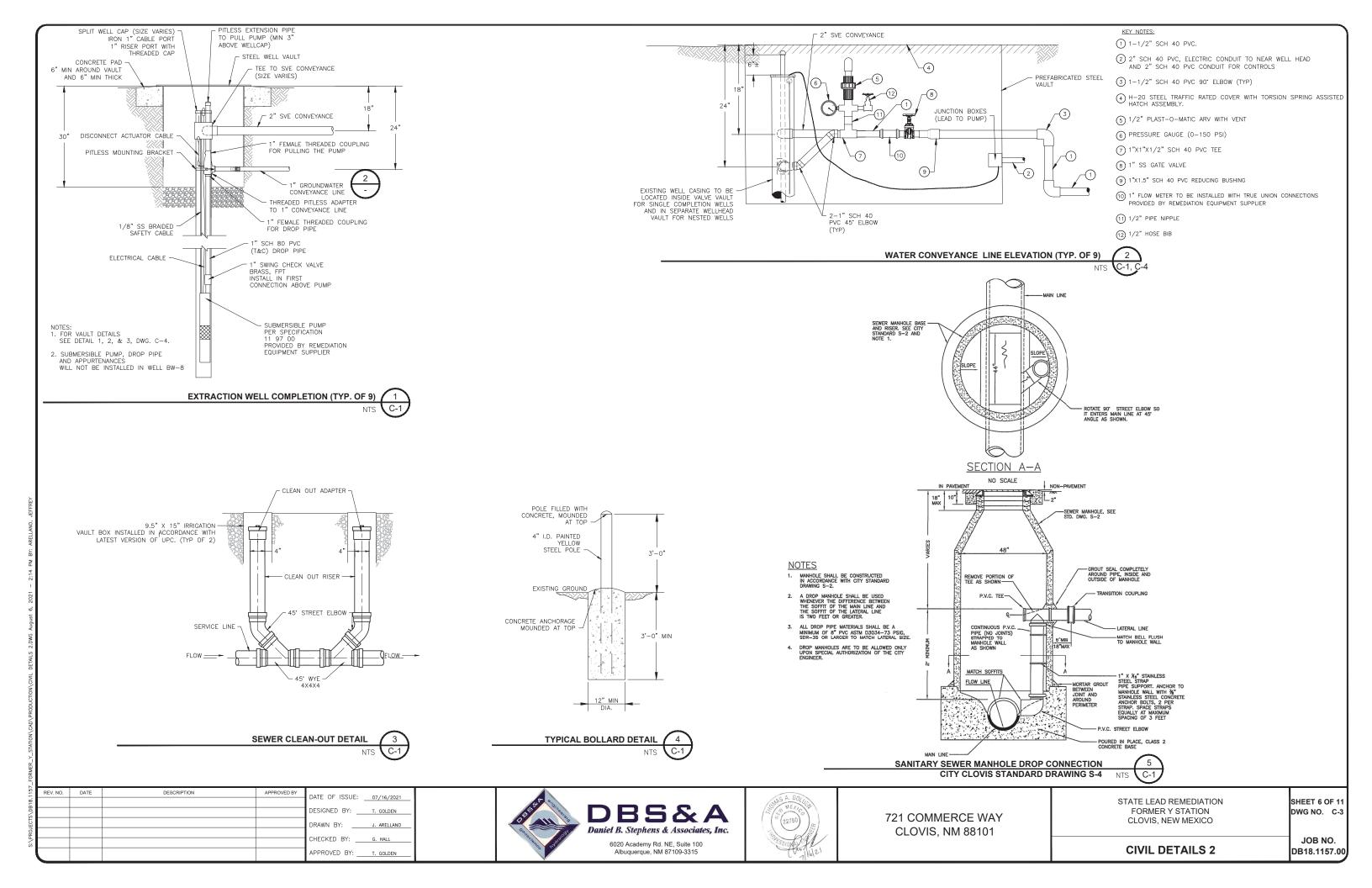
GROUNDWATER PIPE CASING DETAIL

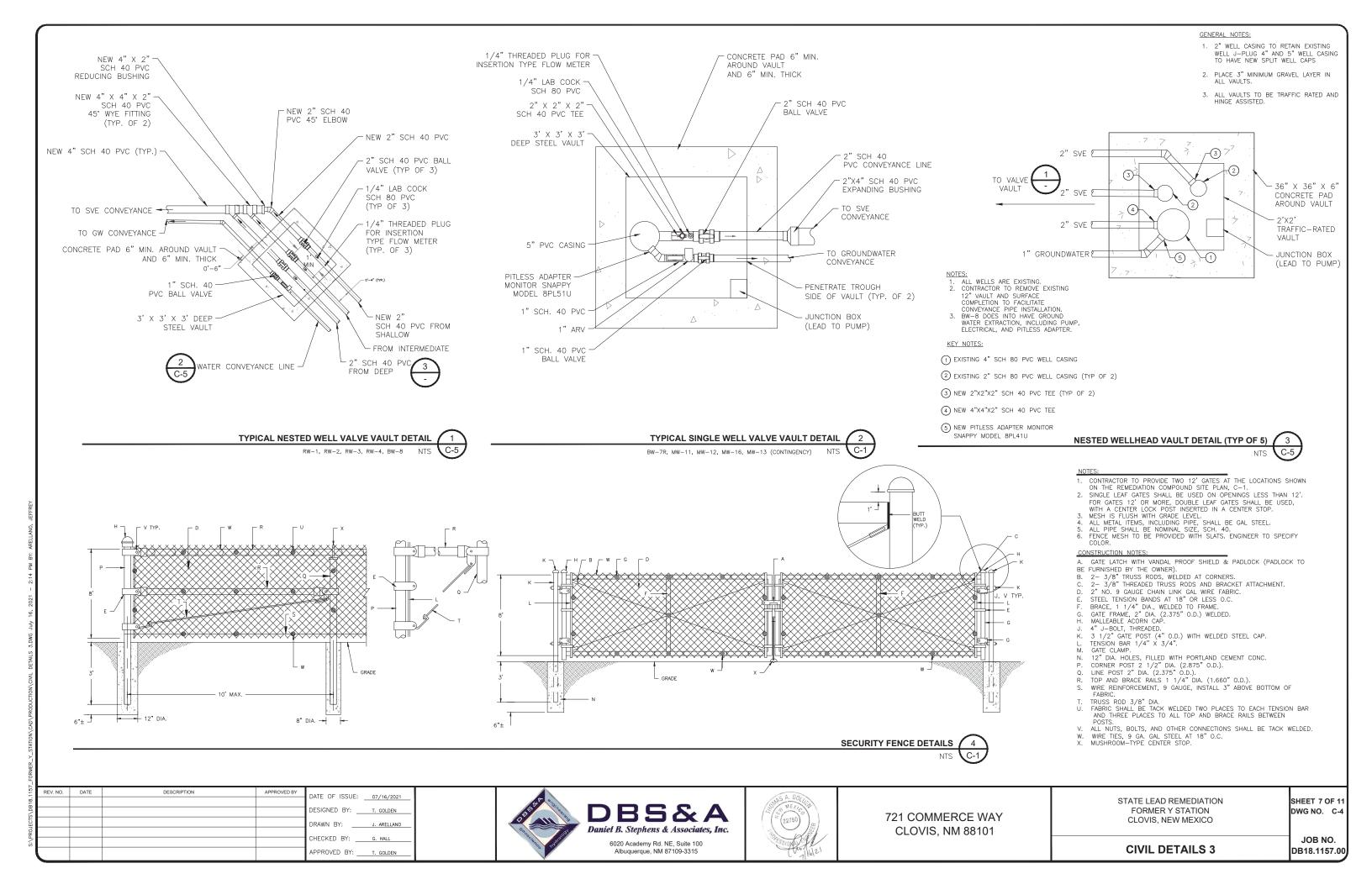
REV. NO.	DATE	DESCRIPTION	APPROVED BY	DATE OF ISSUE: 07/16/2021	Г
					L
				DESIGNED BY:T, GOLDEN	ı
				DRAWN BY: J. ARELLANO	ı
					ı
				CHECKED BY: G. HALL	ı
				APPROVED BY:T. GOLDEN	

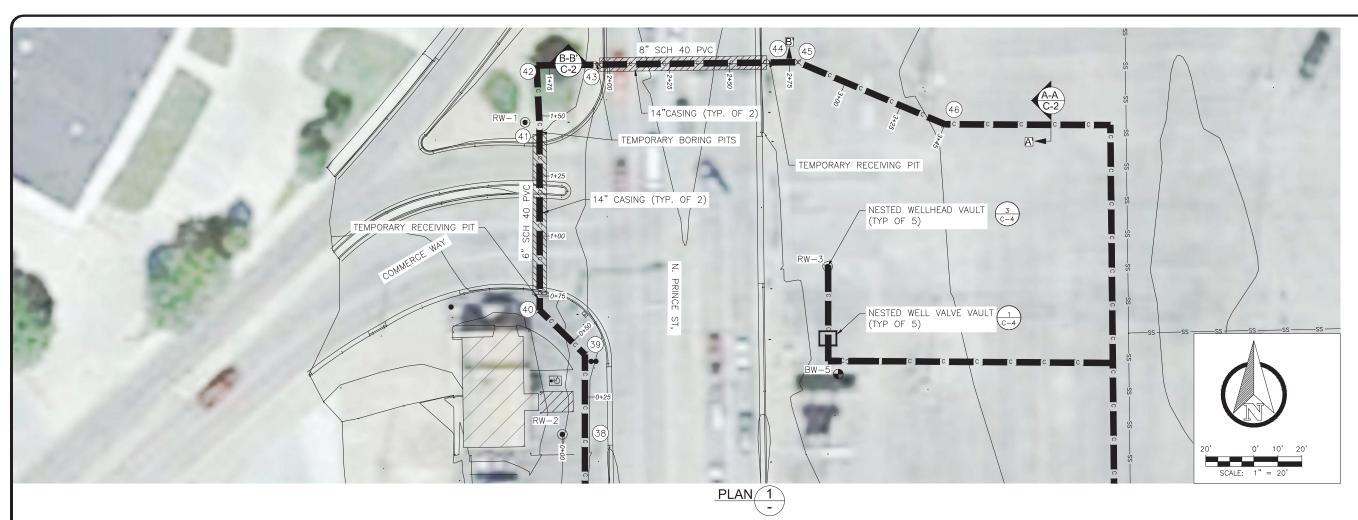
DBS&A Daniel B. Stephens & Associates, Inc. 6020 Academy Rd. NE, Suite 100

SVE PIPE CASING DETAIL

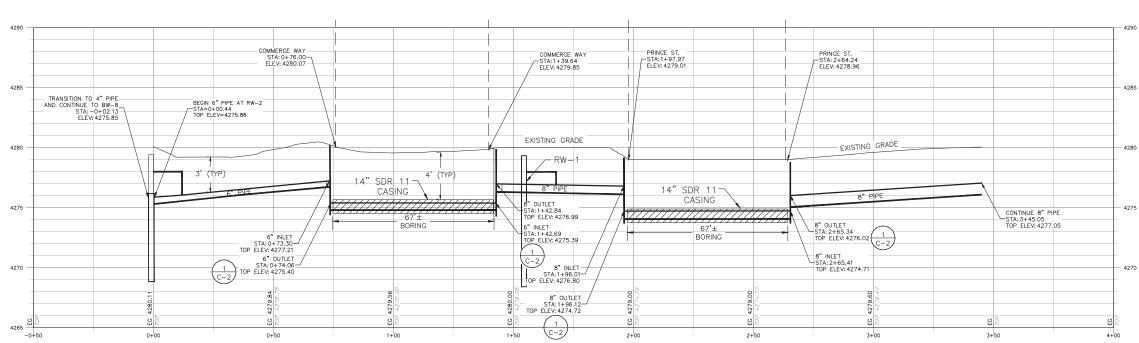
721 COMMERCE WAY **CLOVIS, NM 88101**


STATE LEAD REMEDIATION FORMER Y STATION CLOVIS, NEW MEXICO


CIVIL DETAILS 1

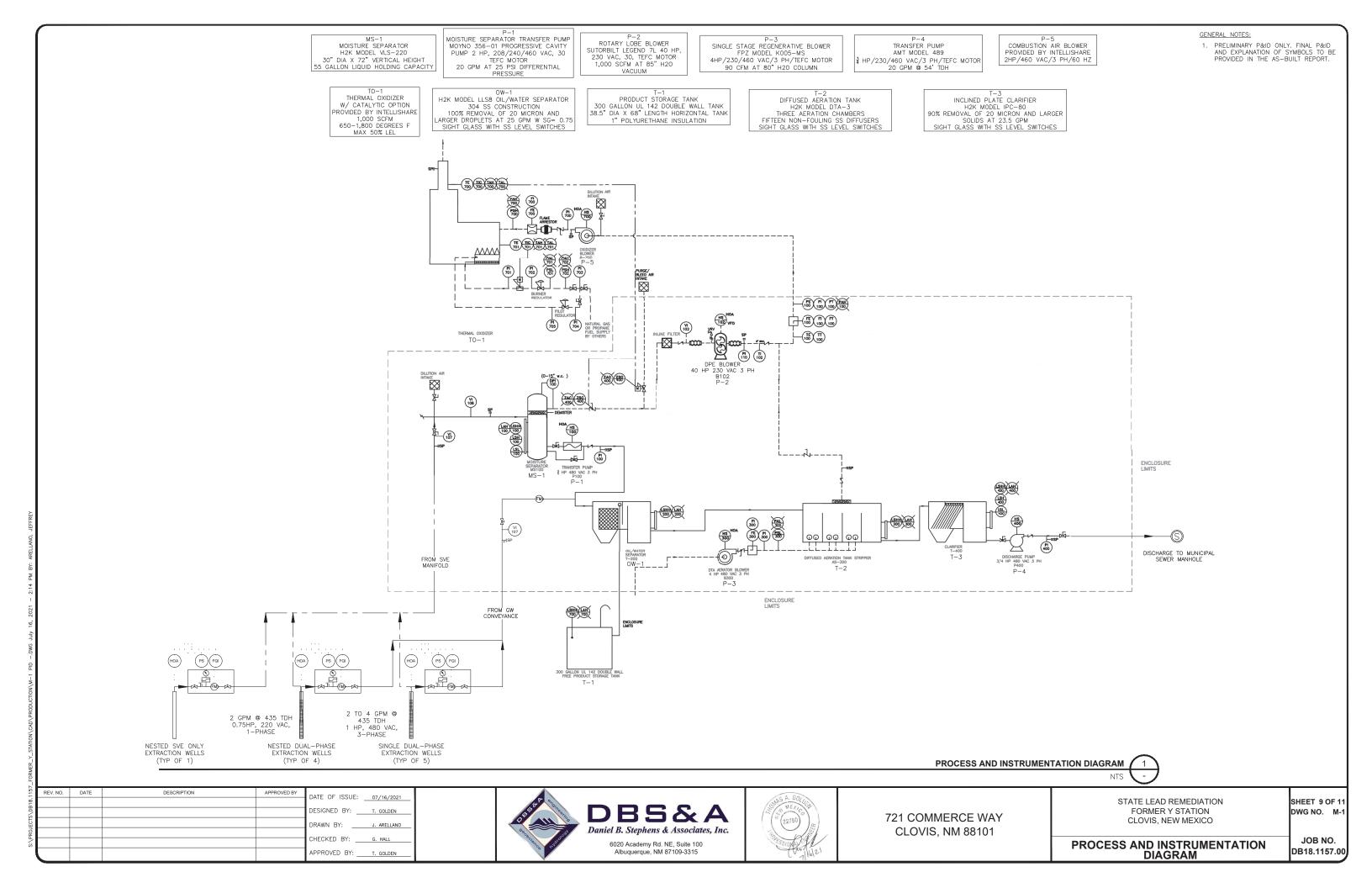

JOB NO. DB18.1157.00

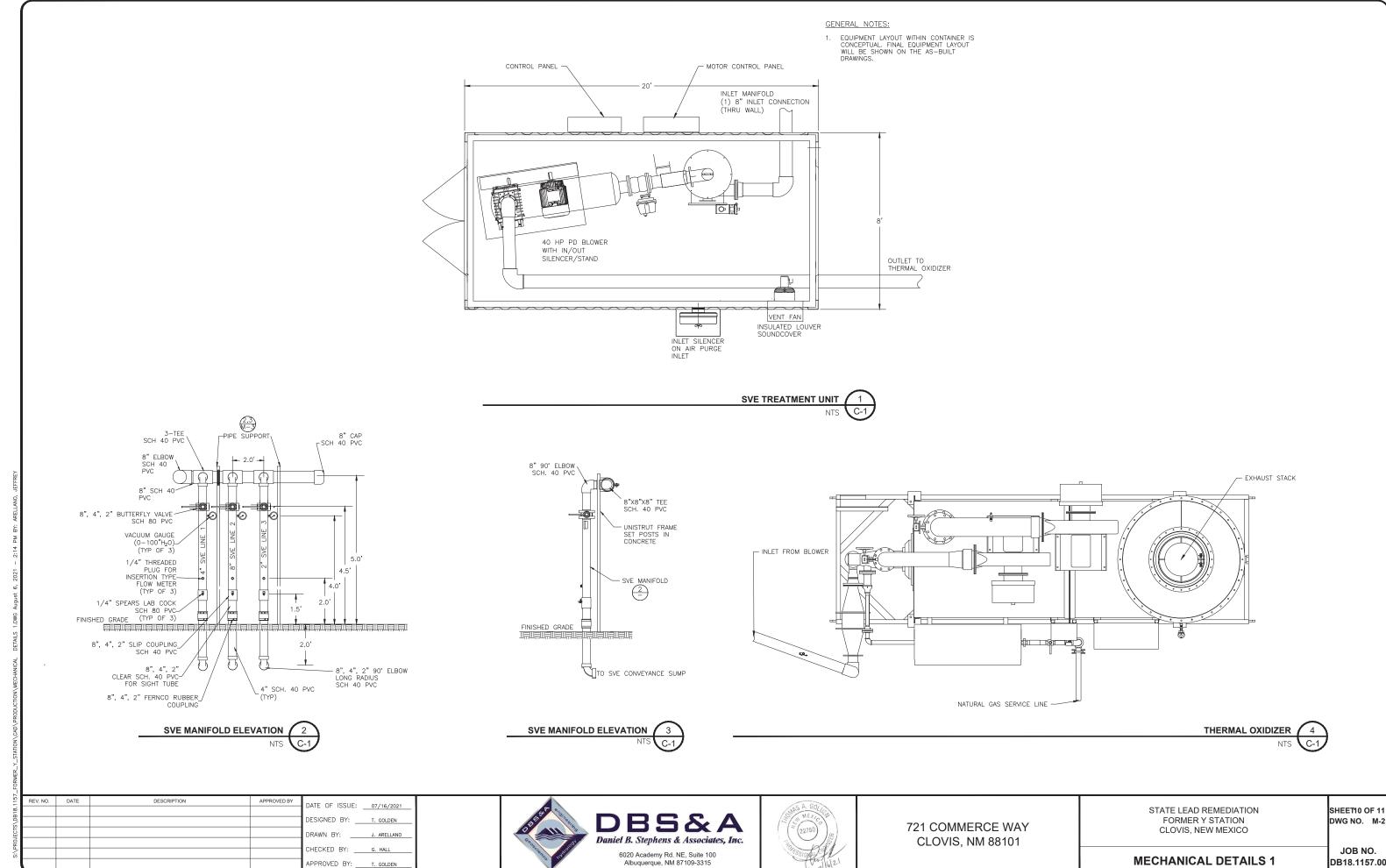
SHEET 5 OF 1


DWG NO. C-2

HORIZONTAL SCALE = 1" = 20' G-2

- 1	ILLV. NO.	DAIL	DESCRIPTION	ALLIKOVEDBI	DATE OF ISSUE:	07/16/2021
9					DATE OF 1550E.	07/16/2021
					DESIGNED BY:	T. GOLDEN
					DRAWN BY:	J. ARELLANO
					CHECKED BY:	C HALL
í					CHLORED DI	G. FIALL
Į					APPROVED BY:	T. GOLDEN

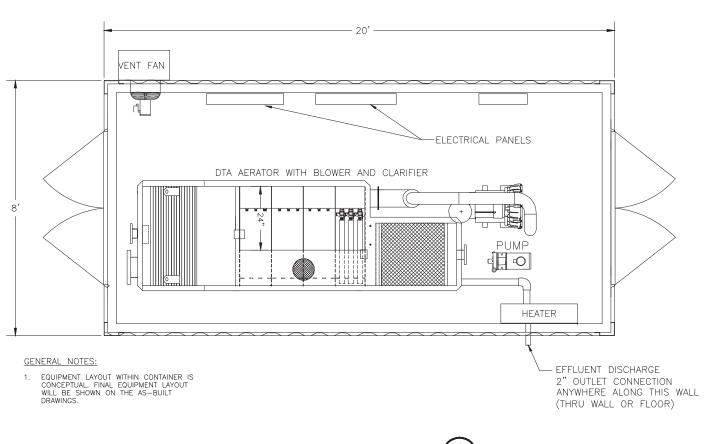


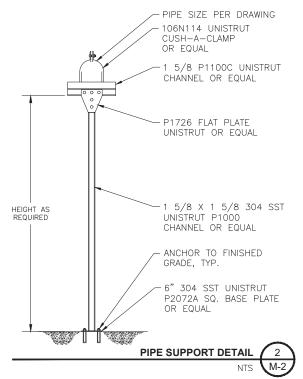

721 COMMERCE WAY CLOVIS, NM 88101 STATE LEAD REMEDIATION FORMER Y STATION CLOVIS, NEW MEXICO

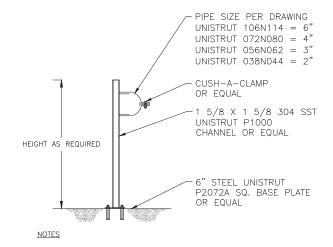
DWG NO. C-5

SHEET 8 OF 11

BORINGS PLAN AND PROFILE

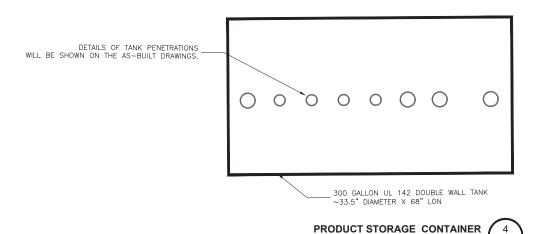




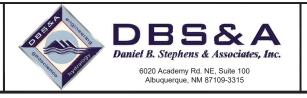


MECHANICAL DETAILS 1

DB18.1157.00


 1 5/8" P1001C UNISTRUT OR EQUAL SHALL BE USED IN PLACE OF P1000 OR EQUAL TO SUPPORT PIPES LESS THAN 3" FROM FINISHED GRADE.

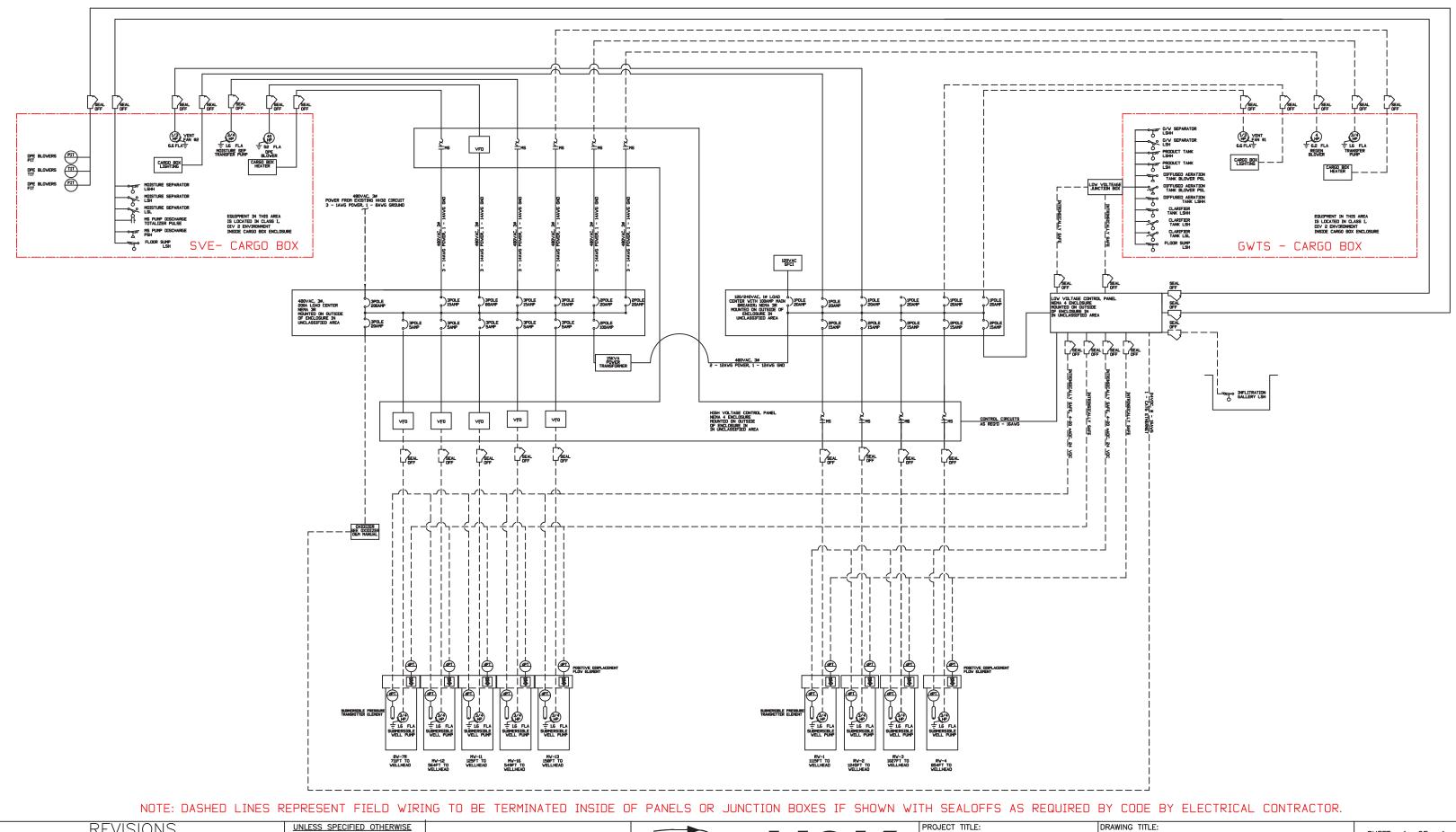
PIPE SUPPORT DETAIL


3 M-2

GROUNDWATER TREATMENT

NTS

REV. NO.	DATE	DESCRIPTION	APPROVED BY	DATE OF ISSUE: 07/16/2021
				DESIGNED BY:
				DRAWN BY: J. ARELLANO
				OUEOKED DV
				CHECKED BY: G. HALL
(APPROVED BY:



721 COMMERCE WAY CLOVIS, NM 88101 STATE LEAD REMEDIATION FORMER Y STATION CLOVIS, NEW MEXICO

MECHANICAL DETAILS 2

SHEET11 OF 11 DWG NO. M-3

	REVISIONS	* DIMENSIONS ARE IN INCHES		
REV	DESCRIPTION	DATE	DWN	* DO NOT SCALE DRAWING
Α	SPLIT INTO TWO CARGO BOXES	7/7/21	GH	DRAWN BY: RC
				DESIGNED BY: RC
				PROJECT MANAGER: TP
				DATE: 05/02/19
				PROJECT NO.: 5293

THESE MATERIALS ARE PROPRIETARY AND SHALL REMAIN THE PROPERTY OF H2K TECHNOLOGIES, INC. BUYER SHALL HAVE THE USE OF MATERIALS AND INFORMATION FOR THE LIMITED PURPOSE OF INSTALLING AND MAINTAINING THE EQUIPMENT SOLD BY H2K TECHNOLOGIES, INC. NOT TO BE REPRODUCED WITHOUT WRITTEN PERMISSION.

D. B. STEPHENS FORMER Y STATION SVE/GWTS SYSTEM CLOVIS, NM

ELECTRICAL ONE LINE

SHEET 1 OF 1

DRAWING NO.:

5913-03

Appendix D Calculations

Project Nar	Project Name Former Y Station					Project Number <u>DB18.1157</u>						
Calculation	Number _	DB18.1157-0	0 <u>01</u> [Discipline	Engineering	No	of Sheets	5				
PROJECT:	Former Y	Station					AS A. GOLO					
SITE: Form	ner Y Statio	on State Lead	Site, Clovis, Ne	w Mexico			22750	A SEE				
SUBJECT:	Determine	e pressure loss	ses and size blo	wers for the	SVE remediation	system.	1	16/21				
SOURCES	OF DATA				ydraulic Enginee ness Coefficients		on, Haestad Me	ethods, Inc.,				
					hanics, 2nd edit Sons, Inc., 1994		lunson, Donald	Young and				
		C. F	PVC pipe size &	fittings dime	ensions from Con	nmericial Indu	strial Supply					
					luid Mechanics, 2nd edition, Bruce Munson, Donald Young and Wiley & Sons, Inc, 2006							
		E. V	Vater Resource	Resources Engineering, Ralph Wurbs and Wesley James, Prentice Hall, 2002.								
		F. S	Survey Reports,	performed b	y Lydick Enginee	ers & Surveyo	rs, Clovis, NM, 2	2019, 2020.				
			Minimum Site wn Environmen		and Feasibility 2.	Testing Rep	oort: Allsups #3	320 Facility,				
SOURCES	OF FORM	//ULAE & REF		Computer A	oplications in Hy	draulic Engine	eering, 6th edition	on, Haestad				
					ources Engineer	ing, Ralph W	urbs and Wes	sley James,				
				entice Hall, 2 Figure 10 - F	002. roposed Remed	iation System	Layout					
X Prelimin	ary Calcula	ation	☐ Fin	al Calculatio	n S	upersedes Ca	alculation No					
Rev. No.	Re	evision	Calculation By	Date	Checked By	Date	Approved By	Date				
0	Final Rem	ediation Plan	GMH	5/26/21	GH	6/2/2021	TG	7/9/2021				

Project N	No. <u>DB18.1157</u>	Date _	05/26	5/202 ⁻	1			
Subject	Determine pressure losses a	nd size blowers	s for SVE remediation system	Sheet	1	of _	5	
Ву	GMH	Checked By	GH	Calcula	ation N	lo	DB18.1157-001	

1.0 OBJECTIVE

Calculate the amount of pressure loss within the SVE pipe network, and use this information to size a system blower.

2.0 GIVEN

SVE conveyance pipe consisting of 2-inch, 4-inch, 6-inch, and 8-inch schedule 40 polyvinyl chloride (PVC), and equipment compound piping consisting of 8-inch SCH 40 PVC^c; minor loss coefficients, K, for fittings within the system^B; individual SVE well air flowrates^C; and Darcy Weisbach roughness coefficients of 0.000005 for plastic pipe^A.

3.0 METHOD

Use the Darcy-Weisbach equation² to determine the amount of pressure loss within a given system. This equation is dependent on fluid properties (density and dynamic viscosity of the fluid), pipe material properties (expressed through the Darcy-Weisbach friction factor), pipe length, and pipe diameter. The Darcy-Weisbach friction factor¹ is dependent on the Darcy-Weisbach roughness coefficient^A, pipe diameter, and the Reynolds number¹.

The first step in determining the major and minor pressure losses within a given system is to determine the Reynolds number for the system. This unitless number describes the type of flow within the system. Reynolds numbers above 4,000 describe fully-developed turbulent flow¹. In order to determine the Reynolds number, three variables are needed: the dynamic viscosity of the fluid, the characteristic length/diameter of the pipe, and the average fluid velocity.

$$Re = \frac{\rho VD}{\mu}$$
 eqn. 1

Where Re = Reynolds number

ρ = Fluid density
 V = Fluid velocity
 D = Pipe diameter
 μ = Dynamic viscosity

Calculate the Darcy-Weisbach friction factor¹.

Project N	No. <u>DB18.1157</u>	Date _	05/26	6/202 ⁻	ĺ			
Subject	Determine pressure losses a	and size blower	s for SVE remediation system	Sheet	2	of	5	
Ву	GMH	Checked By	GH	Calcula	ation N	No	DB18.1157-001	

$$f = \frac{1.325}{\left[\ln\left(\frac{k}{3.7D} + \frac{5.74}{\text{Re}^{0.9}}\right)\right]^2}$$
 eqn. 2

Where f = Darcy-Weisbach friction factor

k = Darcy-Weisbach roughness coefficient

Re = Reynolds number D = Pipe diameter

Calculate major pressure losses within the system².

$$H_{maj} = \frac{flV^2}{D2g}$$
 eqn. 3

Where $H_{maj} = Major headlosses$

f = Darcy-Weisbach friction factor

I = pipe length

D = Hydraulic diameter

V = Fluid velocity

g = Gravitational acceleration

Minor pressure losses are dependent on the type of fitting and the velocity head of the fluid flowing through the pipe network.

Calculate minor pressure losses within the system. The values of K are additive.

$$H_{\min} = K_m \frac{V^2}{2g}$$
 eqn. 4

Where $H_{min} = Minor head losses$

K_m = Minor loss coefficient for fittings

Use the major and minor pressure losses, together with the expected applied extraction well vacuum, to determine the expected blower operating vacuum.

4.0 SOLUTION

The Former Y Station State Lead site will consist of a single SVE system connected to 5 multizone nested extraction wells, and 4 downgradient single-completion vertical wells. In 2012, a pilot test was conducted to assess feasibility for SVE and collect site specific data for future remediation system design. Applied well vacuum during the test ranged from 27 to 57 inches water column (in H₂O), which produced extracted air flow rates of 85 to 99 standard cubic feet per minute (scfm)^G. The vacuum and flow data were used to estimate design parameters for the proposed SVE wells based on calculated unit flowrates per length of exposed screen

Project I	No. <u> </u>)B18.1157			Date _	05/26	5/202	1
Subject	Determ	nine pressure losses	and size blower	s for SVE remediation system	Sheet	3	of _	5
Ву	GMH		Checked By	GH	Calcula	ition N	lo	DB18.1157-001

(scfm/ft). Since individual zones were on the order of 1.5 scfm/ft, DBS&A assumed that flow in a multi-zone extraction scenario will be 1.0 scfm/ft. In addition, DBS&A is conservatively assuming an applied well vacuum at the wellhead of 60 in H₂O.

There will be three main SVE conveyance lines with combined flow from the wells. Flow from multi-zone extraction wells BW-8, RW-2, RW-1, RW-3, and RW-4 is combined and conveyed through SCH 40 PVC pipe with varying diameters to the manifold. Flow from extraction wells BW-7R, MW-12, MW-11, and MW-16 is combined and conveyed to the manifold through 4-inch SCH 40 PVC pipe. MW-13 is a contingency well, with flow conveyed through 2-inch SCH 40 PVC pipe directly to the manifold at the compound.

Example calculations are provided below for the section of SVE Line 1 between RW-2 and RW-1. Calculations for all SVE lines and extraction wells are provided in the attached spreadsheet. The following equations in this example use the solutions as given in the spreadsheet and may differ slightly due to differences in rounding and significant digits shown.

First, determine the linear flow velocity and Reynold's number for the section of pipe at the anticipated flow rate assuming full pipe flow. Average inside diameter is 6.031 inches for 6-inch SCH 40 PVC pipe^C. Assuming extracted air flow of 1.0 scfm/ft, combined air flow from wells BW-8 and RW-2 is 322 scfm. The dynamic viscosity and air density of 3.63 E-7 lbf*sec/ft² and 2.101 E-3 slug/ft³, respectively, were calculated based on a linear regression equation corresponding to an elevation of 4,280 feet above mean sea level^F.

$$V_{\text{6PVC}} = Q \ / \ A = (322 \ \text{ft}^3\text{/min}) \ ^* \ (\text{min} \ / \ 60 \ \text{sec}) \ / \ (\pi \ / \ 4 \ ^* \ (6.031 \ \text{in} \ / \ 12 \ \text{in./ft})^2 \) = 27.1 \ \text{ft/sec}$$

$$Re_{6PVC} = \rho * V * D / \mu = (2.101 \text{ E-3 slug/ft}^3) * (27.1 \text{ ft/sec}) * (6.031 \text{ in } / 12 \text{ in./ft}) / (3.63 \text{ E-7 lbf*sec/ft}^2) = 78,650$$

The Reynold's numbers calculated above are indicative of turbulent flow. Use the calculated Reynolds numbers and a Darcy-Weisbach roughness coefficient of 0.000005^A to calculate the Darcy-Weisbach friction factor following eqn. 2:

$$f_{6PVC} = \frac{1.325}{\left[ln\left(\frac{0.000005}{3.7 \times \left(\frac{6.031}{12}\right) + \frac{5.74}{78650^{0.9}}\right)\right]^2} = 0.0188$$

The schedule of pipe and fittings for SVE Line 1 (From the manifold to the well head) is presented in Table 1 below.

Project N	No. <u>DB18.1157</u>			Date _	05/2	6/202	1
Subject	Determine pressure losses a	and size blower	s for SVE remediation system	Sheet	4	_ of _	5
Bv	GMH	Checked By	GH	Calcula	ation N	No.	DB18.1157-001

Table 1: Pipe and fitting schedule for the conveyance line segment of RW-2 to RW-1

Pipe Section	Section Length, L	Actual Pipe Diameter, D	Flowrate	90° Elbow		45° E	lbow	Slip Tees (Branch Flow)		
	ft	in	scfm	#	9° Elbow 45° Elbow (Branch Flow K # K # K	K				
RW-2 to RW-1	130	6.031	322	2	1.5	2	0.4	5	2	

Calculate major pressure losses for RW-2 to RW-1 using equation 3 together with the circuit length and flow rate from Table 1, the specific weight of air, and the Darcy friction factor calculated above.

$$H_{maj} = \frac{0.0188 \times 130 \, ft \times 27.1^2 \frac{ft^2}{sec^2}}{\frac{6.031 \, in.}{12^{in.}/ft} \times 2 \times 32.2 \frac{ft}{sec^2}} = 55.4 \, ft \, air$$

Convert this head loss from units of feet of air to units of inches of water.

55.4 ft air
$$\times \frac{0.06774 lbm/ft^3 \ air}{62.37 lbm/ft^3 \ water} \times \frac{12 \ in.}{ft} = 0.72 \ in. H_2 O$$

Calculate minor pressure losses using equation 4 for fittings on the RW-2 to RW-1 segment and data from Table 1.

$$K_m = (2 * 1.5) + (2 * 0.4) + (5 * 2) = 13.8$$

$$H_{min} = \frac{13.8 \times 27.1^2 \frac{ft^2}{sec^2}}{2 \times 32.2 \frac{ft}{sec^2}} \times \frac{0.06774 \ lbm/ft^3 \ air}{\frac{62.37 \ lbm}{ft^3} water} \times \frac{12 \ in.}{ft} = 2.04 \ in \ H_2O$$

The total design pressure loss for the RW-2 to RW-1 segment is the sum of the major and minor losses:

$$H_T = 0.72 + 2.04 = 2.77$$
 in H_2O

The attached spreadsheet performs similar calculations for each SVE line segment in the proposed system and provides a full summary of how each segment combines in each line. Table 2 below summarizes the line length, flow, vacuum, and maximum head loss for each SVE line. The color coding key is provided on Proposed Remediation System Layout³.

Project I	No. <u>DB18.1157</u>			Date _	05/2	6/202	1
Subject	Determine pressure losses	and size blower	s for SVE remediation system	Sheet	5	of _	5
Ву	GMH	Checked By	GH	Calcula	ation N	No.	DB18.1157-001

Table 2: SVE Line and manifold pressure losses for the exisiting system

		,	
	Total line length	Flow at Manifold	Max Head Loss
SVE Line #	(ft)	(scfm)	(in H ₂ O)
1	1470	806	23.2
2A	475	-	1.6
2B	395	-	0.5
2	630	170	4.2
3	160	41	4.9
Manifold	20	1017	4.2

To provide at least 60 in H_2O vacuum at each SVE well head, the blower will need to be sized for the SVE line with the largest pressure loss through the branched SVE system. Therefore, the greatest calculated pressure loss would be for SVE Line 1 (23.2 in H_2O), which combines flow from BW-8 and RW-1 through RW-4, and conveys to the manifold³.

Calculate the expected SVE blower total operating vacuum using the design pressure losses calculated above and the expected extraction well vacuum of 60 in H₂O^G:

$$H_{sys} = 23.2 \text{ in } H_2O + 60 \text{ in } H_2O = 83.2 \text{ in } H_2O$$

The blower at this site will be designed for 1,000 scfm at an applied vacuum of 85 in H_2O . The blower will include a variable frequency drive (VFD), which can be adjusted to match specific air flow operating requirements for the vapor treatment equipment based on actual flow conditions and a variety of operating well configurations.

Total Headloss Summary - FORMER Y

Summary TABLE 1 - Total Design Headlosses

Existing System	Total System Flow Rate ^a	Maximum Calculated Headloss	Applied Well Vacuum ^b	Design Vacuum at Blower
	(scfm)	(in H2O)	(in H2O)	(in H2O)
SVE	1017	23.2	60	83.2

Summary TABLE 2 - SVE Headloss by Line

		,	
	Total line length	Flow at Manifold	Max Head Loss
SVE Line #	(ft)	(scfm)	(in H2O)
1	1470	806	23.2
2A	475	-	1.6
2B	395	-	0.5
2	630	170	4.2
3	160	41	4.9
Manifold	20	1017	4.2

Notes:

Color coding key is provided on Proposed Remediation System Layout figure

^a Flow includes contingency well (MW-13)

^b Based on pilot test data collected 2012

Major Headloss Calculations

SVE Compound Piping (Existing)

CONSTANTS

Pipe Roughness smooth
e/d smooth Altitude (ft) 4280
Dynamic Viscosity, u 3.632E-07 lbf-sec/ft^2
k, Roughness Height, ft 5.00E-06

2.101E-03 slugs/ft^3

Air Density 0.06774 lbm/ft^3 = Water Density 62.37 lbm/ft^3

Gravitational Acceleration,g 32.2 ft/s^2

Major Headlosses

$$h_L = f(\frac{L}{D})v^2/2g$$

conveyance pipe, dia = 2.047 in (2" SCH 40 PVC) conveyance pipe, dia = 3.998 in (4" SCH 40 PVC) conveyance pipe, dia = 6.031 in (6" SCH 40 PVC) conveyance pipe, dia = 7.942 in (8" SCH 40 PVC)

Table 1. Major Headlosses

	Run	Flow Rate	Actual Pipe	Actual Pipe	X-Sectional	Velocity	Velocity	Reynolds	Friction	L/D	hL	hL	hL
	Length,L	Q	Diameter, D	Diameter, D	Area, A	V	V	#	Factor, f		(ft air)	(ft water)	(in water)
Piping Run ^a	(ft)	(cfm)	(in)	(ft)	(ft ²)	(ft/min)	(ft/s)						
Blower to SVE Manifold	20	1017	7.942	0.662	0.344	2956	49.3	188,626	0.0158	30.2	18.0	0.02	0.23
Intermediate Well Head	5	60	2.047	0.171	0.023	2625	43.8	43,176	0.0216	29.3	18.8	0.02	0.24
Deep Well Head	5	40	2.047	0.171	0.023	1750	29.2	28,784	0.0237	29.3	9.2	0.01	0.12
BW-8 to RW-2	80	162	3.998	0.333	0.087	1858	31.0	59,688	0.0200	240.1	71.6	0.08	0.93
RW-2 to RW-1	130	322	6.031	0.503	0.198	1623	27.1	78,646	0.0188	258.7	55.4	0.06	0.72
RW-1 to RW-3 tie-in	390	487	7.942	0.662	0.344	1416	23.6	90,325	0.0183	589.3	93.1	0.10	1.21
RW-3 tie-in to RW-4 tie-in	100	647	7.942	0.662	0.344	1881	31.3	120,001	0.0172	151.1	39.8	0.04	0.52
RW-4 tie-in to compound	770	806	7.942	0.662	0.344	2343	39.0	149,491	0.0165	1163.4	454.6	0.49	5.92
BW-7R tie-in to MW-12 tie-in	150	42	3.998	0.333	0.087	482	8.0	15,475	0.0276	450.2	12.4	0.01	0.16
MW-12 tie-in to MW-16 tie-in	325	86	3.998	0.333	0.087	986	16.4	31,686	0.0231	975.5	94.6	0.10	1.23
MW-16 tie-in to compound	155	170	3.998	0.333	0.087	1950	32.5	62,635	0.0198	465.2	151.2	0.16	1.97
MW-16 to tie-in	395	42	3.998	0.333	0.087	482	8.0	15,475	0.0276	1185.6	32.7	0.04	0.43
MW-13 to compound	160	41	2.047	0.171	0.023	1794	29.9	29,504	0.0235	938.0	306.6	0.33	4.00
MW-12 to tie-in	90	44	3.998	0.333	0.087	505	8.4	16,211	0.0273	270.1	8.1	0.01	0.11
BW-7R to tie-in	76	42	3.998	0.333	0.087	482	8.0	15,475	0.0276	228.1	6.3	0.01	0.08
RW-4 to tie-in	100	160	3.998	0.333	0.087	1835	30.6	58,951	0.0201	300.2	87.5	0.10	1.14
BW-5 (RW-3) to tie-in	117	160	3.998	0.333	0.087	1835	30.6	58,951	0.0201	351.2	102.4	0.11	1.33

Minor Headloss Calculations

SVE Compound Piping

	Minor	Loss
Appurtenance	Coeff	
90° elbow		1.5
45° elbow		0.4
Branch Flow (BF) Tees		2
Ball Valve (Fully Open)		0.05
Butterfly Valve (Fully Open)		1.2
Transitions (Expansions)		0.4
Entrance		0.5
Exit		1

Minor Headlosses

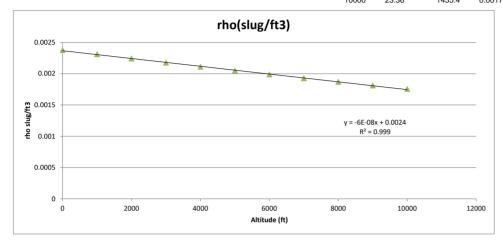
$$h_L = k_L v^2 / 2g$$

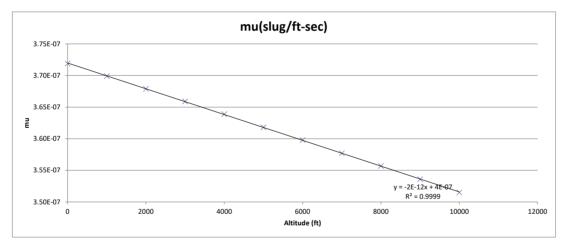
Table 2. Minor Headlosses

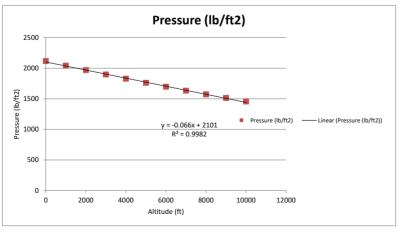
					Quantinty of Appurt	enances							
	90°	45°	Slip Tees	Ball Valve	Butterfly Valve	Transitions	Entrance	Exit	KI	Velocity,v	hL	hL	hL
Piping Run ^a			(Branch Flow)			(Expansions)			Sum	(ft/S)	(ft air)	(ft water)	(in water)
Blower to SVE Manifold	2	4	1	0	0	1	0	1	8.0	49.3	301.6	0.33	3.93
Intermediate Well Head	0	2	1	1	0	1	1	0	3.8	43.8	111.5	0.12	1.45
Deep Well Head	0	2	1	1	0	1	1	0	3.8	29.2	49.5	0.05	0.65
BW-8 to RW-2	1	0	1	0	0	0	0	0	3.5	31.0	52.1	0.06	0.68
RW-2 to RW-1	2	2	5	0	0	0	0	0	13.8	27.1	156.8	0.17	2.04
RW-1 to RW-3 tie-in	2	2	5	0	0	0	0	0	13.8	23.6	119.3	0.13	1.55
RW-3 tie-in to RW-4 tie-in	0	0	1	0	0	0	0	0	2.0	31.3	30.5	0.03	0.40
RW-4 tie-in to compound	4	2	1	0	1	0	0	1	11.0	39.0	260.4	0.28	3.39
BW-7R tie-in to MW-12 tie-in	3	0	1	0	0	0	0	0	6.5	8.0	6.5	0.01	0.08
MW-12 tie-in to MW-16 tie-in	0	2	1	0	0	0	0	0	2.8	16.4	11.8	0.01	0.15
MW-16 tie-in to compound	0	2	0	0	1	0	0	1	3.0	32.5	49.2	0.05	0.64
MW-16 to tie-in	0	1	1	0	0	1	0	0	2.8	8.0	2.8	0.00	0.04
MW-13 to compound	0	2	1	0	1	0	0	1	5.0	29.9	69.4	0.08	0.90
MW-12 to tie-in	0	0	0	1	0	1	0	0	0.5	8.4	0.5	0.00	0.01
BW-7R to tie-in	0	0	0	1	0	1	0	0	0.5	8.0	0.5	0.00	0.01
RW-4 to tie-in	0	0	1	1	0	1	0	0	2.5	30.6	35.6	0.04	0.46
BW-5 (RW-3) to tie-in	1	0	0	1	0	1	0	0	2.0	30.6	28.3	0.03	0.37

Total Design Headloss

SVE Compound Piping (Existing)


Table 3. Total Headlosses


	hL	hL	hL
	(ft air)	(ft water)	(in water)
Piping Run			
Blower to SVE Manifold	319.5	0.35	4.16
Intermediate Well Head	130.3	0.14	1.70
Deep Well Head	58.7	0.06	0.77
BW-8 to RW-2	123.7	0.13	1.61
RW-2 to RW-1	212.2	0.23	2.77
RW-1 to RW-3 tie-in	212.4	0.23	2.77
RW-3 tie-in to RW-4 tie-in	70.3	0.08	0.92
RW-4 tie-in to compound	715.1	0.78	9.32
BW-7R tie-in to MW-12 tie-in	18.9	0.02	0.25
MW-12 tie-in to MW-16 tie-in	106.4	0.12	1.39
MW-16 tie-in to compound	200.4	0.22	2.61
MW-16 to tie-in	35.5	0.04	0.46
MW-13 to compound	376.0	0.41	4.90
MW-12 to tie-in	8.6	0.01	0.11
BW-7R to tie-in	6.7	0.01	0.09
RW-4 to tie-in	123.1	0.13	1.60
BW-5 (RW-3) to tie-in	130.7	0.14	1.70


Fundamentals of Momentum, Heat, and Mass Transfer

Density of air calculation

				h(ft)	Temp (F)	Pressure (lb/ft2)	rho(slug/ft3)	mu(slug/ft-sec
Altitude	=	4280 ft		0	59	2116.2	0.002378	3.72E-07
Rho	=	2.101E-03 slug/ft3		1000	57.44	2040.9	0.00231	3.70E-07
mu	=	3.63E-07 slug/ft-sec		2000	51.87	1967.7	0.002242	3.68E-07
Temp	=	44.0 F	503.6504 R	3000	48.31	1896.7	0.002177	3.66E-07
Patm	=	1818.4 lb/ft2		4000	44.74	1827.7	0.002112	3.64E-07
Patm	=	12.6 lb/in2		5000	41.18	1760.8	0.002049	3.62E-07
				6000	37.62	1696	0.001988	3.60E-07
				7000	34.05	1633	0.001928	3.58E-07
				8000	30.49	1571.9	0.001869	3.56E-07
				9000	26.92	1512.8	0.001812	3.54E-07
				10000	23.36	1/155 /	0.001756	3 52F-07

SUMMARY OUTPUT for rho

Regression Statistics								
Multiple R	0.999488387							
R Square	0.998977037							
Adjusted R Square	0.998863374							
Standard Error	6.95955E-06							
Observations	11							

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4.25697E-07	4.26E-07	8788.96876	9.06425E-15
Residual	9	4.35918E-10	4.84E-11		
Total	10	4.26133E-07			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.0023675	3.92572E-06	603.0746	4.82489E-22	0.002358619	0.002376381	0.002358619	0.002376381
X Variable 1	-6.22091E-08	6.63567E-10	-93,7495	9.06425E-15	-6.371E-08	-6.0708E-08	-6.37102E-08	-6.0708E-08

SUMMARY OUTPUT for mu

Regression Statistics								
Multiple R	0.999969093							
R Square	0.999938188							
Adjusted R Square	0.99993132							
Standard Error	5.60483E-11							
Observations	11							

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4.57368E-16	4.57E-16	145593.0579	2.96912E-20
Residual	9	2.82727E-20	3.14E-21		
Total	10	4.57396E-16			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.71977E-07	3.16155E-11	11765.66	1.17849E-33	3.71906E-07	3.72049E-07	3.71906E-07	3.72049E-07
X Variable 1	-2.03909E-12	5.344E-15	-381.567	2.96912E-20	-2.0512E-12	-2.027E-12	-2.05118E-12	-2.027E-12

SUMMARY OUTPUT for pressure

Regression Statistics								
Multiple R	0.999108089							
R Square	0.998216973							
Adjusted R Square	0.998018858							
Standard Error	9.755712649							
Observations	11							

ANOVA

	df	SS	MS	F	Significance F
Regression	1	479542.8765	479542.9	5038.594918	1.10486E-13
Residual	9	856.5653636	95.17393		
Total	10	480399.4418			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	2100.959091	5.502964098	381.7868	2.95374E-20	2088.510521	2113.407661	2088.510521	2113.407661
X Variable 1	-0.066026364	0.000930171	-70.9831	1.10486E-13	-0.06813056	-0.063922171	-0.068130556	-0.063922171

SUMMARY OUTPUT for temperature

Regression Statistics									
Multiple R	0.998947454								
R Square	0.997896016								
Adjusted R Square	0.99766224								
Standard Error	0.583829572								
Observations	11								

ANOVA

Regression 1 1454.981851 1454.982 4268.599384 2.327 Residual 9 3.067712727 0.340857	di	lf	SS	MS	F	Significance F
	Regression	1	1454.981851	1454.982	4268.599384	2.32726E-13
Total 10 1459 040564	Residual	9	3.067712727	0.340857		
10 1438.049364	Total	10	1458.049564			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	59.54636364	0.329324294	180.8138	2.46206E-17	58.80138033	60.29134695	58.80138033	60.29134695
X Variable 1	-0.003636909	5.5666E-05	-65.3345	2.32726E-13	-0.00376283	-0.003510984	-0.003762834	-0.003510984

COMPUTER APPLICATIONS UN HYDRAULIC ENGINEERING

FOR PARTY OF PROJET OMED DIMMED

SIXTH EDITION (CD Includes:

- **▶** WATER©AD
- **▶** SEWERCAD®
- **▶** STORMCAD® .
- **▶** CULVERTMASTER[®]

DIFLOWMASTER®

U BOINDINGK

Marting Theory

Computer Applications in Hydraulic Engineering

Sixth Edition

Copyright ©1997-2004 Haestad Methods, Inc. All Rights Reserved.

This book is published by Haestad Methods, Inc. and is intended for academic purposes and educational needs.

The following are registered trademarks of Haestad Methods, Inc.:

APEX, CIVILQUIZ, CLIENTCARE, CORPORATECARE, CULVERTMASTER, CURRENT METHODS, CYBERNET, DARWIN, FLEXTABLES, FLEXUNITS, FLOWMASTER, GRAPHICAL HEC-1, HAESTAD METHODS, HAESTAD METHODS A+ MODELER AUTHORIZED WATER PROVIDER, HAESTAD METHODS CLIENTCARE, HAESTAD METHODS EXPERT MODELER AUTHORIZED WATER PROVIDER, HAESTAD METHODS CLIENTCARE, HAESTAD METHODS EXPERT MODELER AUTHORIZED WATER PROVIDER, HAESTAD PRESS, HAESTAD SEVERITY NDEX, HMI, JUMPSTART, PONDGEMS, PONDMAKER, PONDPACK, PUMPMASTER, SEWERCAD, SEWERGEMS, SEWERTALK, SKELEBRATOR, STORMCAD, STORMGEMS, STORMTALK, WATERCAD, WATERGEMS, WATEROBJECTS, WATERSAFE, WATERTALK, WSS and WWW.HAESTAD.COM METHODS (logo).

CIVILSTORM, FIRECAD, GISCONNECT, GISTALK, HAMMER, HECGEMS, MUNICIPALGEMS, PUMPGEMS, PUMPTALK, SPRINKLERCAD and UTALK are trademarks of Haestad Methods.

All other trademarks, brands, company or product names not owned by Haestad Methods or its subsidiaries are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Haestad Methods or its subsidiaries.

Haestad Methods is a registered trade name of Haestad Methods, Inc.

All other trademarks not owned by Haestad Methods or its subsidiaries that appear in this book are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Haestad Methods or its subsidiaries

Library of Congress Control Number: 2004108488

ISBN Number: 0-9714141-5-7

Contrik

Haestad Me from six cont consulting, to contributes to materials in t Haestad Metl

Thomas M. and is registe his Master's Vanderbilt U reviewed jou five years as University, a American Ac

Thomas E. I more than 20 researcher, en University of University, a expertise includes hydrola includes hydrola professional

S. Rocky Du Environment hydrologic as spent many y of stormwate and rainfall a

Michael E. I and Environr undergradual texts on storr for estimatin Meadows has other state ar modeling me given particle in the direction of flow, and at other times detract from it. The result is that velocity distributions captured at different times will be quite different from one another, and will be far more chaotic than the velocity distribution of a laminar flow section.

By strict interpretation, the changing velocities in turbulent flow would cause it to be classified as unsteady flow. Over time, however, the average velocity at any given point within the section is essentially constant, so the flow is assumed to be steady.

The velocity at any given point within the turbulent section will be closer to the mean velocity of the entire section than with laminar flow conditions. Turbulent flow velocities are closer to the mean velocity because of the continuous mixing of flow, particularly the mixing of low-velocity flow near the channel walls with the higher-velocity flow toward the center.

To classify flow as either turbulent or laminar, an index called the *Reynolds number* is used. It is computed as follows:

$$Re = \frac{4VR}{V}$$

where Re = Reynolds number (unitless)

V = average velocity (m/s, ft/s)

R = hydraulic radius (m, ft)

 $\nu = \text{kinematic viscosity (m}^2/\text{s, ft}^2/\text{s})$

If the Reynolds number is below 2,000, the flow is generally laminar. For flow in closed conduits, if the Reynolds number is above 4,000, the flow is generally turbulent. Between 2,000 and 4,000, the flow may be either laminar or turbulent, depending on how insulated the flow is from outside disturbances. In open channels, laminar flow occurs when the Reynolds number is less than 500 and turbulent flow occurs when it is above 2,000. Between 500 and 2,000, the flow is transitional.

Example 1-1: Flow Characteristics

A rectangular concrete channel is 3 m wide and 2 m high. The water in the channel is 1.5 m deep and is flowing at a rate of 30 m³/s. Determine the flow area, wetted perimeter, and hydraulic radius. Is the flow laminar or turbulent?

Solution

From the section's shape (rectangular), we can easily calculate the area as the rectangle's width multiplied by its depth. Note that the depth used should be the actual depth of flow, not the total height of the cross-section. The wetted perimeter can also be found easily through simple geometry.

$$A = 3.0 \text{ m} \times 1.5 \text{ m} = 4.5 \text{ m}^2$$

$$P_w = 3.0 \text{ m} + 2 \times 1.5 \text{ m} = 6.0 \text{ m}$$

In o: dete valu

Fror 1.00 num

This

1.2

The form (ΔE) work

The e the su such therm relati

In hydweigh better equivenerg in Fig

- Pre
- Ele
- ▼ Vel

where

ı the aulic

quation

r hand ed by is:

ese

Table 1-2: Typical Roughness Coefficients

Material	Manning's Coefficient	Hazen- Williams	Darcy-Weisbach Roughness Height	
	n	C	k (mm)	k (ft)
Asbestos cement	0.011	140	0.0015	0.000005
Brass	0.011	135	0.0015	0.000005
Brick	0.015	100	0.6	0.002
Cast-iron, new	0.012	130	0.26	0.0008 <i>5</i>
Concrete:				
Steel forms	0.011	140	0.18	0.006
Wooden forms	0.015	120	0.6	0.002
Centrifugally spun	0.013	135	0.36	0.0012
Copper	0.011	135	0.0015	0.000005
Corrugated metal	0.022	-	45	0.15
Galvanized iron	0.016	120	0.15	0.0005
Glass	0.011	140	0.0015	0.000005
Lead	0.011	135	0.0015	0.000005
Plastic	0.009	150	0.0015	0.000005
Steel:	1			,
Coal-tar enamel	0.010	148	0.0048	0.000016
New unlined	0.011	145	0.045	0.00015
Riveted	0.019	110	0.9	0.003
Wood stave	0.012	120	0.18	0.0006

1.5 Pressure Flow

For pipes flowing full, many of the friction loss calculations are greatly simplified because the flow area, wetted perimeter, and hydraulic radius are all functions of pipe radius (or diameter). Table 1-3 presents the three pipe friction loss equations that are commonly used to design pressure pipe systems.

There is much more information presented about pressure piping systems in Chapter 6, including further discussion on pumping systems, minor losses, and network analysis.

Table 1-3: Three Pipe Friction Loss Equations

Tuble 1-3: Three ripe Priction Loss Equations								
Equation	Q (m ³ /s); D (m)	Q (cfs); D (ft)	Q (gpm); D (in.)					
Darcy-Weisbach	$S_f = \frac{0.083 f Q^2}{D^5}$	$S_f = \frac{0.025 fQ^2}{D^5}$	$S_f = \frac{0.031 f Q^2}{D^5}$					
Hazen-Williams	$S_f = \frac{10.7}{D^{4.87}} \left(\frac{Q}{C}\right)^{1.852}$	$S_f = \frac{4.73}{D^{4.87}} \left(\frac{Q}{C}\right)^{1.852}$	$S_f = \frac{10.5}{D^{4.87}} \left(\frac{Q}{C}\right)^{1.852}$					
Manning	$S_f = \frac{10.3(nQ)^2}{D^{5.33}}$	$S_f = \frac{4.66(nQ)^2}{D^{5.33}}$	$S_f = \frac{13.2(nQ)^2}{D^{5.33}}$					

FUNDAMENTALS OF FLUID MECHANICS

BRUCE R. MUNSON

DONALD F. YOUNG

THEODORE H. OKIISHI

ACQUISITIONS EDITOR Charity Robey

MARKETING MANAGER Susan Elbe

PRODUCTION SUPERVISOR Ingrao Associates and Deborah Herbert

INTERIOR DESIGNER Christine Gehring Wolf

MANUFACTURING MANAGER Andrea Price

ILLUSTRATION Anna Melhom

COVER DESIGNER Chattum Design Group, Inc.

COVER PHOTO Visualization of the flow around a flattened ellipsoid at a 10° angle of attack. Dye injection in the hydrodynamic tunnel of the ONERA. (Courtesy Bureau National d'Études et de Recherches Aerospatiales, Châtillion, Hauts-de-Seine.)

This book was set in Times Roman by CRWaldman Graphic Communications and printed and bound by Donnelley/(Willard). The cover was printed by Lehigh Press.

Copyright @ 1990, 1994, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Munson, Bruce Roy, 1940-

Fundamentals of fluid mechanics / Bruce R. Munson, Donald F. Young, Theodore H. Okiishi. -- 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-471-57958-0 (cloth)

1. Fluid mechanics. I. Young, Donald F. II. Okiishi, T. H.

(Theodore Hisao), 1939- . III. Title.

TA357.M86 1994

620.1'06--dc20

93-14153

10 9 8 7

CIP

■ TABLE B.3
Physical Properties of Air at Standard Atmospheric Pressure (BG Units)^a

Temperature (°F)	Density, ho (slugs/ft³)	Specific Weight ^b ,	Dynamic Viscosity, (lb·s/ft²)	Kinematic Viscosity, v (ft²/s)	Specific Heat Ratio, k (—)	Speed of Sound, c (ft/s)
-40	2.939 E - 3	9.456 E - 2	3.29 E - 7	1.12 E - 4	1.401	1004
-20	2.805 E - 3	9.026 E - 2	3.34 E - 7	1.19 E - 4	1.401	1028
0	2.683 E - 3	8.633 $E-2$	3.38 E − 7	1.26 E - 4	1.401	1051
10	2.626 E - 3	8.449 $E - 2$	3.44 E - 7	1.31 E - 4	1.401	1062
20	2.571 E - 3	8.273 $E - 2$	3.50 $E - 7$	1.36 E - 4	1.401	1074
30	2.519 E - 3	8.104 E - 2	3.58 E - 7	1.42 E - 4	1.401	1085
40	2.469 E − 3	7.942 E - 2	3.60 E − 7	1.46 E - 4	1.401	1096
50	2.420 E - 3	7.786 E - 2	3.68 E − 7	1.52 E - 4	1.401	1106
60	2.373 E - 3	7.636 E - 2	3.75 E − 7	1.58 E - 4	1.401	1117
70	2.329 E - 3	7.492 B - 2	3.82 E - 7	1.64 E − 4	1,401	1128
80	2.286 E - 3	7.353 $E-2$	3.86 E − 7	1.69 E - 4	1.400	1138
90	2.244 E - 3	7.219 E - 2	3.90 E − 7	1.74 $E - 4$	1.400	.1149
100	2.204 E - 3	7.090 E - 2	3.94 E − 7	1.79 E − 4	1.400	1159
120	2.128 E - 3	6.846 E - 2	4.02 E − 7	1.89 E - 4	1.400	1180
140	2.057 E - 3	6.617 E − 2	4.13 E - 7	2.01 E - 4	1.399	1200
160	1.990 E - 3	6.404 E - 2	4.22 E − 7	2.12 $E - 4$	1.399	1220
180	1.928 E − 3	6.204 E - 2	4.34 E - 7	2.25 E - 4	1.399	1239
200	1.870 E - 3	6.016 E − 2	4.49 E - 7	2.40 E - 4	1.398	1258
300	1.624 E $-$ 3	5.224 E - 2	4.97 E - 7	3.06 E – 4	1.394	1348
400	1.435 $E - 3$	4.616 E − 2	5.24 E - 7	3.65 E - 4	1.389	1431
500	1.285 E − 3	4.135 E - 2	5.80 E - 7	4.51 E - 4	1.383	1509
750	1.020 E − 3	3.280 E - 2	6.81 E - 7	6.68 E - 4	1.367	1685
1000	8.445 E − 4	2. 7 17 E - 2	7.85 E - 7	9.30 E — 4	1 .351	1839
1500	6.291 E - 4	2.024 E - 2	9.50 E − 7	1.51 E - 3	1.329	2114

^aBased on data from R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.

Phy

Ter

^aBas ^bDer

^bDensity and specific weight are related through the equation $\gamma = \rho g$. For this table g = 32.174 ft/s².

Home / Resource Center / Contractor Resources / PVC Pipe & Fittings Dimensions (Sch 40 / Sch 80)

PVC Pipe & Fittings Dimensions (Sch 40 / Sch 80)

This entry was posted on May 20, 2018 by admin.

Looking for PVC dimensions? Check out this post for PVC pipe and fittings information for both schedule 40 and schedule 80 PVC. Click through to the Lasco Tech Docs for detailed fittings dimensions and see our PVC pipe sizing chart below for pipe OD, IS, wall thickness and more.

PVC Fittings Dimensions:

Lasco Technical Fittings Dimensions Information - Sch 40, Sch 80, 80 CPVC

PVC Pipe Dimensions:

Sch 40 PVC Pipe Dimensions

Schedul	le 40 PVC	Pipe Dim	ensions

Nom. Pipe Size (in)	O.D.	Average I.D.	Min. Wall	Nominal Wt./Ft.	Maximum W.P. PSI*
1/8	0.405	0.249	0.068	0.051	810
1/4	0.540	0.344	0.088	0.086	780
3/8	0.675	0.473	0.091	0.115	620
1/2	0.840	0.602	0.109	0.170	600
3/4	1.050	0.804	0.113	0.226	480
1	1.315	1.029	0.133	0.333	450
1-1/4	1.660	1.360	0.140	0.450	370
1-1/2	1.900	1.590	0.145	0.537	330
2	2.375	2.047	0.154	0.720	280
2-1/2	2.875	2.445	0.203	1.136	300
3	3.500	3.042	0.216	1.488	260
3-1/2	4.000	3.521	0.226	1.789	240
4	4.500	3.998	0.237	2.118	220
5	5.563	5.016	0.258	2.874	190
6	6.625	6.031	0.280	3.733	180
8	8.625	7.942	0.322	5.619	160
10	10.750	9.976	0.365	7.966	140
12	12.750	11.889	0.406	10.534	130
14	14.000	13.073	0.437	12.462	130
16	16.000	14.940	0.500	16.286	130
18	18.000	16.809	0.562	20.587	130
20	20.000	18.743	0.593	24.183	120
24	24.000	22.544	0.687	33.652	120

Sch 80 PVC Pipe Dimensions

Schadula 80 DVC Dina Dimancions

Welcome to the Commercia Industrial Supply Blog

Learn industrial tricks, tip techniques and more incl product reviews, project p technical specifics and of useful information.

Do you need to purchase industrial products? Cont CIS today for competitive pricing on a wide range c stock products.

OR Call us at:

866-777-

Categories

Contractor Resources

DIY Projects

Electrical

FAQs

6/24/2019, 1:18 PM

1 of 3

Fifth Edition Fundamentals of Fluid Mechanics

BRUCE R. MUNSON DONALD F. YOUNG

Department of Aerospace Engineering and Engineering Mechanics

THEODORE H. OKIISHI

Department of Mechanical Engineering Iowa State University Ames, Iowa, USA

conventional globe valve) are designed for general use, providing convenient control between the extremes of fully closed and fully open. Others (such as a needle valve) are designed to provide very fine control of the flowrate. The check valve provides a diode type operation that allows fluid to flow in one direction only.

Loss coefficients for typical valves are given in Table 8.2. As with many system components, the head loss in valves is mainly a result of the dissipation of kinetic energy of a high-speed portion of the flow. This is illustrated in Fig. 8.33.

■ TABLE 8.2 Loss Coefficients for Pipe Components $\left(h_L = K_L \frac{V^2}{2g}\right)$ (Data from Refs. 5, 10, 27)

Component	K_L	
a. Elbows		
Regular 90°, flanged	0.3	V ->
Regular 90°, threaded	1.5	7 7
Long radius 90°, flanged	0.2	111
Long radius 90°, threaded	0.7	Υ.
Long radius 45°, flanged	0.2	
Regular 45°, threaded	0.4	
b. 180° return bends		v
180° return bend, flanged	0.2	
180° return bend, threaded	1.5	←)
c. Tees		J
Line flow, flanged	0.2	
Line flow, threaded	0.9	$V \rightarrow \longrightarrow$
Branch flow, flanged	1.0	1
Branch flow, threaded	2.0	
		$v \rightarrow J$
d. Union, threaded	0.08	
*e. Valves		v -> ->
Globe, fully open	10	
Angle, fully open	2	
Gate, fully open	0.15	
Gate, $\frac{1}{4}$ closed	0.26	
Gate, ½ closed	2.1	
Gate, $\frac{3}{4}$ closed	17	
Swing check, forward flow	2	
Swing check, backward flow	00	
Ball valve, fully open	0.05	
Ball valve, $\frac{\Gamma}{3}$ closed	5.5	
Ball valve, $\frac{2}{3}$ closed	210	

[&]quot;See Fig. 8.32 for typical valve geometry.

Water Resources Engineering

Ralph A. Wurbs

Department of Civil Engineering Texas A&M University College Station, Texas

Wesley P. James

H2WR, Inc. College Station, Texas

Prentice Hall Upper Saddle River, NJ 07458

$$300.0 - 250.0 = \frac{0.017 \times 4500}{10/12} \frac{V^2}{2g} = 91.8 \frac{V^2}{2g}$$

$$\frac{V^2}{2g} = 0.545 \text{ ft}$$

$$V = (2g \times 0.545)^{1/2} = 5.90 \text{ fps}$$

$$R_e = \frac{DV}{\nu} = \frac{0.833 \times 5.9}{10^{-5}} = 4.9 \times 10^5$$

From the Moody diagram f = 0.018

$$H_L = 97.2 \frac{V^2}{2g}$$

 $\frac{V^2}{2g} = 0.514 \text{ ft}$
 $V = 5.75 \text{ fps}$
 $R_e = 4.8 \times 10^5$
 $Q = AV = 0.545 \times 5.75 = 3.14 \text{ cfs}$

4.1.3.2 Minor losses. Minor losses are caused by additional turbulence generated by a change in flow geometry. They represent the headloss that is in excess of the normal pipe friction at transitions, bends, valves, and other fittings. The coefficient (K) is used to give the minor headloss (H_M) as a function of the velocity head

$$H_M = K \frac{V^2}{2g} \tag{4.11}$$

At transitions V is the velocity in the smaller pipe. Minor loss coefficients are listed in Table 4.2.

TABLE 4.2 MINOR LOSS COEFFICIENTS (K)

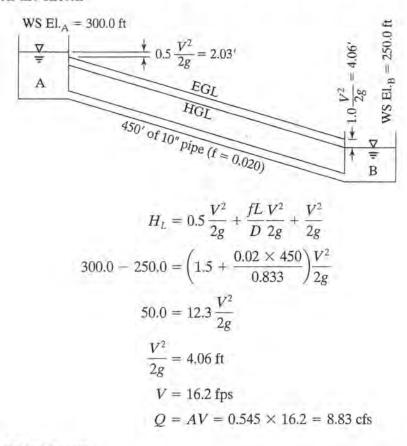

Transitions Diameter ratio	Expansion	Contraction
0	1.0	0.5
0.2	0.92	0.45
0.4	0.70	0.38
0.6	0.40	0.29
0.8	0.12	0.12
1.0	0.0	0.0
Entrance		
Pipe projection	0.8	
Square edge	0.5	
Rounded	0.1	
Exit	1.0	

TABLE 4.2 (Co	intinued)
---------------	-----------

Bends		
Radius/diameter	90°	45°
1	0,5	0.37
2	0.3	0.22
4	0.25	0.19
6	0.15	0.11
Valves		
Globe (open)	10	
Swing check	2.0	
Gates (open)	0.2	
Gate (1/2 open)	5.6	
Butterfly (open)	1.2	
Ball (open)	0.05	

Example 4.3 Short Pipe Problem

The two reservoirs are connected with 450 ft of 10-in. diameter pipe (f = 0.020). The entrance loss coefficient is 0.5 at the upper reservoir, and the exit loss coefficient is 1.0 at the lower reservoir. Determine the discharge rate in the pipe. Draw the EGL and HGL on the sketch

Example 4.4 Minor Losses

A pipeline consisting of three pipes in series (f = 0.02) extends from an upper reservoir (Elevation 200.0 m) to a lower reservoir (Elevation 180.0 m). Compute the discharge rate in the pipeline using minor loss coefficients of 0.5 for entrance, 0.15 for contraction

BROWN ENVIRONMENTAL, INC.

6739 ACADEMY ROAD, NE, SUITE 254 ALBUQUERQUE, NEW MEXICO 87109 PHONE: (505) 858-1818 FAX: (505) 858-0707

MINIMUM SITE ASSESSMENT AND FEASIBILITY TESTING REPORT

ALLSUPS #320 FACILITY CLOVIS, NEW MEXICO

Submitted To:

Ms. Renee Romero NMED-PSTB 1914 West 2nd Street Roswell, New Mexico 88201 Mr. Jeff Scarbrough Allsups Petroleum, Inc 2112 Thornton Ave. Clovis, New Mexico 88102

December 2012

Minimum Site Assessment and Feasibility Testing Report

Allsups #320 Facility Clovis, New Mexico

BEI Job No. 1070 WPID #s16460/16553 DID#16460-2, 16553-1 and 16553-2 Facility #31013 RID #4623

Submitted to:

Mr. Jeff Scarbrough Allsups Petroleum, Inc. 2112 Thornton Ave Clovis, New Mexico 88102 ROSWELL HER OFFICE ROSWELL HER MEYICO

Ms. Renee Romero NMED-PSTB 1914 West 2nd Street Roswell, New Mexico 88201

5.0 SVE FEASIBILITY STUDY

5.1 OVERVIEW

The primary goal of the SVE feasibility study at the Site was two-fold:

- Characterize hydrocarbon vapor concentrations and composition within the vadose zone
- □ Evaluate SVE technology as a potential remedial alternative

On behalf of Allsups, BEI conducted nine short-term SVE FS tests at the Site between October 15 and 18, 2012. During the FS, each of the nested wells (BW-1s, BW-1i, BW-1d, BW-2s, BW-2i, BW-3s, BW-3i, and BW-3d) was tested for periods ranging from 1.13 to 17.0 hours in length. Summaries of major SVE testing parameters for wells in the shallow, intermediate, and deep vadose zones are presented in Figures 6a, 6b, and 6c, respectively. BEI has also included detailed FS field test sheets and analyses of each SVE test in Appendix D.

In an effort to evaluate the effects of lithologic heterogeneity across the soil hydrocarbon plume, the existing vadose zone monitoring well clusters were used to measure vacuum responses in a three dimensional nature during the FS testing. Applied vacuums during the SVE tests ranged between approximately 27 and 57 inches of water ("H₂O). Associated subsurface airflows generated during the testing events ranged between approximately 85 and 99 standard cubic feet/minute (scfm). Table 4 summarizes laboratory analytical data for vapor samples collected during the FS. Laboratory reports including chain-of-custody documentation are presented in Appendix C.

In summary, effective subsurface airflow was generated during the testing of all nine wells. Elevated PID/FID measurements were obtained throughout the testing, especially in wells screened in the intermediate and deep vadose zone. Extracted vapor samples collected for laboratory analysis yielded TPH levels up to 56,000 micrograms/liter (ug/l). Total BTEX concentrations were measured at concentrations up to 3,970 ug/l. Elevated levels of carbon dioxide and depleted levels of oxygen were documented on select samples. Vapor discharge levels remained below air quality emission levels throughout the testing period. No groundwater or LNAPLs were recovered during the testing of the above wells. All four GAC vessels were utilized at the Site to control off-gas emissions.

Based on a review of the FS test data, which is presented below, SVE should be an effective remediation strategy for removal of subsurface TPH and BTEX at the Site.

The roughness component in the Darcy-Weisbach equation is a function of both the channel material and the Reynolds number, which varies with velocity and hydraulic radius.

$$V = \sqrt{\frac{8g}{f}RS}$$

where

7 = flow velocity (m/s, ft/s)

g = gravitational acceleration (m/s², ft/s²) = Darcy-Weisbach friction factor (unitless)

R = hydraulic radius (m, ft)S = friction slope (m/m, ft/ft)

The Darcy-Weisbach friction factor, f, can be found using the Colebrook-White equation for fully developed turbulent flow, as follows:

Free Surface

Full Flow (Closed Conduit)

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{k}{12R} + \frac{2.51}{Re\sqrt{f}}\right)$$

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{k}{14.8R} + \frac{2.51}{Re\sqrt{f}}\right)$$

where

k = roughness height (m, ft)

R = hydraulic radius (m, ft)

Re = Reynolds number (unitless)

This iterative search for the correct value of f can become quite time-consuming for hand computations and computerized solutions of many pipes. Another method, developed by Swamee and Jain, solves directly for f in full-flowing circular pipes. This equation is:

$$f = \frac{1.325}{\left[\log_e\left(\frac{k}{3.7D} + \frac{5.74}{Re^{0.9}}\right)\right]^2}$$

where

= friction factor (unitless)

k = roughness height (m, ft)

D = pipe diameter (m, ft)

Re = Reynolds number (unitless)

Typical Roughness Factors

Typical pipe roughness values for each of these methods are shown in Table 1-2. These values will vary depending on the manufacturer, workmanship, age, and other factors. For this reason, the following table should be used only as a guideline.

Table 1-2

Asbesto Brass Brick Cast-iro Concret Stee

> Woc Cent Copper Corruga Galvam Glass Lead

Plastic Steel: Coa New

Rive Wood s

1.5

For pipe because radius (c common

There is includin

Table 1-.

Dar

Has

WATER RESOURCES ENGINEERING

Ralph A. Wurbs • Wesley P. James

Library of Congress Cataloging-in-Publication Data

Wurbs, Ralph Allen,

Water resources engineering / Ralph A. Wurbs, Wesley P. James.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-081293-5

1. Hydraulic engineering. 2. Water resources development. 3. Hydrology. 4.

Water-supply--Management. I. James, Wesley P. II. Title.

TC145 W87 2001

627-dc21

2001054873

Vice President and Editorial Director, ECS: Marcia J. Horton

Acquisitions Editor: Laura Fischer

Editorial Assistant: Erin Katchmar

Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi

Executive Managing Editor: Vince O'Brien

Managing Editor: David A. George

Production Editor: Wendy Druck

Composition: Techbooks

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson

Art Director: Jayne Conte

Art Editor: Greg Dulles

Cover Designer: Bruce Kenselaar

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lynda Castillo

Marketing Manager: Holly Stark

© 2002 by Prentice Hall Prentice-Hall, Inc. Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3

ISBN 0-13-081293-5

PEARSON EDUCATION LTD., LONDON

PEARSON EDUCATION AUSTRALIA PTY. LTD., SYDNEY

Pearson Education Singapore, Pte. Ltd.

PEARSON EDUCATION NORTH ASIA LTD., HONG KONG

PEARSON EDUCATION CANADA, INC., TORONTO

Pearson Educacion de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

PEARSON EDUCATION MALAYSIA, PTE. LTD.

Pearson Education, Upper Saddle River, New Jersey

Co

CHAPT

CHAPTE

Replacing the dependent variable with the nonrepeating independent variable μ gives

$$\pi_{2} = \mu V^{a} D^{b} \rho^{c}$$

$$F^{0} L^{0} T^{0} = F L^{-2} T (L T^{-1})^{a} (L)^{b} (F L^{-4} T^{2})^{c}$$

$$F: \quad 0 = 1 + c \quad c = -1$$

$$T: \quad 0 = 1 - a - 2 \quad a = -1$$

$$L: \quad 0 = -2 - 1 + b + 4 \quad b = -1$$

$$\pi_{2} = \frac{\mu}{V D \rho} = \frac{1}{Re}$$
(3.24)

where Re is the Reynolds number. Selecting ℓ as the next nonrepeating variable gives

$$\pi_{3} = \ell V^{a} D^{b} \rho^{c}$$

$$F^{0} L^{0} T^{0} = L(L T^{-1})^{a} L^{b} (F L^{-4} T^{2})^{c}$$

$$F: \quad 0 = c \quad c = 0$$

$$T: \quad 0 = -a \quad a = 0$$

$$L: \quad 0 = 1 + b \quad b = -1$$

$$\pi_{3} = \frac{L}{D} \qquad (3.25)$$

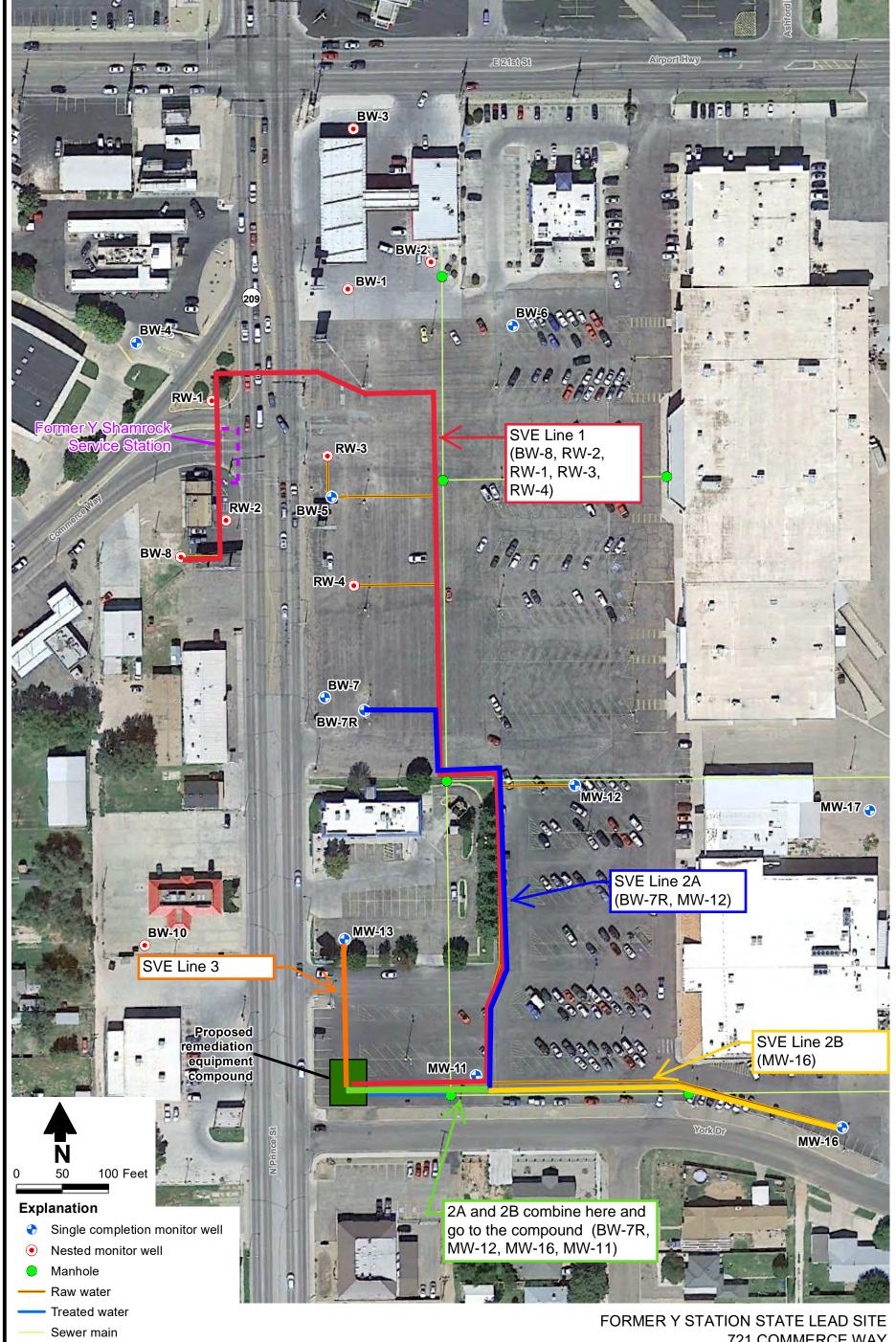
The remaining nonrepeating variable is ε , so that

$$\pi_4 = \varepsilon V^a D^b \rho^c$$

solving for exponents gives

$$\pi_4 = \frac{\varepsilon}{D} \tag{3.26}$$

where π_4 is the relative roughness of the pipe.


The equation for the pressure drop in a pipe (Eq. 3.22) can be written in terms of

$$\frac{\Delta P}{\rho V^2} = \phi \left(\frac{1}{\text{Re}}, \frac{L}{D}, \frac{\varepsilon}{D} \right) \tag{3.27}$$

Equation 3.27 forms the basis for the Darcy-Weisbach equation for headloss ($h_i = \Delta P_i = 0$) in a pipe

$$h_{L} = f \frac{\underline{M} V^{2}}{\overline{D} \cdot 2\overline{g}} \tag{3.28}$$

where the friction factor (f) is a function of Re and ε/D and is given in the Moody chart presented in Chapter 4.

Daniel B. Stephens & Associates, Inc.
5/13/2021

JN DB17.1228.PR

FORMER Y STATION STATE LEAD SITE
721 COMMERCE WAY
CLOVIS, NEW MEXICO
Proposed Remediation System Layout

Project Number DB18.1157

Daniel B. Stephens & Associates, Inc.

Project Name Former Y Station

Calculation	Numb	er <u>DB18.1157-</u>	002 [Discipline <u>E</u>	ingineering	No	o. of Sheets	3
PROJEC	T: Forr	ner Y Station						
							The second second	
SITE: Fo	rmer Y	Station State Lea	d Site, Clovis, N	ew Mexico		(2)	OMAS A GOLZ OMEXIC 22750	E E
SUBJECT: Determine total dynamic head (TDH) from the treatment compound to the distribution lines and size the pumps								16/21
SOURCE	S OF D	DATA:						
	A.	Groundwater Mo DBS&A, Septem		for Evaluation	of the Propose	d Remediation	n Plan in Clovis	, New Mexico.
	В.	Figure 10 - Prop		on System La	yout			
		Survey Reports,		-	-	Clovis, NM, 2	2019, 2020.	
		Fourth Quarter C			•			
		Grundfos Pump		ζ .	,		•	
SOURCE	S OF F	ORMULAE & REI	FERENCES:					
	1.	Hydraulic Engine	eering. Robersor	n, Cassidy, an	d Chaudhry, 19	98		
	2.	FlowMaster by B	Bentley					
	3.	Pumping Station	Design, Second	d Edition. San	ks, 1998			
	4.	Groundwater and	d Wells 2nd Edit	ion, Driscoll, ²	1987.			
Prelimir	nary Ca	Iculation	⊠ Fin	al Calculation	ı S	supersedes Ca	alculation No	
Rev. No.		Revision	Calculation By	Date	Checked By	Date	Approved By	Date
0	Final I	Remediation Plan	GMH	6/7/2020	GH	7/1/2021	TG	7/9/2021
			-		-			
								

Project I	No. <u>DE</u>	18.1157	Date _	06/0	7/202	1
Subject	<u>Determin</u>	ne pressure losses and size blowers for SVE remediation system	Sheet	1_	_ of _	3
Bv	GMH	Checked by	Calcula	ation N	No.	DB18.1157-002

1.0 OBJECTIVE

Determine the Total Dynamic Head (TDH) at each groundwater extraction well to appropriately size the pumps at each well.

2.0 GIVEN

The well pump rates were determined based on the maximum pumping scenario assessed in the modeling report for the site^A. The number and length of distribution pipes were determined from the Proposed Remediation System Layout^B.

3.0 METHOD

The TDH is the sum of the static head, friction head, minor losses, and the velocity head and is given by the equation¹ (all terms in feet):

$$TDH = h_{stat} + h_f + h_m + h_v + h_{lp}$$

where: $h_{stat} = static head$

 h_f = friction head h_m = minor losses h_v = velocity head

h_{lp} = minimum line pressure

The static head is assumed to be equal to the elevation difference between the groundwater table at each well and the surface elevation at the groundwater treatment compound. All ground surface elevations have been approximated using the data from the survey reports^C. The friction head from friction losses in the pipes and fittings is calculated using FlowMaster² (Bentley) and the Hazen-Williams equation. Material roughness coefficients are taken from definitions in the FlowMaster software. The minor losses are from elbows, valves, and fittings. The energy loss coefficients for the minor losses are taken from literature³. The velocity head is calculated as $h_v = V^2/2g$, and will be taken from FlowMaster².

TDH will be calculated for each pump. TDH and discharge (Q) will be used to size the required pumps, assuming pump and motor efficiencies. The water horsepower is calculated by the equation:⁴

$$WHP = Q * TDH / 3960$$

Eqn. 2

Q = gpm

TDH = feet

Project I	No. <u>De</u>	18.1157	Date	06/0	7/202	21	
Subject	<u>Determi</u>	ne pressure losses and size blowers for SVE remediation system	Sheet	2	_ of	3	
Ву	GMH	Checked by	Calcul	ation I	No	DB18.11	57-002

The brake horsepower that must be applied to the shaft by the motor assumes a pump efficiency (E_p) : ⁴

 $HP_b = WHP / E_p$ Eqn. 3

The motor horsepower that must be used to operate the shaft assumes a motor efficiency (E_m): 4

 $HP_m = HP_b / E_m$ Eqn. 4

4.0 SOLUTION

Example calculations are provided below for the pipe section MW-11 to the compound. Calculations for all extraction wells are provided in the attached spreadsheet. The following equations in this example use the solutions as given in the spreadsheet and may differ slightly due to differences in rounding and significant digits shown. Friction losses for each reach of the flow path were found using FlowMaster (Bentley) to determine friction head and velocity head for anticipated pipe materials, pipe diameters, and the volumetric flow rate². The assumed pipeline segment lengths and diameters are shown on the Proposed System Layout^B. The Hazen-Williams roughness coefficients used by Bentley Flowmaster are approximated as follows; PVC pipes = 150². Table 1 summarizes these results:

Table 1. FlowMaster results for friction losses (h_f) and velocity head (h_v):

Pipe Section	Nominal Pipe Pipe Dia. Pipe Material (in) Length (ft)		Flow Rate (gpm)	h _f (ft)	h _v (ft)	
MW-11 to Compound	PVC	1.5	155	20	5.39	0.20

The pumping drawdown over a 5 to 7 year period was based on the maximum pumping scenario from the modeling report^A. Depth to water for MW-11 is provided in the monitoring report^D. The drop pipe friction head is calculated using FlowMaster².

h_{stat} = 327 ft depth to water + 25 ft pumping drawdown + 4.48 ft drop pipe head loss = 356.5 ft

Based on professional judgment, assume the wellhead minor losses (pitless adaptor, valves, fittings, etc.) and assume that the velocity head is small enough to include in this assumption.

$$\Sigma h_m = 40 \text{ ft}$$

A minimum line pressure is assumed based on preliminary system requirements.

$$h_{10} = 25 \text{ ft}$$

Project I	No	DB18.1157	Date _	06/07	7/202	1
Subject	Deter	mine pressure losses and size blowers for SVE remediation system	Sheet	3	of _	3
Ву	GMH	Checked by	Calcula	ation N	lo	DB18.1157-002

Use data shown above to calculate the TDH at the pump:

TDH =
$$h_{stat} + \Sigma h_f + \Sigma h_m + h_{lp} = 356.5 \text{ ft} + 5.39 \text{ ft} + 40 \text{ ft} + 25 \text{ ft} = 426.9 \text{ feet}$$
 Eqn. 1

Calculate the water horsepower using the calculated TDH:

Calculate the brake horsepower, assuming a motor efficiency of 80%:

$$HP_b = WHP / 0.80 = 0.43 / 0.80 = 0.54 HP$$
 Eqn. 3

Calculate the motor horsepower, assuming a motor efficiency of 80%:

$$HP_m = HP_b / 0.80 = 0.54 / 0.80 =$$
0.68 HP Eqn. 4

FS = 1.2

HP = 1.2*.68 = 0.81

Therefore, to provide a nominal factor of safety of 20% and sizing up to the next available pump, a 1.0 HP pump is appropriate.

Based on the Grundfos Pump Curve^E, the SP 5S10-22 pump will be used for MW-11.

Total Dynamic Head (TDH) and Pump Power

Extraction well	RW-2	RW-1	RW-3	RW-4	BW-7R	MW-12	MW-16	MW-11
Flow rate (gpm)	2	2	2	2	2	2	4	4
Flow rate (ft ³ /s)	0.004	0.004	0.004	0.004	0.004	0.004	0.009	0.009
Surface elevation (ft msl)	4,280	4,280	4,279	4,279	4,278	4,278	4,277	4,275
Depth to water (ft btoc)	330	330	329	330	329	330	330	327
Pumping elevation (ft msl)	3,925	3,925	3,925	3,924	3,924	3,923	3,922	3,923
Static head (ft)	356.3	356.3	355.3	356.3	355.3	356.3	359.5	356
TDH (ft)	434.5	434.4	432.7	433.4	431.5	431.0	430.6	426.9
Water horsepower (HP)	0.22	0.22	0.22	0.22	0.22	0.22	0.43	0.43
Brake horsepower (HP)	0.27	0.27	0.27	0.27	0.27	0.27	0.54	0.54
Motor horsepower (HP)	0.41	0.41	0.41	0.41	0.41	0.41	0.81	0.81
Selected horsepower (HP)	0.75	0.75	0.75	0.75	0.75	0.75	1.00	1.00
Well head pressure (psi)	34	34	34	33	33	32	31	31

5SQE-320 5SQE-320 5SQE-320 SP 5S10-22 SP 5S10-22 SP 5S10-22 SP 5S10-22

Conversion factors:

32.17 ft/s², acceleration due to gravity

7.48 gallons in a cubic foot

60 seconds in a minute

62.3 specific weight of water (lb/ft³)

80% pump and motor efficiency

33.91 ft water per atm

14.7 psi per atm

<u>Assumptions</u>

4,275 ft, elevation at ground water treatment compound

25 ft, pumping drawdown (5 to 7 years)

40 ft, wellhead minor losses (pitless, valve, fittings)

25 ft, minimum line pressure

1.2 factor of safety

1.25 ft, drop pipe friction headloss, 2 gpm

4.48 ft, drop pipe friction headloss, 4 gpm

Project Nar	ne Former Y Station		Project Nu	umber <u>DB</u>	r <u>DB18.1157</u>				
Calculation Number <u>DB18.1157-003</u> Discipline <u>Engineering</u> No. of Sheets <u>3</u>									
PROJECT:	Former Y Station					A. GO/A			
SITE: Former Y Station State Lead Site, Clovis, New Mexico									
SUBJECT:	SUBJECT: Estimated hydrocarbon emissions from SVE treatment equipment								
SOURCES	SOURCES OF DATA: A. Minimum Site Assessment and Feasibility Testing Report: Allsups #320 Facility, Brown Environmental, Inc. (BEI), 2012. B. Extended Off-Site Investigation and Groundwater Sampling Report. BEI, 2016 C. Model 1000 CFM Thermal Oxidizer specifications, Intellishare Environmental, June 2021. D. Table 1. Proposed Remediation Wells								
SOURCES OF FORMULAE & REFERENCES: 1. Figure 10. Proposed Remediation System Layout									
X Prelimin	ary Calculation	☐ Fin	al Calculation	n S	upersedes Ca	alculation No			
Rev. No.	Revision	Calculation By	Date	Checked By	Date	Approved By	Date		
0	Final Remediation Plan	GMH	08/06/2021	JS	08/09/2021	TG	08/10/2021		

Project No	DB18.1157	Date 8/6/2021		
Subject	Emissions calculation	Sheet <u>1</u> of <u>4</u>		
By <u>GMH</u>	Checked by JS	Calculation No. <u>DB18.1157-003</u>		

1.0 OBJECTIVE

Calculate the estimated hydrocarbon emission rates for a future dual phase extraction system, including a natural gas thermal oxidizer. The results will be compared to the limits of 10 pounds per hour and 10 tons per year, under which the New Mexico Environment Department (NMED) Air Quality Bureau does not require an air quality permit or a Notice of Intent to Discharge.

2.0 GIVEN

- 1. Laboratory results for influent soil vapor samples from the soil vapor extraction (SVE) pilot test data^A and the Extended Off-site investigation data^B.
- 2. The estimated destruction efficiency for the multi-phase treatment equipment is greater than 99%^C, with similar systems proven to have a destruction efficiency of at least 99.5%.
- 3. The combined standard inlet design flow is 1,017 standard cubic feet per minute (scfm) ^D when including the MW-13 contingency well.

3.0 METHOD

Influent vapor concentrations are not available at this site as pilot testing was not performed on the proposed remediation wells. Instead, vapor concentrations have been assigned to each well and screen interval based on vapor concentration data collected by a previous consultant during a feasibility study and extended off-site investigation for other nearby wells $^{\rm B}$. Proximity to those wells and the estimated nonaqueous-phase liquid (NAPL) plume were taken into consideration. For example, the benzene concentration for the deep zone of remediation well RW-1 is estimated to be 1,000 micrograms per liter (µg/L) based on comparison of data for BW-4 and BW-5 (240 and 2,400 µg/L, respectively). Similarly, the total petroleum hydrocarbon gasoline range organics (TPH GRO) concentration for RW-1d is assumed to be 75,000 µg/L.

The combined benzene and TPH GRO concentrations for each nested source area well (RW-1 through RW-4 and BW-8), C_{well}, were calculated based on a weighted average of the assumed concentration, C, for each individual well screen interval (shallow, intermediate, and deep) and the expected air flow rate, Q, in that screen interval using equation 1.

$$C_{\text{well}} = \left[\left(C_{\text{shallow}} * Q_{\text{shallow}} \right) + \left(C_{\text{int}} * Q_{\text{int}} \right) + \left(C_{\text{deep}} * Q_{\text{deep}} \right) \right] / \left[Q_{\text{shallow}} + Q_{\text{int}} + Q_{\text{deep}} \right]$$
eqn. 1

The estimated total combined influent concentrations from the 10 proposed remediation wells (including contingency well MW-13) was calculated in a similar fashion using a weighted average of the concentrations and estimated flows from each well ^D.

Project No.	DB18.1157	Date 8/6/2021			
Subject	Emissions calculation	Sheet 2 of 4			
By <u>GMH</u>	Checked by JS	Calculation No. <u>DB18.1157-003</u>			

Estimated effluent concentrations were calculated using a range of assumed thermal oxidizer destruction efficiencies, DE, provided by the manufacturer using equation 2.

$$C_{eff} = C_{inf} \cdot (1 - DE)$$
 eqn. 2

Where

C_{eff} = effluent concentration C_{inf} = influent concentration

DE = destruction efficiency of the thermal oxidizer

The effluent concentration is converted to a volume of air under standard conditions using equation 3.

$$C_{std} = C_{eff} \cdot \left(\frac{P_{std}}{P_{lab}} \cdot \frac{T_{lab}}{T_{std}} \right)$$
 eqn. 3

Where

C_{std} = effluent concentration under standard temperature and pressure

 C_{eff} = effluent concentration P_{std} = standard pressure T_{std} = standard temperature P_{lab} = laboratory pressure T_{lab} = laboratory temperature

4.0 SOLUTION

Laboratory results for samples collected during previous site investigation activities are provided on attached spreadsheets. These samples were collected from wells BW-1, BW-4, BW-5, BW-7, BW-8, and BW-9. DBS&A used this data to approximate influent concentrations for the 10 proposed remediation wells (RW-1 through RW-4, BW-7R, BW-8, MW-11, MW-12, MW-13, and MW-16). Weighted averages were used to calculation individual well concentrations and then the combined system influent concentration. A sample calculation for the TPH GRO concentration at RW-1 is provided below using equation 1. Calculations for all wells are attached.

$$C_{\text{RW-1}} = \left[(60 \text{ scfm} * 2,000 \text{ } \mu\text{g/l}) + (40 * 40,000) + (65 * 75,000) \right] / (60 \text{ scfm} + 40 \text{ scfm} + 65 \text{ scfm})$$

$$C_{RW-1} = 39,970 \, \mu g/l$$

Using a similar methodology, the combined influent benzene concentration is assumed to be approximately 590 μ g/l and the combined influent TPH GRO concentration is just over 50,000 μ g/l.

Proj	Project No. <u>DB18.1157</u>		Date 8/6/2021			
Sub	ject	Emissions calculation		Sheet 3 of	4	
Ву	GMH	Checked by	JS	Calculation No.	DB18.1157-003	

A sample calculation for estimating emission rates of TPH GRO is provided below. Assuming that effluent concentrations, C_{eff} , would be reduced by 99.5 percent following vapor treatment (the minimum destruction efficiency reported by the oxidizer manufacturer). Calculate an approximate treated TPH (GRO) concentration using equation 2:

$$C_{eff} = C_{inf} * (1 - 0.995) = 50,044 \,\mu \frac{g}{L} * 0.005 = 250 \,\mu g/L$$

Calculate the TPH (GRO) concentration under standard conditions for the raw influent, $C_{inf(std)}$, and treated vapor effluent, $C_{eff(std)}$, using equation 3 and assuming the absolute pressure and temperature at the laboratory (5,200 feet above mean sea level) are 12.4 pounds per square inch (psi) and 70 degrees Fahrenheit (°F), respectively, using the TPH (GRO) effluent concentration calculated above:

Raw Influent:

$$C_{\inf(std)} = C_{inf} \times \left(\frac{P_{std}}{P_{lab}} \times \frac{T_{lab}}{T_{std}}\right) = 50,044 \text{ µg/L} \times \left(\frac{14.7 \text{ psi}}{12.4 \text{ psi}} \times \frac{530 \text{ R}}{530 \text{ R}}\right) = 59,327 \text{ µg/L}$$

Treated Vapor Effluent:

$$C_{eff(std)} = C_{eff} \times \left(\frac{P_{std}}{P_{lab}} \times \frac{T_{lab}}{T_{std}}\right) = 250 \,\mu\text{g}/L \times \left(\frac{14.7 \,psi}{12.4 \,psi} \times \frac{530 \,R}{530 \,R}\right) = 297 \,\,\mu\text{g}/L$$

Calculate emissions rates with (treated) and without (raw) oxidizer vapor treatment in pounds per hour (lb/hr) and tons per year (ton/yr) assuming a discharge air flow rate, Q_{out} , of 1,017 scfm:

Emissions(raw) = $Q_{out} * C_{inf(std)} = 1,017 \text{ scfm} * 59,327 \mu g/L * (28.317 L/ft^3) * (60 min/hr) * (60 mi$

(pound/ 454 grams) * (gram /
$$10^6 \mu g$$
) = 226 lb/hr

Emissions(raw) = 226 lb/hr * 8760 hr/yr * ton/2000 lb = 989 ton/yr

Emissions(treated) = $Q_{out} * C_{eff(std)} = 1,017 \text{ scfm} * 297 \mu g/L * (28.317 L/ft^3) * (60 min/hr) * (60 m$

(pound/ 454 grams) * (gram /
$$10^6 \mu g$$
) = 1.1 lb/hr

Emissions(treated) = 1.1 lb/hr * 8760 hr/yr * ton/2000 lb = 4.9 ton/yr

Project No	DB18.1157	Date 8/6/2021		
Subject	Emissions calculation	Sheet <u>4</u> of <u>4</u>		
By <u>GMH</u>	Checked by JS	Calculation No. DB18.1157-003		

The above calculation assumes the system will be run continuously (24-hours per day). The hypothetical individual well concentrations also represent what would be taken in by the system during initial operations. Over time with consistent system operation, influent concentrations typically drop significantly.

The values above represent hypothetical emissions at startup; actual emissions will ultimately decrease over time as the system operates. If the process air stream is treated with an oxidizer, this calculation shows that treated soil vapor will be below the New Mexico Environment Department's air permitting standards of 10 lb/hr and 10 ton/yr, while the untreated raw vapor TPH (GRO) exceeds these values by almost two orders of magnitude. Hypothetical emissions for other monitored VOCs, including benzene, toluene, ethylbenzene, and total xylenes, are presented in the attached table and are below the regulatory limits with and without oxidizer treatment.

Hypothetical Emissions Analysis Based on SVE Pilot Test Analytical Organic Chemistry Data for Soil Vapor Former Y, Clovis, New Mexico

Estimated Influent Concentrations	Benzene	TPH (GRO)							
Average Raw Influent from SVE Pilot Test (μg/L)	590	50044							
Average Raw Influent from SVE Pilot Test at STP (μg/L)	699	59327							
Hypothetical Emissions									
Assumed Vapor Treatment Equipment Destruction Efficiency:	0.0%								
Raw Effluent (μg/L)	590	50044							
Raw Effluent at STP (μg/L)	699	59327							
Average Raw Effluent (lb/hr)	2.7	226							
Average Raw Effluent (ton/yr)	11.7	990							
Hypothetical Emissions	Hypothetical Emissions								
Assumed Vapor Treatment Equipment Destruction Efficiency:	99.0%								
Treated Effluent (μg/L)	5.9	500							
Treated Effluent at STP (μg/L)	7.0	593							
Average Treated Effluent (lb/hr)	0.03	2.3							
Average Treated Effluent (ton/yr)	0.12	9.9							
Hypothetical Emissions	Hypothetical Emissions								
Assumed Vapor Treatment Equipment Destruction Efficiency:	99.5%								
Treated Effluent (μg/L)	2.9	250							
Treated Effluent at STP (µg/L)	3.5	297							
Average Treated Effluent (lb/hr)	0.01	1.1							
Average Treated Effluent (ton/yr)	0.06	4.9							

TPH (GRO) = Total Petroleum Hydrocarbons gasoline range organics

Estimated Flow (SCFM)

1017

Estimated Flow (ACFM)

1206

Conversions

453.59 gram / lb

1000000 ug / gram 60 min / hr

28.3 liter / cubic foot

8760 hr/yr 2000 lb/ton

Flow Conversions

12.4 absolute air pressure at 5200 ft msl (Lab in Albuquerque)

14.7 absolute air pressure at 0 ft msl

70 °F, standard temperature

70 °F, assumed lab temperature

460 °R

Vapor Concentration Calculations:

Pilot Test	Benzene	TPH GRO				
Well	μg/l	μg/l				
BW-1s	2.4	1020				
BW-1i	480	27800				
BW-1d	790	40500				
BW-4d	240	23600				
BW-5d	2400	191000				
BW-7d	840	82500				
BW-8s	72	5100				
BW-8i	610	69500				
BW-8d	830	85000				
BW-9s	7.7	485				
BW-9i	7.4	591				
BW-9d	1.6	150				
Extended Investigation, 2016						
Pilot Test, 2012, higher values						

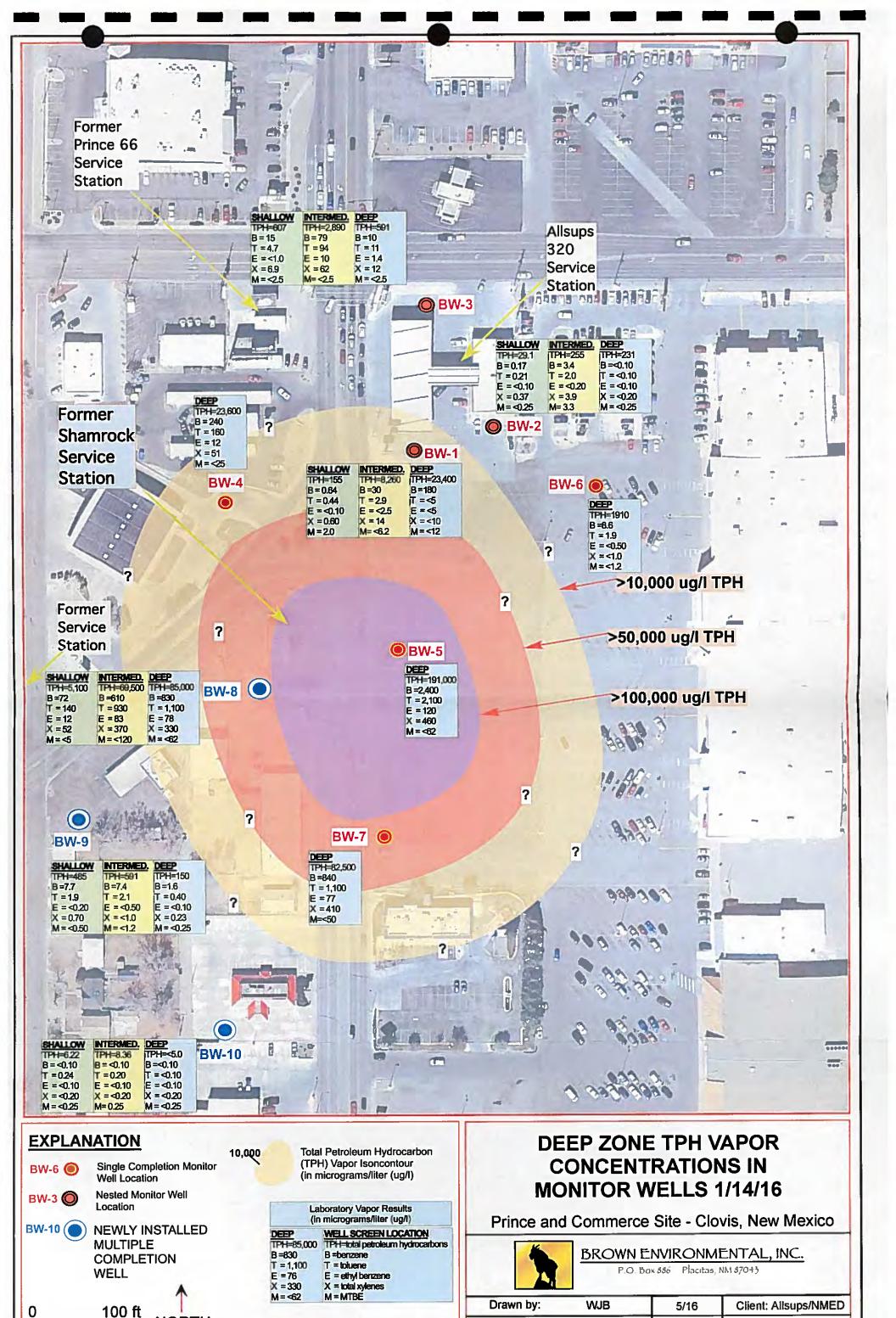
NOTE:

Site investgation vapor concentrations for the above wells are used to infer expected influent concentrations in the remediation wells. Assumptions are made based on well proximity and professional judgment.

	Well	Extracted		
Well	Diameter	Air Flow	Benzene	TPH GRO
	(inches)	(scfm)	μg/l	μg/l
Source Area	a Wells			
	2	60	25	2,000
RW-1	2	40	500	40,000
	4	65	1000	75,000
	2	60	75	5,000
RW-2	2	60	650	70,000
	4	40	1000	100,000
	2	60	60	4,000
RW-3	2	60	900	60,000
	4	40	2500	175,000
	2	60	50	3,000
RW-4	2	60	750	50,000
	4	39	2000	150,000
	2	60	70	5,000
BW-8	2	60	600	70,000
	4	42	800	85,000
Downgradi	ent Wells	T	T	T
BW-7R	5	42	850	85,000
MW-11	5	42	200	20,000
MW-12	5	44	400	50,000
MW-16	5	42	200	20,000
	flow	976		
Contingend	y Well			
MW-13	5	41	50	10,000

		Weighted Avg Concentration		
	Total Extracted Air Flow	Benzene	TPH GRO	
Well	(scfm)	μg/l	μg/l	
RW-1	165	524	39,970	
RW-2	160	522	53,125	
RW-3	160	985	67,750	
RW-4	159	792	56,792	
BW-8	162	456	49,815	
BW-7R	42	850	85,000	
MW-11	42	200	20,000	
MW-12	44	400	50,000	
MW-16	42	200	20,000	
MW-13	41	50	10,000	
total flow:	1017	590	50,044	

TABLE 4 SUMMARY OF SVE LABORATORY ANALYTICAL DATA ALLSUPS #320 FACILITY CLOVIS, NEW MEXICO


SAMPLE ID		BTEX/TPH							FIXED GASES		
PILOT TEST WELL (SAMPLE I.D.)	DATE	BENZENE ug/l	TOLUENE ug/l	ETHYL BENZENE ug/l	TOTAL XYLENES ug/l	BTEX (total) ug/l	TPH GRO C5-C14 ug/l	OXYGEN MOL%	NITROGEN MOL%	CARBON DIOXIDE MOL%	
BW-1s @18:00	10/15/12	2.4	2.8	9.3	6.6	21.1	1,020	5.41	85.89	8.70	
BW-1i @ 9:00	10/16/12	480	770	90.0	710	2,050	27,800	3.62	88.03	7.92	
BW-1i @ 13:30	10/16/12	1,000	1,500	170	1,300	3,970	56,000				
BW-1d @ 15:30	10/16/12	800	320	53.0	240	1,413	40,900	1.73	88.92	8.28	
BW-1d @ 22:40	10/16/12	790	400	54.0	230	1,474	40,500	3.22	88.28	7.63	
BW-2s @10:40	10/17/12	1.7	4.7	0.72	7.1	14.2	311		***		
BW-2i @ 13:30	10/17/12	22.0	33.0	4.1	45.0	104.1	1,270		<u> </u>	==	
BW-2d @ 15:25	10/17/12	140	26	<10	<10	166	10,700		***		
BW-2d @ 22:25	10/17/12	180	39	8.6	37	265	13,300	1.75	89.19	8.83	
BW-2d @ 7:25	10/18/12	190	43	8.9	37	279	14,000				
BW-3s @ 16:20	10/18/12	42	63	9.2	47	161.2	2,330				
BW-3i @ 14:00	10/18/12	230	570	84	440	1,324.0	15,900		***		
BW-3d @ 12:05	10/18/12	80	180	26.0	130	416.0	7,270				

1 1011 DEC 31 6 1: 53

ROSMELL, HEW MEXICO

SVE pilot test lab data

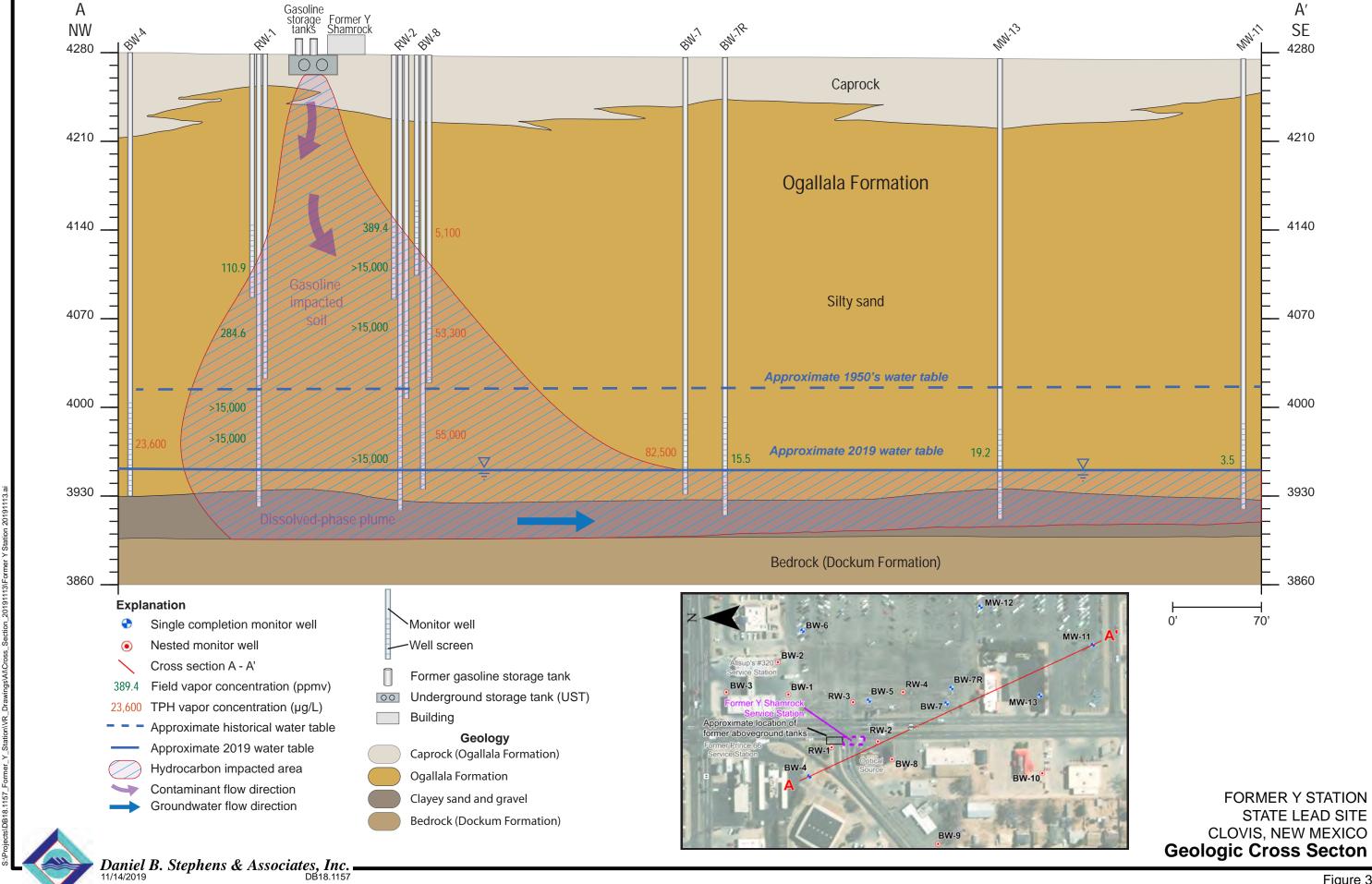
5/16

5/16

Drafted by:

Reviewed by:

EMB


WJB

Job #1070

FIGURE 5

NORTH

Scale

1422 Indianhead Drive E Menomonie, WI 54751 USA

Phone: 715-233-6115

Fax: 715-232-0669 E-Mail: jstrey@intellishare-env.com

Website: www.intellishare-env.com

Date: 6/10/21

ISE Proposal No: N-21-2318
Client Project ID: Clovis, NM

Proposal For: Tom Golden

DB Stephens

Phone: Fax:

E-Mail:

Proposed Solution: Model 1000 CFM Thermal Oxidizer

Intellishare Environmental specializes in the engineering and manufacturing of clean air solutions for the environmental remediation industry. We offer new, used, rental and lease programs to fit any budget or application.

Thank you for the opportunity to provide the following proposal for your project. At Intellishare Environmental, every client is important. Please contact me with any additional questions you may have regarding this information.

Kind Regards,

John Strey Principal

Oxidizer Process Information

■ Process Air Flow: 1000 SCFM

Maximum Air Flow Capacity: 1000 SCFM

■ Minimum Air Flow: 250 SCFM

Max Gas Pre-Heater Input: 2,500,000 @ 1000 CFM

Recommended NG Gas Supply
 3000 CFH @ 5 psig, Max 7

psig

Min Thermal/Cat Operating Temperature: 1400/650 degrees F.

Avg Thermal/Cat Operating Temperature: 1450/750 degrees F.

Max Therma/Catl Operating Temperature: 1800/1100 degrees F.

Estimated Destruction Efficiency: >99%

Estimated Catalyst Destruction Efficiency: >98%

Catalyst Volume:1.4 cubic feet

Catalyst Type: 400 cell Metal Monolith

Time to Reach Operating Temperature: 15 minutes from cold start

Inlet Connection:
8" 150# Flanged

■ Foot Print: W=7', L=15', H=8'

Stack Height:
15' AGL

■ Weight: 6000 lbs

■ Electrical Voltage: 460/3/60

■ Electrical Amperage: 20

■ Site Elevation 4700' msl

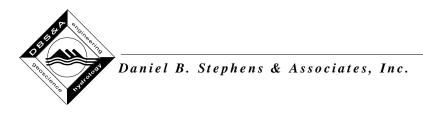
Equipment Specification

Reactor: The reactor housing will be constructed of 7 gauge rolled steel. The Inlet and outlet connections are flanged. The exterior is painted standard ISE gray.

High Temperature Refractory: All internal reactor surfaces are completely insulated with a ceramic insulation media rated for 2200 deg F. A coating is applied to the insulation to increase the mechanical integrity and extend the life of the insulation.

Gas Pre-Heater: The unit will come equipped as standard with a direct gas fired primary air burner with 3 HP combustion air blower.

Fuel Gas Piping Assembly: The fuel gas piping assembly is pre-piped. The gas train will meet all code requirements and is suitable for FM approval. All components are rated for outdoor operation and continuous use.


Main Control Panel: The main control panel shall be NEMA 4 construction and shall be pre-wired to all components. The PLC based control panel features alarm detection and an hour meter to record run time. Temperature control will be provided with approved temperature control devices and limit switches. The control panel shall be UL labeled and listed as an assembly.

Flame Arrestor: A flame arrestor will be supplied and mounted to the inlet of the oxidizer and utilized to prevent flame propagation to the source. A spiral crimped aluminum element shall be removable for inspection and cleaning.

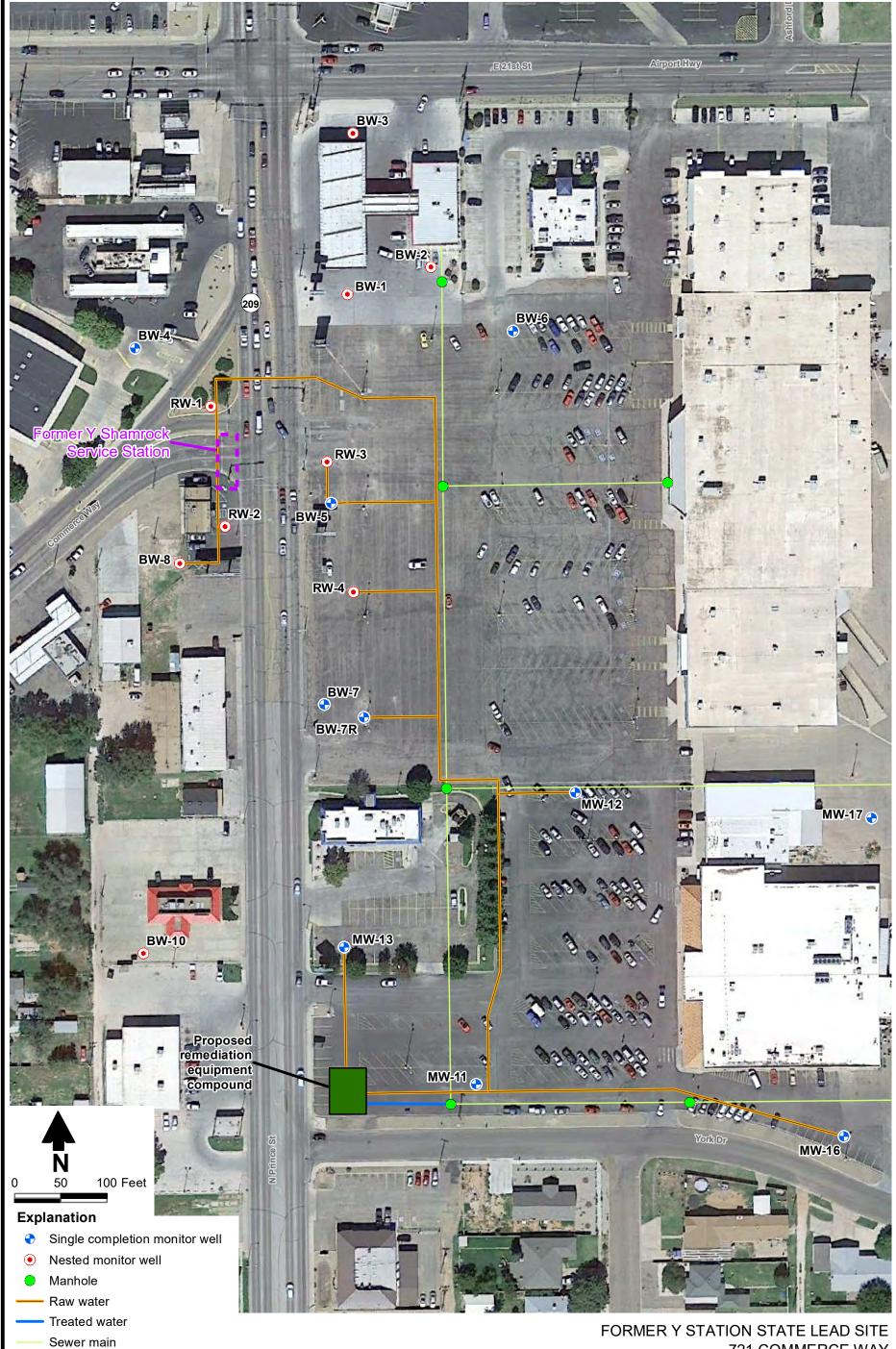
Purge/Automatic Dilution Control: A purge and dilution valve control assembly with C1, D2, GD actuator will be mounted between the VLS and MPE blower. Once the fresh air purge is complete the dilution control will be enabled. The oxidizer outlet temperature controller, included in the control cabinet, is wired to automatically modulate the electric actuator and control the dilution air valve when VOC concentrations exceed the temperature set-point.

Process Isolation Valve: A control valve assembly with C1, D2, GD actuator will be mounted between the VLS and MPE blower. Once the fresh air purge is complete the process control will be enabled. The oxidizer outlet temperature controller, included in the control cabinet, is wired to automatically modulate the electric actuator and control the process air valve when VOC concentrations exceed the temperature set-point.

Exhaust Stack: A stainless steel exhaust stack will be supplied and shall terminate at 15' above grade level (AGL). The exhaust stack will be equipped with sample ports for field testing.

Table 1. Proposed Remediation Wells Former Y Station State Lead Site, Clovis, New Mexico

Well	Well Diameter (inches)	Well Screen (feet bgs)	Depth to Water (feet btoc)	Open Well Screen (feet)	Extracted Air Flow (scfm)	Available Drawdown (feet)	Design Pumping Rate (gpm)				
Source a	Source area wells										
RW-1	2	135.0–195.0	NA	60	60						
	2	215.0–255.0	NA	40	40						
	4	264.9–355.3	330	65	65	25	2.0				
RW-2	2	135.0–195.0	NA	60	60						
	2	215.0–275.0	NA	60	60						
	4	289.8–360.1	330	40	40	30	2.0				
RW-3	2	135.4–195.4	NA	60	60						
	2	215.0–275.0	NA	60	60						
	4	289.3–359.5	329	40	40	30	2.0				
RW-4	2	134.9–194.9	NA	60	60						
	2	214.9–274.9	NA	60	60						
	4	291.2–361.5	330	39	39	31	2.0				
BW-8	2	115–175	NA	60	60						
	2	200–260	NA	60	60						
	4	287–347	329	42	42	18	0.0				
Downgra	dient wells										
BW-7R	5	286.8–357.1	329	42	42	28	2.0				
MW-11	5	285.5–355.5	327	42	42	28	4.0				
MW-12	5	286.5–356.7	330	44	44	26	2.0				
MW-16	5	289.0-359.3	330	42	42	28	4.0				
_				Total	976		20.0				
Continge	ncy well										
MW-13	5	287.0-357.0	328	41	41	29	2.0				


Note: Depth to water is based on March 2021 data and rounded up to the nearest foot.

bgs = Below ground surface

btoc = Below top of the well casing scfm= Standard cubic feet per minute

gpmI= Gallons per minute

NA = Not applicable

FORMER Y STATION STATE LEAD SITE
721 COMMERCE WAY
CLOVIS, NEW MEXICO

Proposed Remediation System Layout

Appendix E Product Cut Sheets

7550 Commerce St. Corcoran, MN 55340 Office: 763-746-9900 Fax: 763-746-9903 www.H2KTech.com

July 7, 2021

To: Thomas Golden, P.E.

Daniel B. Stephens & Associates, Inc. 12303 Technology Blvd., Suite 930D

Austin, TX 78727 (512) 821-2765

Email: tgolden@geo-logic.com

Project Name: Former Y station – SVE/GWTS system

Project Location: Clovis, NM Quote Number: 5513B

Dear Tom.

Below is a quote you requested for the above referenced project. Quote is per the specifications with exceptions as noted. We appreciate the opportunity to bid on this project, please call or email with any questions.

Treatment Description

Flow 20 gpm avg

VOC's (ug/l)

Benzene 17,000 ug/l max Naphthalene 570 ug/l max

Treatment Methodology

A combined treatment unit which combines an oil/water separator, with a diffused aerator and inclined plate clarifier. First an oil/water separator/ grit chamber will remove any free product and/or TSS solids that may settle. Then a diffused aerator will provide 98.4% removal of all BTEX compounds and 85% removal of Naphthalene at 20 gpm, while also providing oxygen to oxidize the Ferric to Ferrous iron and allow it to precipitate in the clarifier. The diffused aerator allows the system to run in heavy fouling conditions from the precipitation of TDS, including hardness and Fe while maintaining operation and not losing removal efficiency.

The non-fouling aerator will also strip the CO2 thereby raising the pH and lowering the hardness/alkalinity to allow it to precipitate out in the clarifier before reaching the discharge piping to sanitary sewer.

Description/Pricing

SVE

- (1) Air dilution intake line
 - 4" PVC butterfly valve
 - 4" Filter/silencer, Solberg FS-365P-400
- (1) Moisture separator, H2K model VLS-220

Welded steel construction with external enamel finish

Tangential inlet and demister for 99%+ moisture removal

30" Dia x 72" high vertical tank

220 gallon total capacity, 55 gallon liquid holding capacity

Full vacuum design rating

Epoxy lined, enamel exterior finish

PVC site glass with ss low/high/high-high level switch assembly and union for easy removal

Polypropylene demister element

Acquiescence plate to isolate condensate water from turbulent airflow

1" Brass drain valve

6" plate flange inlet and outlet connections

6" Plate flanged cleanout port

Sloped bottom for solids removal

Vacuum gage on separator inlet & outlet, 0-100 "wc vacuum

Sample port on separator intake

Integral filter element inside of moisture separator with access manway for easy replacement

- (1) Isolation and Purge/Bleed vapor control valves, mounted on vacuum side of blowers, controlled by oxidizer Supplied by others
- (1) Condensate pump, Moyno 356-01 progressive cavity pump

2 hp, 208-240/460 VAC, 3Ø, TEFC motor

20 gpm at 25 psi differential pressure

Carbon steel housing and rotor, NBR rubber stator

- (1) 1" Ball valve on pump inlet
- (1) 1" Check valve on pump discharge
- (1) 1" Gate valve on pump discharge

Pressure gage on pump discharge

Pump re-circulation with 1" gate valve

Sample port on pump discharge

- (1) Vacuum transmitter prior to SVE blower, Foxboro Series IDP10
- (1) Rotary Lobe Blower, Sutorbilt Legend 7L

1,000 scfm at 85" we vacuum, at 4295 ft elevation (1,495 icfm at blower inlet)

Flexible couplings for vibration isolation on blower inlet and outlet

40 HP, 208-240/460 VAC, 3Ø, TEFC motor

Motor mounted on adjustable sliding base

V belt drive with OSHA belt guard - Brass belt guard cage

Discharge silencer/stand

Inlet silencer combined reactive/absorbtive premium

Vacuum relief valve on blower intake

8" CI butterfly valve on intake and discharge

Pressure gauge on blower discharge

Pressure relief valve on blower discharge. Kunkle

Sample port on discharge

(1) Flow transmitter on SVE blower discharge, Foxboro Series IDP10 transmitter with averaging pitot tube

Water Treatment Equipment

(5) 5" Wells - Submersible well pumps Grundfos model SP 5S10-22 w/ 480VAC 3 phase motor

1 hp 480VAC, 3Ø oil sealed motor

304 stainless steel case and impellers

4" pump, 18 stages, 1" NPT outlet

2 gpm to 4 gpm at 435' TDH

(400') three wire neoprene insulated downwell cable with motor gland

(4) 4" Wells - Submersible well pumps Grundfos model 5SQ05-320 with 220VAC 1 phase motor

Integral soft start with protection from low voltage, lightening, and dry-run,

3/4 hp 220VAC, 1Ø oil sealed motor

304 stainless steel case and impellers

3" pump, 18 stages, 1" NPT outlet

2 gpm at 435' TDH

(400') two wire neoprene insulated downwell cable with motor gland

(9) Submersible level transmitters, KPSI or equal with 400' vented cable

316 stainless steel, 4-20 mADC output

(9) water flow totalizers with pulse output for total volume

Brass turbine or nutating disk meter

(1) H2K Technologies model LLS8, oil/water separator

304 stainless steel construction

100% removal of 20 micron & larger droplets at 25 gpm w/ SG=0.75

PVC slant rib coalescing media

Adjustable skimming weir

Gravity drain from skimmer into product holding tank

Solids collection sump

Clearwell for pumping directly from separator

PVC site glass with ss low, high & high-high pump out level switch assembly, union mounted

Vapor tight gasketed cover, Buna-N Gasket

1" PVC vent line, plumbed to exterior

2" Brass ball valve, clearwell drain

Sample port on inlet

2" PVC ball valve on discharge

(1) Product storage tank, 300 gallon, UL 142 double wall tank (OUTSIDE OF ENCLOSURE)

Welded steel horizontal tank with enamel external finish

38.5" dia. x 68" long horizontal tank

High/high and high level switches

Normal vent with riser pipe

Emergency vent

Check valve and isolation valve on product inlet

120 VAC heat trace for class I, Div 1 hazardous location

1" polyurethane insulation, UV resistant, R-7 on tank

(1) H2K Technologies model DTA-3 Diffused Aeration Tank, each including:

304 Stainless steel welded construction

- (3) Aeration chambers
- (15) Non-fouling 304 Stainless Steel aeration diffusers

Quick connections for easy lateral removal

Counter current water and air flow to provide maximum flow path across each aeration chamber Hinged 304 Stainless steel cover

Provides easy access to aeration chambers and diffusers

Off gas nozzle with polypropylene demister element

(1) Pump out clearwell

Site glass with ss high/high-high-low pump out level switches

Unit will be stand mounted to allow gravity drain from oil/water separator thru DTA into clarifier Welded steel stand with enamel finish, walking platform for access into DTA for cleaning

Note: Unit will remove 94% BTEX compounds and 50% of Napthalene at 20 gpm.

(1) FPZ model K05-MS single stage regenerative blower

90 cfm @ 80" wc

4 hp, 230/460VAC 3 ph, TEFC motor

Aluminum wheel and housing

Interconnecting ducting to diffused air inlet

High & Low blower pressure switches

(1) H2K Technologies model IPC-80, inclined plate clarifier

304 stainless steel construction

90% removal of 20 micron & larger solids 20 gpm

PVC slant tube coalescing media

Adjustable skimming weir

Solids collection sump

Clearwell for pumping directly from clarifier

PVC site glass with ss low, high & high-high pump out level switch assembly, union mounted

Vapor tight gasketed cover, Buna-N Gasket

1" PVC vent line, plumbed to exterior

2" Brass ball valve, clearwell drain

Sample port on inlet

2" PVC ball valve on discharge

(1) Access platform and steps to allow easy access into OWS, DTA, IPC

Welded steel with bar grating, urethane finish

(1) Discharge pump, AMT model 489

20 gpm @ 54' TDH

Cast iron bronze fitted

3/4 HP, 208-230/460VAC, 3Ø, TEFC motor

2" PVC Isolation ball valve on inlet

1" Brass ball valve on discharge

1" Brass Check valve on pump discharge

Sample port on pump discharge

Pressure gage on pump discharge, ss, liquid filled

- (1) Flow totalizer, total gallons, with pulse output
- (1) Pressure switch on discharge, Barksdale model D1T
- (1) Siphon break on discharge of vessels
- (1) Pressure transmitter on discharge, Foxboro IDP-10 DP transmitter,

4-20 mADC output, loop powered, local LCD display, NEMA 4X, Class I, Div 2 rated

Controls

(1) Control Panel

For operation on 480 VAC, 3Ø, 100 Amp incoming electrical service. To control (1) 40 hp SVE blower, (1) 5 HP air stripper blower, (2) pumps. To be mounted and wired on the enclosure exterior wall. To include:

QTY DESCRIPTION

- 1 Enclosure, NEMA 4, 36"h, 36"w, 12"d with inner door mounted switches and indicators
- 1 Enclosure vent fan with thermostat and inlet/outlet louvers
- Allen Bradley Micrologix 1400 PLC, with input & output as required for system operation
- 8" Color operator interface terminal, with embedded web browser for local & remote viewing of system status & alarms
- 1 Industrial cell modem for remote access and alarm callout Ethernet switch for tie in to Intellishare panel by ethernet cable to allow communications by cellular modem
- 12 Switch; three position; Hand-Off-Auto
- 1 Light (red/LED); alarms, individual alarms called out on interface
- 1 Pushbutton (red/NO); alarm Reset flow totalizing transmit
- 5 Motor run time meters
- 2 Emergency stop button on panel door and in treatment room

- 1 VFD, 40 hp 480 VAC with remote keypad for SVE blower
- 5 VFD, 1 hp 480 VAC with remote pad for well pumps
- 1 Motor starter: Contactor 11A FLA/Overload relay 6-11A, 3Ø; AS Blower
- 6 Motor starter: Contactor 6A FLA/Overload relay 3-6A, 3Ø; pumps
- 2 Motor starter: Contactor 23A FLA3Ø; heaters

Engraved laminated legends for all door mounted devices

Terminal blocks for external connections and fusing as required

Color-coded wiring with wire markers at all terminations

Fully documented, assembled, wired, programmed and pre-shipment test

1 UL 508 serialized label

Relay logic and timers as required

Engraved laminated legends for all door mounted devices

Terminal blocks for external connections and fusing as required

Color-coded wiring with wire markers at all terminations

Fully documented, assembled, wired, programmed and pre-shipment test

- 1 UL 698A serialized label
- 1 480 VAC panelboard with 100 A main breaker, to include:
 - 1 Circuit breaker 480V 3P100A 10K; main breaker
 - 1 Circuit breaker 480V 3P30A 10K; SVE blower
 - 1 Circuit breaker 480V 3P10A 10K; AS Blower
 - 2 Circuit breaker 480V 3P10A 10K; pumps
 - 1 Circuit breaker 480V 2P15A 10K; Heater
 - 1 Circuit breaker 480V 2P40A 10K; single phase /control power transformer
 - 1 120/240 VAC panelboard with 100 A main breaker, to include:
 - 1 Circuit breaker 240V 3P100A 10K; main breaker
 - 9 Circuit breaker 240V 3P10A 10K; pumps
 - 1 Circuit breaker 120V 1P10A 10K; control power
 - 2 Circuit breaker 120V 1P10A 10K; Vent fan, lights

Enclosure

(2) Modified Cargo box enclosure system, 8' wide x 20' long x 9'6" high (high cube) outside dimension Includes equipment installation and wiring

Welded steel Sea container with 2" fir decking

Floor sealed with non-skid bed liner

Exterior painted as required to match existing color

R-13 Insulation walls and ceiling with 2x4 furring and plywood interior

Floor box or wall penetrations for incoming and outgoing lines as needed

Anchor lugs and lifting eyes

Double rear doors with cam lock

(2) 48" x 8' double insulated steel access door on other end

Sound insulated louver covers for vent air intake and exhaust louvers

Mounting of all equipment

Spray urethane insulation under cargo box

- 2" Containment lip around interior of building (approx. 280 gallons total volume)
- (1) Floor sump w/ high level switch
- (2) Wall mounted electric convection heater with thermostat, 3600 Watt
- (4) Ceiling mounted lights with vapor globe and wall switch
- (1) 12" vent fan with inlet & outlet louvers, wall-mount cabinet, and thermostat

GWTS and SVE will be installed, piped and wired in separate enclosures, control panel will be mounted and wired on outside or inside of SVE enclosure. Piping will be schedule Schedule 80 PVC for water. Wiring will be per NEC for non-classified area inside and outside of enclosure.

Note:

H2K Technologies will provide (3) submittals with all equipment including plot & elevation drawings, wiring schematics, manufacturers cut sheets, modeling data, & O&M manuals as required.

Notes:

- 1. Sales tax is not included in this quote, but will be added to the invoice if a tax exempt certificate is not provided.
- 2. An NRTL system inspection of equipment installation and wiring was not requested and is not included with this quote. If this is deemed necessary by local inspectors, add \$3,900.00 to this quote.
- 3. Panel starter/interrupt components will be rated for 10K AIC minimum, if higher rating is needed there may be an additional charge.

General Conditions

- 1. Terms of payment to be 35% upon order, balance not exceed 90 days from invoice date.
- 2. Proposal and pricing valid for 30 days from the date of this proposal.
- 3. This proposal and pricing are based on our interpretation of the specifications & P&ID's provided at the time of bid only. We reserve the right to review any and all written specifications and drawings that may apply to this equipment before accepting or stating that the equipment meets specifications at time of order, otherwise equipment is bid as quoted only.
- 4. H2K Technologies will not initiate work without a fully executed contract or purchase order. Fabrication will not be initiated until complete submittal approvals have been received.
- 5. Submittals will be provided within two weeks of receipt of a fully executed contract or P.O.
- 6. Equipment can generally be shipped within 9-12 weeks after receipt of completely approved submittals. Lead time will be updated at the time of order execution.
- 7. Shipping charges are not included in the prices quoted unless explicitly stated in the proposal. Actual freight costs will be pre-paid and added to the invoice.
- 8. The price quoted does not include sales tax. State and local sales and use tax will be added to the invoice, unless a valid sales/use tax exemption certificate is supplied with the contract or purchase order for this project. Exemption certificates must be supplied at the time of order.

If you	have any questions or comments	concerning	this infort	nation, plea	ise feel free t	to give me a	ı call at	763-746
9900.	Thank you for the opportunity to	bid on this	project.					

a. 1	
Incore	T 7
Sincerel	ıv.

Garth Hoffelt

INTELLISHARE ENVIRONMENTAL CLEAN AIR SOLUTIONS

1422 Indianhead Drive E Menomonie, WI 54751 USA

715-233-6115

Fax: 715-232-0669

Phone:

E-Mail: jstrey@intellishare-env.com Website: www.intellishare-env.com

Date: 6/10/21

ISE Proposal No: N-21-2318
Client Project ID: Clovis, NM

Proposal For: Tom Golden

DB Stephens

Phone: Fax: E-Mail:

Proposed Solution: Model 1000 CFM Thermal Oxidizer

Intellishare Environmental specializes in the engineering and manufacturing of clean air solutions for the environmental remediation industry. We offer new, used, rental and lease programs to fit any budget or application.

Thank you for the opportunity to provide the following proposal for your project. At Intellishare Environmental, every client is important. Please contact me with any additional questions you may have regarding this information.

Kind Regards,

John Strey Principal

Oxidizer Process Information

■ Process Air Flow: 1000 SCFM

Maximum Air Flow Capacity: 1000 SCFM

■ Minimum Air Flow: 250 SCFM

Max Gas Pre-Heater Input: 2,500,000 @ 1000 CFM

Recommended NG Gas Supply
 3000 CFH @ 5 psig, Max 7

psig

Min Thermal/Cat Operating Temperature: 1400/650 degrees F.

Avg Thermal/Cat Operating Temperature: 1450/750 degrees F.

Max Therma/Catl Operating Temperature: 1800/1100 degrees F.

Estimated Destruction Efficiency: >99%

■ Estimated Catalyst Destruction Efficiency: >98%

Catalyst Volume: 1.4 cubic feet

Catalyst Type: 400 cell Metal Monolith

Time to Reach Operating Temperature:
15 minutes from cold start

Inlet Connection:
8" 150# Flanged

■ Foot Print: W=7', L=15', H=8'

Stack Height:
15' AGL

■ Weight: 6000 lbs

■ Electrical Voltage: 460/3/60

Electrical Amperage: 20

■ Site Elevation 4700' msl

Equipment Specification

Reactor: The reactor housing will be constructed of 7 gauge rolled steel. The Inlet and outlet connections are flanged. The exterior is painted standard ISE gray.

High Temperature Refractory: All internal reactor surfaces are completely insulated with a ceramic insulation media rated for 2200 deg F. A coating is applied to the insulation to increase the mechanical integrity and extend the life of the insulation.

Gas Pre-Heater: The unit will come equipped as standard with a direct gas fired primary air burner with 3 HP combustion air blower.

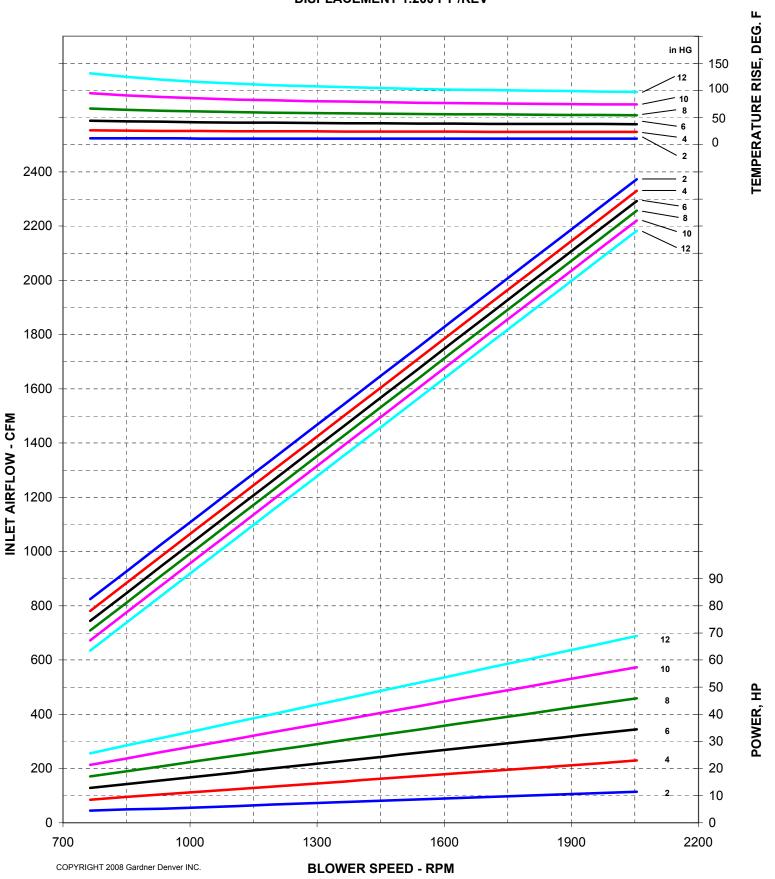
Fuel Gas Piping Assembly: The fuel gas piping assembly is pre-piped. The gas train will meet all code requirements and is suitable for FM approval. All components are rated for outdoor operation and continuous use.

Main Control Panel: The main control panel shall be NEMA 4 construction and shall be pre-wired to all components. The PLC based control panel features alarm detection and an hour meter to record run time. Temperature control will be provided with approved temperature control devices and limit switches. The control panel shall be UL labeled and listed as an assembly.

Flame Arrestor: A flame arrestor will be supplied and mounted to the inlet of the oxidizer and utilized to prevent flame propagation to the source. A spiral crimped aluminum element shall be removable for inspection and cleaning.

Purge/Automatic Dilution Control: A purge and dilution valve control assembly with C1, D2, GD actuator will be mounted between the VLS and MPE blower. Once the fresh air purge is complete the dilution control will be enabled. The oxidizer outlet temperature controller, included in the control cabinet, is wired to automatically modulate the electric actuator and control the dilution air valve when VOC concentrations exceed the temperature set-point.

Process Isolation Valve: A control valve assembly with C1, D2, GD actuator will be mounted between the VLS and MPE blower. Once the fresh air purge is complete the process control will be enabled. The oxidizer outlet temperature controller, included in the control cabinet, is wired to automatically modulate the electric actuator and control the process air valve when VOC concentrations exceed the temperature set-point.


Exhaust Stack: A stainless steel exhaust stack will be supplied and shall terminate at 15' above grade level (AGL). The exhaust stack will be equipped with sample ports for field testing.

SUTORBILT® LEGEND® MODEL 7L P-VERSION GREASE

VACUUM PERFORMANCE CURVE INLET AIR AT 68 DEG. F, AMBIENT PRESSURE 14.7 PSIA, 36% RH DISPLACEMENT 1.200 FT³/REV

Legend® Series

Positive Displacement Blowers & Vacuum Pumps

Sutorbilt Legend Series

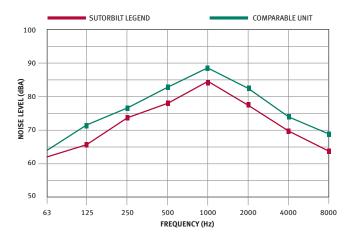
Setting the Industry Standard

The Gardner Denver Sutorbilt® Legend® line of rotary positive displacement lobe blowers and vacuum pumps are the result of more than 150 years experience in the design, manufacture and support of superior industrial equipment.

- Available in 20 sizes with 4 different configurations
- The Legend Series delivers
 - Pressure to 15 psig
 - Vacuum to 16" Hg
 - Flows to 3,015 cfm

Why the Sutorbilt line of blowers and vacuum pumps earned the name "Legend"

- Backed by the most experienced and trusted distributor network in the industry
- Every Sutorbilt Legend blower/vacuum pump is built under rigid ISO 9001:2000 quality standards
- Each Legend is individually tested to meet rigorous performance specifications
- Requested by leading Original Equipment Manufacturers (OEMs)
 worldwide for a wide range of applications, due to the ability to
 customize the Legend to their specifications while meeting strict
 performance requirements
- A Legend is at the heart of an ever-expanding variety of air solutions working every minute of every day around the globe
- Dual Splash Lubricated and Quiet Series (for up to 5 dBA reduction) are available



Proven Performance. Global Applications. Local Support.

QUIET OPERATION

The sound data shown below compares the Legend (red) and a comparably sized blower (green) operating at 3,275 rpm and 12 psig.

- Improved blower design reduces the sound pressure output of the Legend blower
- Typical reduction is 3 dBA which represents 50% less noise than the competition

SUPERIOR LOCAL SALES AND SERVICE

- Extensive network of authorized Gardner Denver/ Sutorbilt distributors
- Offers the most convenient local sales and service support in the industry
- Factory trained professionals are experts in blower/ vacuum pump technology
- Providing system installation guidance, troubleshooting and optimization recommendations for new or existing applications

EVEN A "LEGENDARY" WARRANTY

Every Sutorbilt Legend Series blower/vacuum pump is covered by a "Legendary" warranty:

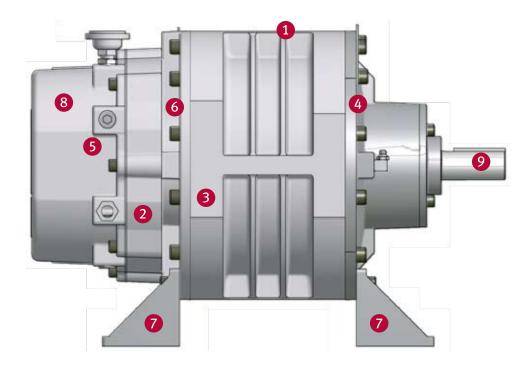
- 24 months from the date of shipment or
- 18 months from the date of installation, whichever occurs first

Industry	APPLICATION
Aquaculture	Aeration
Cement & Lime	Fluidization & Conveying
Chemical	Vacuum Processing & Conveying
Coal Bed/Landfill	Methane Gas Recovery
Dairy	Automated Milking
Dry Bulk Hauling	Trailer Unloading & Aeration
Environmental Services	Sewer Cleaning & Portable Restroom Services
Industrial	Material Vacuuming
Milling & Baking	Blending & Conveying
Oil & Gas	Gas Collection & Sparging
Power Generation	Fly Ash Conveying & Aeration
Process Gas	Gas Boosting
Pulp & Paper	Chip Conveying & Process Vacuum
Resin & Plastic	Processing & Conveying
Soil Remediation	Vacuum Extraction & Sparging
Vacuum Excavation	Potholing & Slurry Recovery
Wastewater	Aeration & Backwashing

The above table illustrates industries which depend upon the Sutorbilt[®] Legend[®] to deliver clean, oil-free air to a wide range of global applications.

Legendary Design Features

1 High-strength impeller case is heavily ribbed and machined from a single piece of cast iron and features oversized dowel pins for precise mounting and alignment of head plates


 Results in reduced noise and more stable, vibration-free operation

2 Head plates, machined from cast iron, are ground on the interior surface to precise operating tolerances. Bearing fits are machined into head plates to assure exact bearing positioning

 Ensures accurate, fixed-dimension clearances through all blower operating conditions and temperature ranges

3 Impellers are machined from cast iron to an exact profile and are permanently fastened to steel shafts. They are dynamically balanced for smooth operation in any assembled position

 Provides extra strength and rigidity to handle continuous maximum loads without fatigue or deflection

4 Anti-friction bearings are used exclusively (table at right)

 Optimum bearing selection provides longer blower life and added overhung shaft load capacity

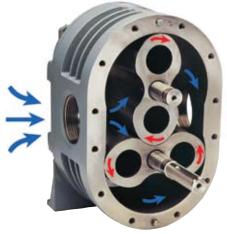
Gear diameter	Single row ball	Double row ball	Cylindrical roller	Spherical roller
2"	•			
3-4"	•		•	
5"		•	•	
6-8"		•		•

2MP LHC 3MR RHC 4LVR BHC 5MR RHC

- 5 3-6" R versions feature improved timing and ease of teardown/rebuild through grip rings, which expand against the bore and compress on the shaft for a secure, mechanical shrink fit
- 2, 7 and 8" P versions feature precision machines alloy steel timing gears, permanently pinned to the shafts
- Assures non-slip timing even under the most strenuous loading conditions
- 6 High temperature Viton® oil seals
- Maximizes the seal life in continuous, severe-duty applications to provide leak-free operation

- Flex-Mount[™] design on 2, 7 and 8" blowers is adaptable to either vertical or horizontal installation, while 3–6" R-version blowers have universal feet
- The feet are precisely machined and match the footprints of many competitive units
- Timing gears and gear end bearings are splash lubricated utilizing an abundant oil reservoir. A non-asbestos graphite gasketed, oil-tight housing encloses the timing gears. Drive end bearings are grease lubricated through fittings. Lip-type seals prevent oil and grease from entering the impeller chamber
- Superior gear and bearing lubrication is assured at all operating conditions with minimal maintenance

- High strength steel drive shaft is extended for V-belt drive or direct connection
- Provides greater blower durability and installation flexibility


Available with Mechanical Gas Seals

The Legend design accommodates mechanical gas seals for critical gas applications with proven results based on a large installed base

 This field proven seal design allows trouble-free operation in critical gas applications

The Sutorbilt Legend Design

INTAKE

A constant volume of air or gas is drawn into the cylinder by the action of the turning impellers.

DISCHARGE

A constant volume of air or gas is forced out through the discharge port.

LLIMIL

TRANSFER

A constant volume of trapped air or gas is transferred around the cylinder to the discharge port.

The Sutorbilt PD Cycle

- Two figure-eight impellers turn in opposite directions within a machined housing
- Transferring a constant volume of air or gas from inlet to discharge with every rotation of the blower drive shaft
- No lubrication within the cylinder is required
- Rotating components are held in close tolerance do not contact each other
- Impeller positioning is maintained by precision timing gears affixed to each impeller shaft
- Gear and bearing lubrication occurs externally to the cylinder assuring clean, oil-free gas delivery under all operating conditions

Universal Foot & Flex-Mount™ Design Provides Maximum Installation Versatility

- 3-6" R versions feature the "universal" mounting feet which allow them to be mounted in vertical and horizontal configurations
- 2", 7" & 8" P versions feature Flex-Mount[™] design creating interchangeability on existing and new applications

Universal Foot

Horizontal Configuration, Right Hand Drive

Vertical Configuration, Bottom Hand Drive

Horizontal Configuration, Left Hand Drive

Vertical Configuration,
Top Hand Drive

State-of-the-Art Quality

The Gardner Denver line of Sutorbilt Legend blowers and vacuum pumps are engineered and manufactured under strict ISO 9001:2000 quality standards in our 330,000 square feet state-of-the-art facility in Sedalia, MO (photo below)

- Gardner Denver makes it a priority to invest in highly skilled people who take pride in producing quality products
- Our Flexible Machining System (FMS) assures consistent production of the highest quality Legend components
- Attention to detail is found throughout the manufacturing process such as utilizing advanced coordinate measuring equipment (photo A)
- Legend components are subjected to quality inspections before assembly
- Prior to shipment, every Legend is tested against rigid standards using our computer automated testing stations (photo B)

Photo A

Photo B

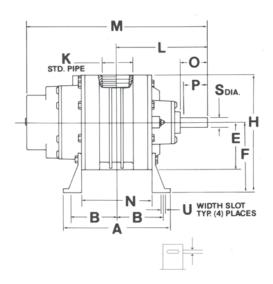
	CIZE	DIA. INLET	DISPL. CU.	2214	2 P	SIG	3 P	SIG	4 P	SIG	5 P	SIG	6 P	SIG	7 P	SIG
	SIZE	& OUTLET	FT./REV.	RPM	CFM	ВНР	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP
	2LP 2LVP	2"-S	0.035	2,800 3,250 3,560 5,275	76 91 102 162	1.1 1.3 1.4 2.0	71 86 97 157	1.6 1.8 2.0 2.8	67 82 93 153	2.1 2.4 2.6 3.7	63 79 89 149	2.5 2.9 3.2 4.6	59 75 86 146	3.0 3.4 3.7 5.3	56 72 83 143	3.5 4.0 4.3 6.1
TS	3LR 3LVR	2½"-S	0.104	1,760 2,265 2,770 3,600	149 202 254 341	1.9 2.4 2.9 3.7	142 194 247 333	2.8 3.5 4.3 5.3	135 188 240 327	3.7 4.7 5.5 7.1	130 182 235 321	4.5 5.6 6.8 8.9	124 177 230 316	5.2 6.7 8.2 10.6	120 172 225 311	6.1 7.8 9.6 12.4
RE UNITS	4LR 4LVR	3"-S	0.170	1,760 2,190 2,620 3,600	253 326 400 566	3.0 3.7 4.4 5.8	243 316 389 556	4.5 5.3 6.3 8.7	234 307 381 547	5.7 7.1 8.4 11.6	227 300 373 539	7.1 8.8 10.6 14.5	220 293 366 533	8.5 10.6 12.7 17.4	213 286 360 526	9.9 12.4 14.8 20.3
PRESSURI	5LR 5LVR	4"-S	0.350	1,500 1,760 2,100 2,850	463 554 673 936	5.2 5.8 7.0 9.5	449 540 659 922	7.5 8.8 10.5 14.2	438 529 648 910	10.0 11.7 13.9 18.9	427 518 637 900	12.4 14.6 17.4 23.6	418 509 628 890	14.9 17.5 20.9 28.4	409 500 619 882	17.4 20.4 24.4 33.1
LOW	6LR 6LVR	6"-F	0.718	1,170 1,760 1,930 2,350	739 1,162 1,284 1,586	8.0 12.0 13.1 16.0	716 1,139 1,261 1,563	11.9 18.0 19.7 24.0	697 1,120 1,242 1,544	15.9 24.0 26.3 32.0	680 1,103 1,225 1,527	19.9 29.9 32.8 40.0	664 1,088 1,210 1,512	23.9 35.9 39.4 48.0	650 1,074 1,196 1,497	27.9 41.9 46.0 56.0
	7LP 7LVP	8"-F	1.200	1,170 1,465 1,760 2,050	1,277 1,631 1,985 2,333	13.3 16.7 20.0 23.3	1,248 1,602 1,956 2,304	20.0 25.0 30.0 35.0	1,224 1,578 1,932 2,280	16.6 33.3 40.0 46.6	1,203 1,557 1,911 2,259	33.3 41.7 50.1 58.3	1,184 1,538 1,892 2,240	39.9 50.0 60.1 70.0		
	8LP 8LVP	10"-F	1.740	880 1,170 1,375 1,800	1,366 1,871 2,228 2,967	14.5 19.3 22.7 29.7	1,329 1,834 2,191 2,930	21.8 28.9 34.0 44.5	1,298 1,803 2,159 2,899	29.0 38.6 45.4 59.4	1,271 1,775 2,132 2,871	36.3 48.2 56.7 74.2	1,246 1,750 2,107 2,847	43.5 57.9 68.0 89.1		

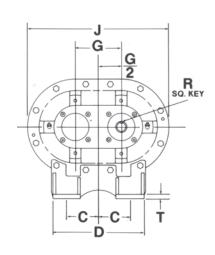
	SIZE	DIA.INLET	DISPL.CU.	RPM	7 P	SIG	9 P	SIG	10 F	PSIG	12	PSIG	13 F	PSIG	14 F	PSIG
	SIZE	& OUTLET	FT./REV.	KPIVI	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP
	2MP 2MVP	1"-S	0.017	2,800 3,250 3,560 5,275	25 33 38 67	1.7 1.9 2.1 3.1	22 30 35 64	2.1 2.5 2.7 3.9	28 34 63	2.7 3.0 4.4	60	5.1				
UNITS	3MR 3MVR	2"-S	0.060	1,760 2,265 2,770 3,600	64 95 125 175	3.6 4.6 5.5 7.2	59 89 119 169	4.6 5.8 7.1 9.2	87 117 167	6.4 7.9 10.2	112 162	9.5 12.3				
SSURE UI	4MR 4MVR	2½"-S	0.117	1,760 2,190 2,620 3,600	144 194 245 359	6.8 8.5 10.2 14.0	136 186 236 351	8.8 10.9 13.1 18.0	132 182 233 347	9.8 12.1 14.5 20.0						
PRE	5MR 5MVR	4"-S	0.210	1,500 1,760 2,100 2,850	237 292 363 521	10.5 12.3 14.6 19.9	227 281 353 510	13.4 15.8 18.8 25.5	222 277 348 506	14.9 17.5 20.9 28.4	213 268 339 497	17.9 21.0 25.1 34.0	209 263 335 493	19.4 22.8 27.2 36.9		
MEDIUM	6MR 6MVR	5"-S	0.383	1,170 1,760 1,930 2,350	332 558 622 784	14.9 22.4 24.5 29.9	316 542 607 768	19.1 28.8 31.5 38.4	309 535 600 761	21.2 32.0 35.0 42.7	296 522 587 748	25.5 38.3 42.0 51.2	289 515 580 741	27.6 41.5 45.5 55.5	283 509 574 735	29.7 44.7 49.1 59.7
	7MP 7MVP	6"-F	0.733	1,170 1,465 1,760 2,050	693 909 1,125 1,338	28.5 35.6 42.8 49.9	671 887 1,103 1,316	36.6 45.8 55.0 64.1	661 877 1,093 1,306	40.7 50.9 61.1 71.2						
	8MP 8MVP	8"-F	1.040	880 1,170 1,375 1,800	709 1,011 1,224 1,666	30.4 40.4 47.4 62.1	681 983 1,196 1,638	39.0 51.9 61.0 79.9	669 970 1,183 1,625	43.4 57.7 67.8 88.7						

	0.77	DIA. INLET	DISPL. CU.		7 P	SIG	8 P	SIG	9 P	SIG	11 F	PSIG	13 F	PSIG	15 F	PSIG
	SIZE	& OUTLET	FT./REV.	RPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	ВНР	CFM	ВНР	CFM	ВНР
	3HR 3HVR	1½"-S	0.045	1,760 2,265 2,770 3,600	46 69 91 129	2.6 3.4 4.1 5.4	44 66 89 126	3.0 3.9 4.7 6.1	41 64 87 124	3.4 4.3 5.3 6.9	60 83 120	5.3 6.5 8.4	117	10.0	113	11.5
UNITS	4HR 4HVR	1½"-S	0.069	1,760 2,190 2,620 3,600	80 110 139 207	4.0 5.0 6.0 8.2	77 107 137 204	4.6 5.7 6.9 9.4	74 104 134 201	5.2 6.4 7.7 10.6	99 129 196	7.9 9.4 13.0	124 192	11.1 15.3	188	17.7
SSURE	5HR 5HVR	2½"-S	0.140	1,500 1,760 2,100 2,850	154 191 238 343	7.0 8.2 9.8 13.2	151 187 235 340	8.0 9.3 11.1 15.1	147 183 231 336	9.0 10.5 12.5 17.0	140 177 224 329	10.9 12.8 15.3 20.8	171 218 323	15.2 18.1 24.6	165 213 318	17.5 20.9 28.4
HIGH PRE	6HR 6HVR	3"-S	0.227	1,170 1,760 1,930 2,350	188 321 360 455	8.8 13.3 14.5 17.7	182 316 355 450	10.1 15.1 16.6 20.2	177 311 350 445	11.3 17.0 18.7 22.8	168 302 340 436	13.8 20.8 22.8 27.8	159 293 332 427	16.4 24.6 27.0 32.9	285 324 419	28.4 31.1 37.9
主	7HP 7HVP	4"-S	0.367	1,170 1,465 1,760 2,050	332 441 549 655	14.2 17.8 21.4 25.0	326 434 542 649	16.3 20.4 24.5 28.5	319 428 536 642	18.3 22.9 27.6 32.1	308 416 524 631	22.4 28.0 33.7 39.2	297 405 514 620	26.5 33.1 39.8 46.4	287 396 504 610	30.5 38.2 45.9 53.5
	8HP 8HVP	4"-S	0.566	880 1,170 1,375 1,800	363 528 644 884	16.5 22.0 25.8 33.8	354 518 634 875	18.9 25.1 29.5 38.6	345 509 626 866	21.2 28.3 33.2 43.5	329 493 609 850	26.0 34.5 40.6 53.1	315 479 595 835	30.7 40.8 48.0 62.8	301 465 581 822	35.4 47.1 55.3 72.4

	CIZE	DIA. INLET	DISPL. CU.	DDM	2 "l	Hg	4 "	Hg	8 "	Hg	10 '	'Hg	12	"Hg	14	"Hg
	SIZE	& OUTLET	FT./REV.	RPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP
	2LP 2LVP	2"-S	0.035	2,800 3,250 3,560 4,165 5,275	82 98 108 130 168	0.7 0.7 0.8 0.9 1.1	74 90 101 122 161	1.1 1.3 1.4 1.6 1.9	61 77 88 109 148	2.0 2.3 2.5 2.9 3.6	55 71 82 103 142	2.5 2.8 3.1 3.6 4.5	64 75 96 135	3.4 3.7 4.3 5.2	128	6.0
LS	3LR 3LVR	2½"-S	0.104	1,760 2,265 2,770 3,600	158 211 264 350	1.1 1.3 1.5 1.9	147 200 252 338	1.9 2.4 2.9 3.7	128 180 233 319	3.6 4.6 5.4 7.0	118 171 223 309	4.5 5.5 6.7 8.7	108 160 213 299	5.1 6.6 8.1 10.5	288	12.2
LOW VACUUM UNITS	4LR 4LVR	3"-S	0.170	1,760 2,190 2,620 3,600	266 339 412 579	1.6 1.9 2.3 3.1	250 323 396 563	3.0 3.7 4.3 5.7	224 297 370 537	5.6 6.9 8.3 11.4	211 284 357 524	7.0 8.7 10.4 14.3	197 270 343 510	8.4 10.4 12.4 17.1	329 495	14.5 20.0
v vacui	5LR 5LVR	4"-S	0.350	1,500 1,760 2,100 2,850	480 571 690 953	2.6 3.1 3.6 4.8	459 550 669 932	5.1 5.7 6.8 9.3	424 515 634 896	9.8 11.5 13.7 18.6	406 497 616 879	12.2 14.3 17.1 23.2	388 479 598 860	14.7 17.2 20.5 27.9	459 578 840	20.1 24.0 32.5
ГОМ	6LR 6LVR	6"-F	0.718	1,170 1,760 1,930 2,350	766 1,190 1,312 1,614	4.1 5.9 6.5 7.9	732 1,115 1,278 1,579	7.8 11.8 12.9 15.7	674 1,097 1,219 1,521	15.7 23.5 25.8 31.4	645 1,068 1,191 1,492	19.6 29.4 32.3 39.3	615 1,038 1,160 1,462	23.5 35.3 38.7 47.2	1,005 1,127 1,429	41.2 45.2 55.0
	7LP 7LVP	8"-F	1.200	1,170 1,465 1,760 2,050	1,312 1,666 2,020 2,368	6.5 8.2 9.8 11.5	1,268 1,622 1,976 2,324	13.1 16.4 19.7 22.9	1,195 1,549 1,903 2,251	26.2 32.8 39.3 45.8	1,159 1,513 1,867 2,215	32.7 40.9 49.2 57.3	1,121 1,475 1,829 2,177	39.2 49.1 59.0 68.7		
	8LP 8LVP	10"-F	1.740	880 1,170 1,375 1,800	1,411 1,916 2,273 3,012	7.1 9.5 11.1 14.6	1,355 1,860 2,217 2,953	14.3 19.0 22.3 29.2	1,261 1,766 2,122 2,862	28.5 37.9 44.6 58.4	1,214 1,719 2,076 2,815	35.7 47.4 55.7 72.9	1,165 1,670 2,026 2,765	42.8 56.9 66.9 87.6		

	CIZE	DIA. INLET	DISPL. CU.	DDM	6 "H	łg	10	"Hg	12	"Hg	14	"Hg	15 '	'Hg	16	"Hg
	SIZE	&OUTLET	FT./REV.	RPM	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP
	2MP 2MVP	1"-S	0.017	2,800 3,250 3,560 4,165 5,275	31 39 44 54 73	0.8 0.9 0.9 1.1 1.4	24 32 37 48 67	1.2 1.4 1.5 1.7 2.2	34 44 63	1.8 2.1 2.6	40 59	2.4 3.0	57	3.2		
UNITS	3MR 3MVR	2"-S	0.060	1,760 2,265 2,770 3,600	76 106 136 186	1.6 2.0 2.4 3.1	63 93 124 174	2.6 3.3 4.0 5.0	57 87 117 167	3.1 3.9 4.7 6.0	110 160	5.4 7.0	156	7.5		
	4MR 4MVR	2½"-S	0.117	1,760 2,190 2,620 3,600	161 211 262 376	3.0 3.7 4.4 5.9	142 193 243 358	4.9 6.0 7.1 9.8	132 183 233 348	5.8 7.2 8.6 11.8	222 337	10.0 13.7	331	14.7	325	15.7
MEDIUM VACUUM	5MR 5MVR	4"-S	0.210	1,500 1,760 2,100 2,850	258 313 384 542	4.5 5.2 6.2 8.4	235 290 361 519	7.3 8.6 10.3 13.9	223 277 349 506	8.8 10.3 12.3 16.7	209 264 335 493	10.3 12.1 14.4 19.5	328 485	15.4 20.9	477	22.3
MEDII	6MR 6MVR	5"-S	0.383	1,170 1,760 1,930 2,350	363 589 655 815	6.3 9.4 10.3 12.6	328 554 619 780	10.4 15.7 17.2 21.0	310 536 601 762	12.5 18.8 20.7 25.2	290 516 581 741	14.6 22.0 24.1 29.3	279 505 570 731	15.7 23.5 25.8 31.4	267 493 558 719	16.7 25.1 27.5 33.5
	7MP 7MVP	6"-F	0.733	1,170 1,465 1,760 2,050	738 954 1,170 1,383	12.0 15.0 18.0 21.0	688 904 1,121 1,333	20.0 25.0 30.0 35.0	662 878 1,094 1,307	24.0 30.0 36.1 42.0	633 850 1,065 1,278	28.0 35.0 42.1 49.0	618 834 1,050 1,263	30.0 37.5 45.1 52.5	601 817 1,034 1,246	32.0 40.0 48.1 56.0
	8MP 8MVP	8"-F	1.040	880 1,170 1,375 1,800	765 1,067 1,280 1,722	12.8 17.0 20.0 26.2	703 1,005 1,218 1,660	21.3 28.3 33.3 43.6	670 972 1,185 1,627	25.6 34.0 40.0 52.3	634 936 1,149 1,591	29.8 39.7 46.6 61.0	615 917 1,130 1,572	32.0 42.5 50.0 65.4	594 896 1,109 1,551	34.1 45.3 53.3 69.7


	SIZE	DIA. INLET	DISPL. CU.	RPM	6 "H	lg	8 "	Hg	12	"Hg	14	"Hg	15	"Hg	16	"Hg
	SIZE	& OUTLET	FT./REV.	KPIVI	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP
	3HR 3HVR	11/4"-S	0.045	1,760 2,265 2,770 3,600	55 78 100 138	1.1 1.4 1.7 2.3	50 73 95 133	1.5 1.9 2.3 3.0	40 62 85 122	2.2 2.8 3.5 4.5	79 117	4.1 5.3	76 113	4.4 5.7	110	6.0
UNITS	4HR 4HVR	1½"-S	0.069	1,760 2,190 2,620 3,600	91 121 151 218	1.7 2.1 2.5 3.5	85 115 144 212	2.3 2.8 3.4 4.6	72 102 132 199	3.4 4.2 5.1 6.9	95 124 192	4.9 5.9 8.1	91 120 188	5.3 6.3 8.7	184	9.3
VACUUM U	5HR 5HVR	2½"-S	0.140	1,500 1,760 2,100 2,850	170 206 254 359	2.9 3.4 4.1 5.6	161 198 245 350	3.9 4.6 5.5 7.4	144 180 228 333	5.9 6.9 8.2 11.2	134 171 218 323	6.8 8.0 9.6 13.0	165 213 318	8.6 10.3 14.0	312	14.9
HIGH VAC	6HR 6HVR	3"-S	0.227	1,170 1,760 1,930 2,350	209 343 381 477	3.7 5.6 6.1 7.5	197 331 370 165	4.8 7.4 8.2 9.9	173 307 345 441	7.4 11.2 12.2 14.9	159 293 332 427	8.7 13.0 14.3 17.4	152 286 325 420	9.3 14.0 15.3 18.6	278 317 412	14.9 16.3 19.9
至	7HP 7HVP	4"-S	0.367	1,170 1,465 1,760 2,050	359 467 575 682	6.0 7.5 9.0 10.5	344 453 561 667	8.0 10.0 12.0 14.0	314 422 531 637	12.0 15.0 18.1 21.0	297 406 514 620	14.0 17.5 21.1 24.5	288 396 505 611	15.0 18.8 22.6 26.3	278 387 495 601	16.0 20.0 24.1 28.0
	8HP 8HVP	4"-S	0.566	880 1,170 1,375 1,800	400 564 680 921	7.0 9.3 10.9 14.2	380 544 660 901	9.3 12.3 14.5 19.0	338 502 618 859	13.9 18.5 21.7 28.5	315 479 595 835	16.2 21.6 25.4 33.2	302 466 582 823	17.4 23.1 27.2 35.6	453 569 809	24.7 29.0 38.0

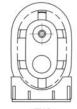

Sutorbilt Legend Dimensional Data

Horizontal Configurations

SIZE	WT.	CONN.	A	В	С	D	E	F	G	Н	J	K	L	М	N	0	Р	R	S	T	U
2M	72	S	5.00	2.00	2.00	6.36	3.25	3.75	2.75	7.00	9.25	1.00	5.16	10.00	2.76	1.97	1.62	0.19	0.620	0.13	0.44
2L	86	S	7.00	3.00	2.00	6.36	3.25	3.75	2.75	7.00	9.25	2.00	6.16	12.00	4.76	1.97	1.62	0.19	0.620	0.13	0.44
3H	88	S	6.75	2.69	2.68	7.75	3.88	5.00	3.50	8.88	11.26	1.25	5.86	12.05	3.50	2.05	1.62	0.19	0.750	0.25	0.62 x 1.12
3M	110	S	7.62	3.13	2.68	7.75	3.88	5.00	3.50	8.88	11.26	2.00	6.30	12.92	4.38	2.05	1.62	0.19	0.750	0.25	0.62 x 1.12
3L	132	S	10.25	4.44	2.68	7.75	3.88	5.00	3.50	8.88	11.26	2.50	7.61	15.55	7.00	2.05	1.62	0.19	0.750	0.25	0.62 x 1.13
4H	138	S	7.24	3.00	3.00	8.25	4.19	6.25	4.00	10.44	12.38	1.50	6.91	13.74	4.00	2.39	1.62	0.19	0.875	0.38	0.5 x 0.75
4M	160	S	9.49	4.13	3.00	8.25	4.19	6.25	4.00	10.44	12.38	2.50	8.04	15.99	6.26	2.39	1.62	0.19	0.875	0.38	0.5 x 0.75
4L	182	S	11.99	5.38	3.00	8.25	4.19	6.25	4.00	10.44	12.38	3.00	9.29	18.49	8.76	2.39	1.62	0.19	0.875	0.38	0.5 x 0.75
5H	210	S	10.85	3.50	3.50	9.00	5.19	7.00	5.00	12.19	15.38	2.50	8.19	16.38	4.86	2.50	2.00	0.25	1.125	0.38	0.56 x 0.75
5M	232	S	12.85	4.50	3.50	9.00	5.19	7.00	5.00	12.19	15.38	4.00	9.19	18.38	6.86	2.50	2.00	0.25	1.125	0.38	0.56 x 0.75
5L	306	S	16.85	6.50	3.50	9.00	5.19	7.00	5.00	12.19	15.38	4.00	11.19	22.38	10.86	2.50	2.00	0.25	1.125	0.38	0.56 x 0.75
6H	318	S	9.76	3.94	4.00	16.50	6.00	8.75	6.00	14.75	18.00	3.00	9.18	18.57	5.76	2.94	2.00	0.31	1.375	0.50	0.75 x 1
6M	366	S	13.00	5.56	4.00	16.50	6.19	8.75	6.00	14.94	18.00	5.00	10.80	21.81	9.00	2.94	2.00	0.31	1.375	0.50	0.75 x 1
6L	538	F	20.00	9.06	4.00	16.50	7.50	8.75	6.00	16.25	18.00	6.00	14.31	28.82	16.00	2.94	2.00	0.31	1.375	0.50	0.75 x 1
7H	482	S	12.00	4.63	5.50	15.00	9.69	11.00	7.00	20.69	22.00	4.00	10.00	21.03	5.74	3.21	2.50	0.38	1.562	0.50	0.75 x 1
7M	638	F	17.50	7.38	5.50	15.00	8.50	11.00	7.00	19.50	22.00	6.00	12.75	26.53	11.24	3.21	2.50	0.38	1.562	0.50	0.75 x 1
7L	770	F	24.50	10.88	5.50	15.00	8.50	11.00	7.00	19.50	22.00	8.00	16.25	33.53	18.24	3.21	2.50	0.38	1.562	0.50	0.75 x 1
8H	736	S	13.50	5.75	6.00	16.00	10.00	12.50	8.00	22.50	25.25	4.00	11.69	23.85	7.76	3.86	2.50	0.38	1.750	0.50	0.75 x 1
8M	938	F	19.00	8.50	6.00	16.00	10.00	12.50	8.00	22.50	25.25	8.00	14.44	29.35	13.26	3.86	2.50	0.38	1.750	0.50	0.75 x 1
8L	1,170	F	27.00	12.50	6.00	16.00	10.00	12.50	8.00	22.50	25.25	10.00	18.44	37.35	21.26	3.86	2.50	0.38	1.750	0.50	0.75 x 1

S=Threaded connections standard NPT. F=flange connections. Inlet and outlet connections are the same type and size. Dimensions are in inches. Weights are in pounds and include shipping cartons or pallets and are approximate.

LHC LEFT HAND CENTRAL (OPTIONAL ASSEMBLY)

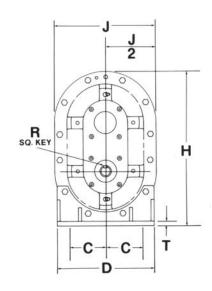

RHC
RIGHT HAND CENTRAL
(STANDARD ASSEMBLY)

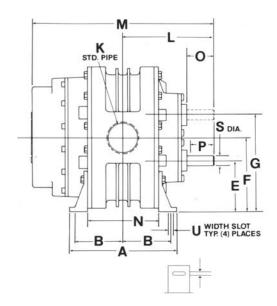
CENTER TIMED FOR ROTATION IN EITHER DIRECTION

Vertical Configurations

SIZE	WT.	CONN.	А	В	С	D	E	F	G	Н	J	K	L	М	N	0	Р	R	S	Т	U
2MV	72	S	5.00	2.00	1.50	5.60	3.50	4.88	6.25	9.50	6.50	1.00	5.16	10.00	2.76	1.97	1.62	0.19	0.6200	0.13	0.44
2LV	86	S	7.00	3.00	1.50	5.60	3.50	4.88	6.25	9.50	6.50	2.00	6.16	12.00	4.76	1.97	1.62	0.19	0.6200	0.13	0.44
3HV	88	S	6.75	2.69	2.68	7.75	4.50	6.25	8.00	11.88	7.76	1.25	5.86	12.05	3.50	2.05	1.62	0.19	0.7500	0.25	0.62 x 1.12
3MV	110	S	7.62	3.13	2.68	7.75	4.50	6.25	8.00	11.88	7.76	2.00	6.30	12.92	4.36	2.05	1.62	0.19	0.7500	0.25	0.62 x 1.12
3LV	132	S	10.25	4.44	2.68	7.75	4.50	6.25	8.00	11.88	7.76	2.50	7.61	15.55	7.00	2.05	1.62	0.19	0.7500	0.25	0.62 x 1.12
4HV	138	S	7.24	3.00	3.00	8.25	4.50	6.50	8.50	12.69	8.40	1.50	6.91	13.74	4.00	2.39	1.62	0.19	0.8750	0.38	0.5 x 0.75
4MV	160	S	9.49	4.13	3.00	8.25	4.50	6.50	8.50	12.69	8.40	2.50	8.04	15.99	6.26	2.39	1.62	0.19	0.8750	0.38	0.5 x 0.75
4LV	182	S	11.99	5.38	3.00	8.25	4.50	6.50	8.50	12.69	8.40	3.00	9.29	18.49	8.76	2.39	1.62	0.19	0.8750	0.38	0.5 x 0.75
5HV	210	S	10.85	3.50	3.50	9.00	5.50	8.00	10.50	15.85	10.38	2.50	8.19	16.38	4.86	2.50	2.00	0.25	1.1250	0.38	0.56 x 0.75
5MV	232	S	12.85	4.50	3.50	9.00	5.50	8.00	10.50	15.85	10.38	4.00	9.19	18.38	6.86	2.50	2.00	0.25	1.1250	0.38	0.56 x 0.75
5LV	306	S	16.85	6.50	3.50	9.00	5.50	8.00	10.50	15.85	10.38	4.00	11.19	22.38	10.86	2.50	2.00	0.25	1.1250	0.38	0.56 x 0.75
6HV	318	S	9.76	3.94	4.00	10.50	8.75	11.75	14.75	20.75	12.00	3.00	9.18	18.57	5.76	2.94	2.00	0.31	1.3750	0.50	0.75 x 1
6MV	366	S	13.00	5.56	4.00	10.50	8.75	11.75	14.75	20.80	12.38	5.00	10.80	21.81	9.00	2.94	2.00	0.31	1.3750	0.50	0.75 x 1
6LV	538	F	20.00	9.06	4.00	10.50	8.75	11.75	14.75	20.75	15.00	6.00	14.31	28.81	9.00	2.93	2.00	0.31	1.3750	0.50	0.75 x 1
7HV	482	S	12.00	4.62	5.50	14.04	11.00	14.50	18.00	25.50	19.38	4.00	10.00	21.03	5.74	3.21	2.50	0.38	1.5620	0.50	0.75 x 1
7MV	638	F	17.50	7.37	5.50	14.04	11.00	14.50	18.00	25.50	17.00	6.00	12.75	26.53	11.24	3.21	2.50	0.38	1.5620	0.50	0.75 x 1
7LV	770	F	24.50	10.87	5.50	14.04	11.00	14.50	18.00	25.50	17.00	8.00	16.25	33.53	18.24	3.21	2.50	0.38	1.5620	0.50	0.75 x 1
8HV	736	S	13.50	5.75	6.00	16.00	12.50	16.50	20.50	29.12	20.00	4.00	11.69	23.85	7.76	3.86	2.50	0.38	1.7500	0.50	0.75 x 1
8MV	938	F	19.00	8.50	6.00	16.00	12.50	16.50	20.50	29.12	20.00	8.00	14.44	29.35	13.26	3.86	2.50	0.38	1.7500	0.50	0.75 x 1
8LV	1,170	F	27.00	12.50	6.00	16.00	12.50	16.50	20.50	29.12	20.00	10.00	18.44	37.35	21.26	3.86	2.50	0.38	1.7500	0.50	0.75 x 1

S=Threaded connections standard NPT. F=flange connections. Inlet and outlet connections are the same type and size. Dimensions are in inches. Weights are in pounds and include shipping cartons or pallets and are approximate.




THC
TOP HAND CENTRAL
(OPTIONAL ASSEMBLY)

BHC BOTTOM HAND CENTRAL (STANDARD ASSEMBLY)

CENTER TIMED FOR ROTATION IN EITHER DIRECTION

Genuine Gardner Denver Parts & Lubricants

- Maintain the Gardner Denver performance advantage and reliability with Genuine GD Replacement Parts available through authorized sales and service representatives
- Protect your Gardner Denver investment with AEON® PD, the only lubricant specially formulated for all blowers in any environment
 - Now available:
 - >> AEON® PD-XD (eXtreme Duty)
 - >> Designed specifically for high ambient and high discharge temperature applications
 - Also available:
 - >> AEON® PD (standard applications)
 - >> AEON® PD-FG (Food Grade)

Retain your Gardner Denver advantage with Genuine Replacement Parts

- Replacement parts incorporate the most recent design upgrades
- All parts meet original manufacturing specifications and tolerances for guaranteed fit and function
- Pre-packaged overhaul kits with detailed service manuals are available from your local authorized Gardner Denver distributor

www.GardnerDenverProducts.com pd.blowers@gardnerdenver.com Gardner Denver, Inc. 1800 Gardner Expressway, Quincy, IL 62305

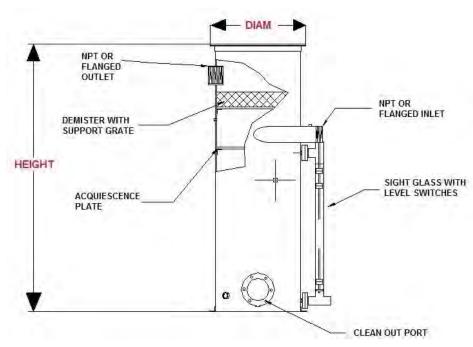
Telephone: (800) 682-9868 FAX: (217) 221-8780

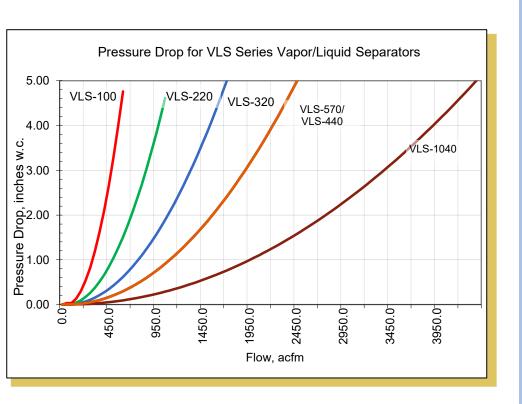
©2009 Gardner Denver, Inc. Printed in U.S.A. PD-SB-L 4th Ed. 10/09

VLS Series Vapor/Liquid Separators

Features & Specifications

- All Welded Steel construction, ASTM A-36 sheet steel
- 17" Hg vacuum design rating (optional full vacuum design available)
- Polypropylene demister element covering entire separator cross section to minimizes vapor velocity & maximize water coalescing
- Tangential inlet utilizing centrifugal force for gross water/air separation (95%+ By Volume)
- 2" PVC site glass with unions for easy removal
- Steel baffle cover over water holding volume to prevent reentrainment of water into air stream
- Stainless steel hermetically sealed float rod assembly (single or multiple floats)
- All zinc plated steel hardware
- Enamel external finish (optional internal & external finishes available)
- 99% + moisture removal of 10 micron and larger droplets (due to coalescing)
- Optional air filter with polyester element sized for specific blower, housed in separator (polyester element standard)
- \bullet 2" NPT half coupling for pump out or gravity drain, $1\!\!/\!\!4$ " NPT gage port on inlet
- Neoprene full face top cover gasket

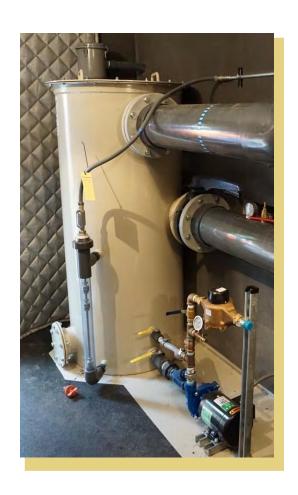



Applications

- Soil vapor extraction
- Dual phase extraction
- Liquid ring pump
- Vacuum or pressure
- Blowers-Side Channel/regenerative, multi-stage regenerative, positive displacement, and centrifugal
- Industrial industry
- Remediation industry
- Vapor GAC
- Bio venting systems
- Excavation venting

H2K Technologies, Inc. 7550 Commerce St Corcoran, MN 55340 Phone: 763.746.9900 Fax: 763.746.9903 www.H2KTECH.com Sales@H2KTech.com

Model Number	Inlet/Outlet Connection	Height In.	Diam. In.	Rated Flow SCFM	Separator Total Volume Gallons	Liquid Holding Volume Gallons	Shipping Weight Lbs.	Operating Weight Lbs.	Vacuum/ Rating, "Hg/PSI
VLS-033	3" FPT	30	18	500	33	10	50	160	17"Hg/9psi
VLS-082	4" FPT	44	24	500	82	30	90	325	17"Hg/9psi
VLS-100	4"/6" FPT	50	22	650	100	40	140	480	30"Hg/9psi
VLS-220	8"/10" 150 lb flange	72	30	1440	220	75	350	1,020	30"Hg/9psi
VLS-320	10"/12" 150lb flange	72	36	2600	320	110	450	1,356	30"Hg/9psi
VLS-440	12" 150lb flange	74	42	2600	440	150	625	1,860	17"Hg/9psi
VLS-570	12" 150 lb flange	74	48	2600	570	195	860	2,465	17"Hg/9psi
VLS-1040	16" Duct flange	84	60	4500	1,040	200	1,250	2,978	10"Hg/5psi
VLS-1500	20" Duct flange	85	72	7000	1,500	440	1,525	5,325	10"Hg/5psi
VLS-3055	32" Duct flange	96	96	11,000	3,055	780	1,820	8,532	10"Hg/5psi



Options

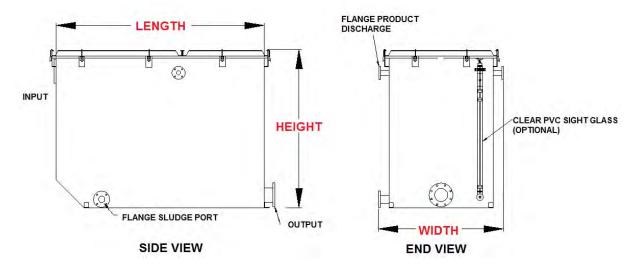
- Stainless steel or Fiberglass re-enforced plastic construction (low pressure)
- Stainless steel coalescer media
- ASME designed & stamped for vacuum or pressure
- Full vacuum design
- Immersion heaters, NEMA 4 or NEMA 7 for freeze protection
- 1" recirculation port for pumping under high vacuum
- Air filter material and sizes
- Enamel internal finish, epoxy coatings or hot dipped galvanized finish
- Flanged or NPT inlet and outlet connections
- Flow, pressure, level & temperature gages or transmitters
- Heat trace for classified or non-classified electrical areas for freeze protection
- Clean out Ports
- Internal aeration diffuser for low level stripping or iron oxidation
- DP gage across filter, demister or both
- R-5 insulation with jacket, (steel or aluminum jacket)
- Vacuum relief valve

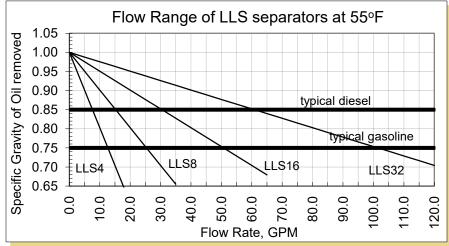
Additional Photos

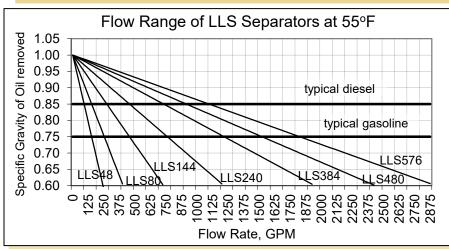
LLS Series Oil/Water Separators

Features & Specifications

- Removal of free phase gasoline (0.75 SG) product to less than 10 ppm or less typical
- Solids collection sump with sludge drain
- Set up standard for pump out or gravity drain
- PVC coalescing media with 3/4" spacing for resistance to plugging from solids or oil & grease (optional 1/4" spacing media available for higher removal efficiencies)
- Full removable top cover with quick release latches for easy access to entire separator for cleaning
- PVC adjustable height skimmer with gravity drain outlet
- PVC site glass
- 2" PVC site glass with flange connections for easy removal
- Epoxy coating inside & out on all steel units with urethane top coat on exterior
- Clear-well for pumping directly from unit
- Stainless steel hermitically sealed float rod assembly (single or multiple floats for gravity or pump operation)
- All zinc plated steel hardware
- Neoprene D gasket on cover for vapor tight seal
- All Welded Steel construction, ASTM A-36 sheet steel, or Fiberglass re-enforced plastic (FRP) construction on some models
- Removable media packs for cleaning and access to solids collection sump




Applications


- Oil/Water separation
- Wastewater treatment
- Light non-aqueous phase product removal
- Free Phase product separation
- Oil & Grease separation
- Dense non-aqueous phase product removal
- Groundwater treatment
- Solid settling
- Mixed oil grease, product & solids

H2K Technologies, Inc. 7550 Commerce St Corcoran, MN 55340 Phone: 763.746.9900 Fax: 763.746.9903 www.H2KTECH.com Sales@H2KTech.com

Model Number	Inlet/Outlet Connection	Height In.	Length In.	Dim Width In.	Skimmer Outlet Dia. In.	Media Horizontal Surface Area Ft ²	GPM at 0.75 S.G. oil, 55°F (typical gasoline)	Shipping Weight Lbs.	Operating Weight Lbs.	Clearwell Volume Gallons	Standard Material
LLS4	2" FPT	34	60	28	2"	192	13	95	976	45	FRP
LLS8	2" FPT	47	60	28	2"	384	25	170	1,635	65	FRP
LLS16	3" FPT	47	64	52	2"	768	50	325	3,432	162	FRP
LLS32	4" FPT	47	92	52	2"	1536	100	445	5,292	195	FRP
LLS48	6" 150 lb flng	72	100	52	2"	2304	150	2,100	9,193	271	Steel
LLS80	6" 150 lb flng	72	124	52	2"	3840	250	2,650	12,134	271	Steel
LLS144	8" 150 lb flng	100	133	100	4"	6912	450	7,582	42,966	1,716	Steel
LLS240	10" 150 lb flng	100	166	100	4"	11520	760	9,100	52,125	1,716	Steel
LLS384	10" 150 lb flng	100	202	100	4"	18432	1200	9,627	57,172	1,716	Steel
LLS480	10" 150 lb flng	100	256	100	4"	23040	1500	13,057	82,356	2,145	Steel
LLS576	12" 150 lb flng	100	292	100	6"	27648	1800	14,260	90,000	2,544	Steel

Options

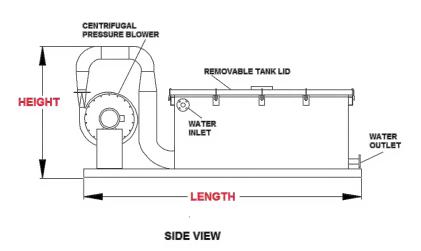
- Stainless steel construction
- Integral product storage sump with level switches
- Elevation stand for gravity drain
- Sludge pumps
- Flow, pressure, level & temperature gages or transmitters
- Immersion heaters, NEMA 4 or NEMA 7 for freeze protection
- 1/4" spaced PVC media for higher removal efficiencies
- Media racks to ease removal of media for cleaning
- 3/4" Polypropylene media in lieu of PVC
- R-5 insulation with jacket, (steel or aluminum jacket)
- Product storage drums and tanks, single or double wall, typical UL 142
- Oil reservoir trough for pumping product directly from skimmer with level switch(es)

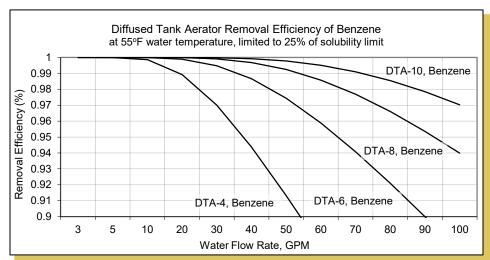
Additional Photos

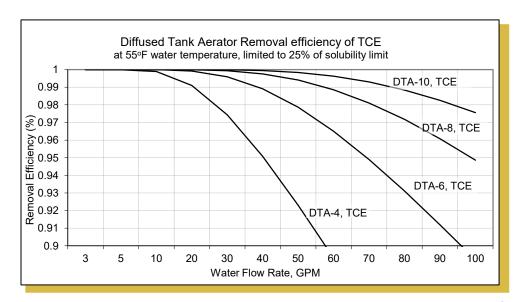
DTA Series Diffused Aeration Tank Stripper

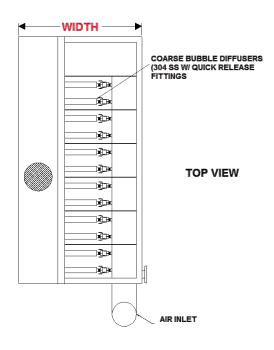
Features & Specifications (Patent pending)

- 304 Stainless steel welded tank construction
- Clearwell for pump out or gravity drain discharge
- (2) 304 Stainless steel fouling-resistant coarse bubble diffusers per chamber with PVC risers and unions above the water line for easy removal
- Centrifugal pressure blower operating under forced or induced draft, welded steel volute and stand, aluminum wheel, special coatings available
- Full removable top cover for easy access to entire cross section, D-ring buna-N cover gasket
- Over and under weirs and baffles to distribute water across each chamber for maximum residence time, aeration and removal efficiency
- Stainless steel hermetically sealed float rod assembly (single or multiple floats for pump control)
- \bullet 6" High steel skid125 lb flanged influent & effluent connections with conical gussets
- Flanged air inlet with diffuser for distribution
- Steel skid with C6x8.2 joists and frame members continuously welded at the ends, 3/16" steel deck with 1" fillet welds every 12" on center, fork pockets
- PVC air inlet transition piping with flexible coupling for vibration isolation
- Polypropylene demister on vapor discharge to remove 99% 0f 10 micron and larger droplets
- 3/4" Drain valves for sump and aeration chambers
- Internal PVC air distributor header
- Clearwell for pumping directly from unit
- 2" PVC Sump level site glass with flange connections for easy removal




Applications


- Groundwater /wastewater treatment
- Radon removal
- Removal of dissolved chlorinated organic compounds from water (TCE, PCE, TCA, DCA...)
- Removal of gasoline range organics (BTEX compounds), DRO & other hydrocarbons from water (including MTBE)
- Iron oxidation for subsequent filtration
- H2S Removal
- Carbon dioxide removal
- Methane removal
- THM's


H2K Technologies, Inc. 7550 Commerce St Corcoran, MN 55340 Phone: 763.746.9900 Fax: 763.746.9903 www.H2KTECH.com Sales@H2KTech.com

Model Number	Number of aeration chambers	Liquid Flow Range, GPM	Air flow SCFM	Length Feet	Height Feet	Width Feet	Inlet/Outlet connection, Standard	Vapor discharge connection, inches	Standard sump holding capacity Gallons	Shipping Weight Lbs.	Operating Weight Lbs.
DTA-4	4	1-225	320	10.5	5.5	3.5	2" FPT	(2) 4"	35	1,790	3,200
DTA-6	6	1-225	480	12.5	6	4	2" FPT	(2) 8"	40	2,665	6,240
DTA-8	8	1-225	640	14.5	6	4	2" FPT	(2) 8"	40	2,980	7,820
DTA-10	10	1-450	800	11.5	6	8	2" FPT	(2) 10"	80	3,570	9,250
DTA-12	12	1-450	960	12.5	6	8	4" 150lb flng	(2) 10"	80	3,990	10,100
DTA-16	16	1-450	1,280	15.5	6	8	4" 150 lb flng	(2) 10"	80	4,690	11,230

Options

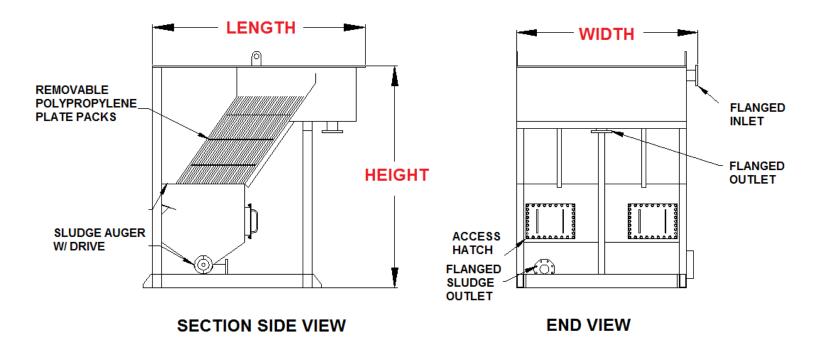
- Epoxy painted steel, fiberglass reinforced plastic construction or welded polypropylene construction
- Larger clearwell for more pump down volume
- High flow units up to 300 gpm
- Sound enclosure with urethane sound insulation to reduce sound level 10-15 dBA at 3
- Centrifugal discharge pump & level controls
- Heat trace or immersion heaters for classified or non-classified electrical areas for freeze protection
- Induced draft blower configuration for humidity
- R-5 insulation with jacket, (FRP or aluminum jacket)
- Custom control panel to control blower, pump and other equipment if required
- Process duct heater to lower humidity in off gas vapor before vapor GAC treatment
- Off gas ducting, FRP, PVC, coated or hot dipped galvanized steel construction
- Enclosures or trailer for freeze protection or mobility
- Flow, pressure, level & temperature gages or transmitters

Additional Photos

IPC Series DAF & Inclined Plate Clarifiers

Features and Specifications

- Suspended solids removal down to 2 ppm possible
- Parallel Plate Packs to increase effective settling area in a small footprint, polypropylene with SS rods, removable with lifting lugs, other materials available
- Counter-flow of settled solids and process flow minimizing solid re-entrainment
- Welded steel construction with sand blasted with epoxy lining and epoxy/urethane external finish, 304 stainless steel construction optional
- Inlet chamber with non-clog diffusers and baffle to distribute flow evenly across packing plates
- Sludge auger to thicken sludge and move it toward sludge outlet for efficient removal, access hatches to solids collection sump
- Clean Water Chamber with Adjustable Effluent Weir to further ensure even distribution across packing plates



Applications

- Removal of Suspended Solids
- Industrial Waste Metals and Sludge Separation
- Precipitated Iron Removal
- Fabricated Metal Plants
- Pulp and Paper Mills
- Railroad Yards

H2K Technologies, Inc. 7550 Commerce St Corcoran, MN 55340 Phone: 763.746.9900 Fax: 763.746.9903 www.H2KTECH.com Sales@H2KTech.com

Model Number	Length	Height	Width	Effective Settling	Nominal Flow Rate	Empty Weight	Operating Weight
				Area (Ft ²)	(gpm) at 0.25 gpm/ft^2	(Lbs)	(Lbs)
IPC-220	7'-4"	8'	4'	220	55	2,580	11,200
IPC-330	7'-4"	8'	6'	330	82.5	3,280	16,000
IPC-440	7'-4"	8'	8'	440	110	4,200	20,800
IPC-550	7'-4"	8'	10'	550	137.5	5,100	25,700
IPC-660	7'-4"	8'	12'	660	165	6,200	30,500
IPC-770	7'-4"	8'	14'	770	192.5	7,000	35,300
IPC-880	7'-4"	8'	16'	880	220	7,800	40,200
IPC-990	7'-4"	8'	18'	990	247.5	8,300	45,000
IPC-1100	7'-4"	8'	20'	1,100	275	9,100	49,800

Options

- Flash/Floculation Tanks with mixers
- Access catwalk with ladder for maintenance
- Chemical metering for pH, floc agents, and oxidizing agents
- 304 Stainless steel construction

Reference Photos

- Custom polyurethane or ETFE cable lengths
- ◆ Welded 316SS or titanium body
- ◆ Custom level ranges up to 700 ft. (210 m) H₂O
- ◆ Multiple analog output
- ◆ Multiple nose piece styles
- ◆ Optional lifetime lightning protection
- ◆ Long life vent filter or aneroid bellows
- ◆ Available molded cable seal

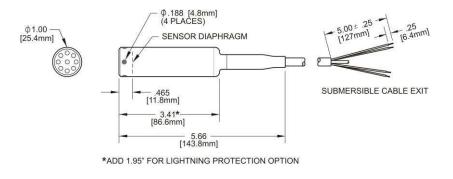
Applications

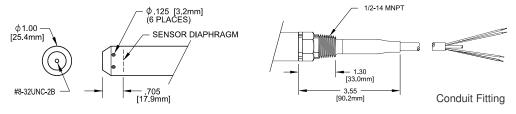
- ◆ Lift stations
- ◆ Pump control
- ◆ Level control
- Surface water monitoring
- ◆ Landfill leachate
- ◆ Well monitoring
- Groundwater monitoring

KPSI 700

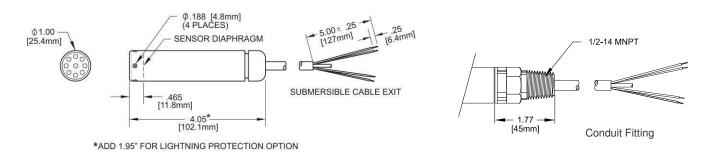
- Submersible level transducer
- ◆ ±1.00% FS static accuracy
- Custom built in two days
- Two year warranty

The KPSI 700 is a submersible hydrostatic level transducer specifically designed to meet the rigorous environments encountered in liquid level measurement and control. It can be configured to perform to specifications under most adverse, reactive conditions.

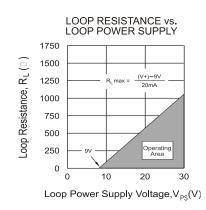

Every KPSI Transducer utilizes a highly accurate pressure sensor assembly specifically designed for hostile fluids and gases. The assembly is integrated with supporting electronics in a durable waterproof housing constructed of 316 stainless steel or titanium. The attached electrical cable is custom manufactured and includes para-aramid synthetic fiber members to prevent errors due to cable elongation, and a unique water block feature that self-seals in the event of accidental cuts to the cable. Each vented reference transducer is shipped with a SuperDry Vent Filter that prevents moisture from entering the vent tube for at least one year without maintenance, even in the most humid environments.

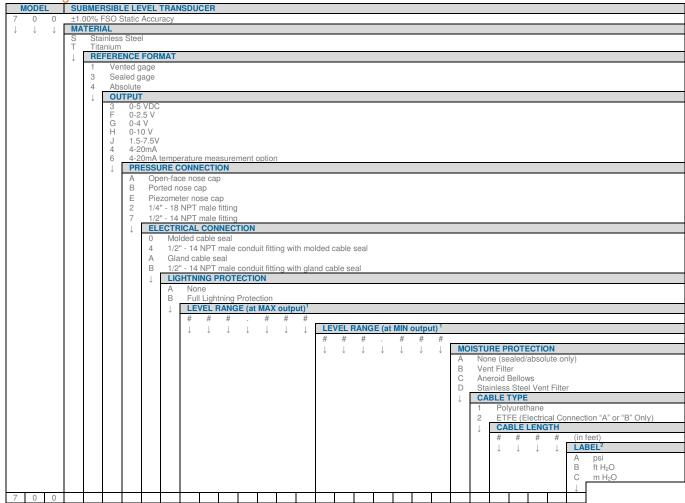

Specifications

PARAMETER		COMMENT
LEVEL RANGES		
	2.3 thru 700 ft. H_2O (0.70 thru 210 m H_2O)	Vented Gage Reference
Full Scale Level Ranges	10 thru 700 ft. H ₂ O (3 thru 210 m H ₂ O)	Sealed Gage Reference
(Intermediate level ranges are available)	35 thru 700 ft. H ₂ O (10 thru 210 m H ₂ O)	Absolute Gage Reference
Proof Pressure	1.5 x FS	
Burst Pressure	2.0 x FS	


STATIC PERFORMANCE		
Static Accuracy		
(combined effects of non-linearity,		
hysteresis and repeatability, best fit	±1.00% FSO	BFSL method
straight line method)		
Resolution	+0.0001% FS	
ENVIRONMENTAL	, 0.0001, 70.10	
	O1C CC or Thorium DOM: FIAM	
Wetted Materials	316 SS or Titanium; POM; FKM; Polyurethane or ETFE	
Compensated Temp Range	0 to 50°C	
Thermal Error		
(maximum allowable deviation	±0.05% FSO/ºC	Worse case over compensated temperature range
from the Best Fit Straight Line	±0.1% FSO/ºC	for ranges < 12 ft. (4 m) H ₂ O
due to a change in temperature)		
Operating Temp Range	-20 to 60 ^o C	When attached to polyurethane cable
Protection Rating	IP 68, NEMA 6P	
ELECTRICAL		
Excitation	9-28V – VDC output	0-5 V, 0-2.5 V, 0-4 V
	9-28V – mA output	4-20
	15-28V – VDC output	0-10 V
	10-28V – VDC output	1.5-7.5 V
Input Current	20 mA max., 3.5 mA max.	For mA output, for VDC output
Output	4-20 mA, 0-5 VDC, 0-2.5 VDC,	For ranges < 5 ft. (1.5m) H ₂ O,
	0-4 VDC, 0-10 VDC, 1.5-7.5 VDC	only 4-20mA output is available
Zero Offset	±0.25 mA for mA output	
	< 0.25 VDC for VDC output	
Output Impedance	See loop diagram for mA output	
	20 ohm for VDC output	
Insulation Resistance	100 mega ohm at 50 VDC	
Circuit Protection	Polarity, surge/shorted output	
CERTIFICATIONS		
	CE compliant	EN 61326-1:2013 and 61326-2-3:2013
	UL, CUL and FM	Class I, II, III, Div. 1, Groups A,B,C,D,E,F&G
	WEEE/RoHS	Waste from Electrical and Electronic Equipment
		(WEEE) and Restrictions on the use of Hazardous Substances (RoHS)
PHYSICAL		Cubstances (none)
Approximate Weight	0.44 lbs. (198 g) transducer	
Approximate Weight	0.05 lbs./ft. (79 g/m) cable	
Cable Jacket Material	Polyurethane (Standard), ETFE (Optional)	
Cable Pull Strength	200 lbs (90 kg)	Polyurethane
Cable Number of Conductors		i diyurethane
	4 max.	
Cable Conductor Size	22 AWG	For polywrothono coble
Cable Seal	Molded Polyurethane FKM Gland	For polyurethane cable For ETFE cable
TEMPERATURE OUTPUT OPTI	ON (Not Intrinsically safety approved)	
Temperature Range	-20 to 60ºC	Available for 4-20 mA output versions only
Output Signal	4-20 mA	
Temperature Measurement Accuracy	±4ºC	±1°C with single point calibration
	er supply needs to be limited to 150mA to avoid lock up	of the gas tube after a suppression event)
Life Expectancy	>1,000 Operations	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Peak Clamping Voltage	36 Volts	
Response Time	<10 nsecs	
Shunts		
Siluilo	20,000 Amperes	

Dimensions


Molded Cable Seal Configuration for Polyurethane Cable


Gland Cable Seal Configuration for ETFE Cable

Electrical Termination / Loop Resistance

ELECTRICAL TERMINATION								
22AWG CONDUCTORS IN A SHIELDED CABLE WITH VENT TUBE								
4-20 mA	RED BLACK	+ EXCITATION - EXCITATION						
0-5 VDC	RED BLACK WHITE	+ EXCITATION - EXCITATION + SIGNAL						
ALL	DRAIN WIRE	SHIELD						

Ordering Information

The part number requires two level range limits, corresponding to the maximum and minimum analog outputs of the transducer, to be specified in **pounds per square inch (psi)** to three decimal places. The lower level range is typically 000.000 unless otherwise required. For reverse output requirements, enter the lower level range for the maximum output signal and the upper range for the minimum output. Use the following conversion factors: Ft. H₂O / 2.3073 = **psi** // m H₂O / 0.703265 = **psi**Examples: 10 ft. H₂O / 2.3073 = 4.334 psi (Enter 004.334 in the part number), 10 m H₂O / 0.703265 = 14.219 psi (Enter 014.219 in the part number)

For sealed gage reference add local atmosphere when converting to psi. Contact PSI for assistance.

Example:10 ft. H₂O / 2.3073 + 14.7 = 19.034 psi (Enter 019.034 in the part number)

Units of measure on standard MEAS label. Contact Measurement Specialties if private labeling is required.

NORTH AMERICA

Notes

Measurement Specialties, Inc., a TE Connectivity company Tel: 1-800-522-6752 Email: customercare.hmpt@te.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity company Tel: +33 (0) 800-440-5100 Email: customercare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity company Tel: +86 755 3330 5088 Email: customercare.shzn@te.com

te.com/sensorsolutions

Measurement Specialties Inc., a TE Connectivity company

Measurement Specialties (MEAS), American Sensor Technologies (AST), TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

SP

Submersible pumps, motors, and accessories North America, 60 Hz

1.	Product data Introduction Pump Energy Index Applications Features and benefits Performance range 60 Hz Pump range Motor protection and controllers range Identification	3 3 4 4 10 11 11
2.	Construction Sectional drawing, SP pump 4" spline shaft (SP 5S - 25S) Sectional drawing, SP pump 4" smooth shaft (SP 35S - 77S) Sectional drawing, SP pump 6" (SP 85S - 300S) Sectional drawing, SP pump 8" (SP 385S - 475S) Sectional drawing, SP pump 10" (SP 625S - 1100S) Sectional drawing, MS motors Sectional drawing, MMS motors	14 14 15 16 17 18 19 20
3.	Operating conditions Operating conditions	21 21
4.	Selection 5S - 25S easy selection charts	22 22
5.	Performance curves and technical data How to read the curve charts Curve conditions	27 27 28
6.	Curve charts and technical data 4" and larger wells SP 5S (5 gpm) SP 7S (7 gpm) SP 10S (10 gpm) SP 16S (16 gpm) SP 25S (25 gpm) SP 35S (35 gpm) SP 45S (45 gpm) SP 62S (62 gpm) SP 77S (77 gpm) 6" and larger wells SP 85S (85 gpm) SP 150S (150 gpm) 6" and larger wells - continued SP 230S (230 gpm) SP 300S (300 gpm) 8" and larger wells SP 385S (385 gpm) SP 475S (475 gpm) 10" and larger wells SP 625S (625 gpm) SP 800S (800 gpm) SP 800S (800 gpm) SP 1100S (1100 gpm)	29 29 29 31 33 35 37 39 44 49 53 57 66 69 75 81 81 86 91 91 96 101

7.	Electrical data	106
8.	Approvals	108
9.	Accessories Grundfos RSI	109
	(Renewable Solar Inverter)	109
	CU331SP variable frequency drive	111
	CU331SP installation	117
	CU331SP electrical connection	118
	CU331SP technical data	124
	CUE variable frequency drive	134
	MP 204	136
	Connecting pieces	141
	Zinc anodes	142
	SA-SPM 6 control boxes	143
	Pt100/Pt1000	144
10.	Energy consumption	146
	Energy consumption of submersible pumps	146
11.	Cables	147
	Cable sizing charts	147
12.	Friction loss tables	152
13.	Grundfos Product Center	154

1. Product data

Introduction

The Grundfos SP range of submersible pumps is renowned for high efficiency and reliability. SP pumps are ideal for a wide variety of applications and are made entirely of corrosion resistant stainless steel.

Grundfos SP pumps represent state-of-the-art hydraulic design. SP pumps are built to deliver optimum efficiency during periods of high demand, and they provide low long-term costs and high operating reliability regardless of the application.

The SP range offers high efficiency, high resistance to sand and other abrasives, motor burnout protection, and easy maintenance. A complete monitoring and control system is available for constant optimization of the pumping system.

Fig. 1 Grundfos SP pumps

Pump Energy Index

Pump Energy Index (PEI) was established by the U.S. Department of Energy (DOE) and adopted by Canada as the standard metric used to evaluate pump efficiency. The value is the ratio of the pump efficiency rating (PER) divided by the calculated minimally compliant PER (PER_{STD}) for the pump type. This provides a representation of a pump's actual performance compared to the minimal standard performance required by regulation. The lower the PEI value, the more efficient a pump is at the tested operating points.

PER is determined by defined testing parameters required by the DOE. This includes testing a particular pump model at its best efficiency point (BEP).

For PEI values there are two different versions:

- PEI_{CL} (constant load): Applies to a bare-shaft pump, and a pump sold with a motor
- PEI_{VL} (variable load): Applies to pumps sold with a motor and controller (such as VFD, VSD)

The DOE has set the maximum PEI value as 1.00. Any pump, pump and motor, or pump, motor and controller that exceeds a PEI value of 1.00 can no longer be manufactured after January 26, 2020.

PEI is a generalized efficiency value. PEI cannot be used to determine the efficiency of a pump in a specific application.

Pump type	Pole	PEI _{CL} bare-shaft pump	PEI _{CL} pump with motor	PEI _{VL} pump with motor plus controller*	Impeller diameter [in (mm)]
25S		0.93	0.93	0.59	2.87 (72)
35S		0.85	0.87	0.54	2.88 (73)
45S		0.84	0.84	0.54	2.87 (72)
62S		0.88	0.88	0.54	2.78 (71)
77S	2	0.89	0.91	0.54	2.78 (71)
85S		0.82	0.85	0.52	3.49 (89)
150S		0.91	0.91	0.56	3.52 (89)
230S		0.92	0.92	0.54	3.87 (98)
300S		0.92	0.92	0.53	3.90 (99)

^{*}Grundfos CUE continuous controls.

TM06 4950 3315

Applications

Grundfos large SP submersible pumps are suitable for:

- Groundwater supply to waterworks
- irrigation in horticulture and agriculture
- groundwater lowering (dewatering)
- pressure boosting
- industrial applications
- domestic water supply.

Pumped liquids

Grundfos SP pumps are suitable for pumping clean, thin, non-aggressive liquids without solid particles or fibers.

SP offers stainless steel construction which ensures good wear resistance and a reduced risk of corrosion where the water has minor chloride content.

Optional, upgraded stainless steel construction is available for pumping more aggressive liquids:

- A complete range of zinc anodes for cathodic protection is available. See page 142 for applications, for example, sea water applications.
- · For slightly polluted liquids, such as containing oil, Grundfos offers a complete range of stainless steel SP NE pumps with all rubber parts made of FKM.

Features and benefits

Grundfos SP submersible pumps offer these features and benefits:

- State-of-the-art hydraulics provide high efficiency and low operating costs
- 100 % stainless steel components inside and outside for long service life
- sand resistant
- resistant to aggressive water
- dry-running protection
- monitoring, protection and communication via
 - protection unit MP 204
 - Grundfos GO.

A wide pump range

Grundfos offers energy-efficient SP submersible pumps with a performance range of up to 1,400 gpm (318 $\,{\rm m}^3/{\rm h}$) and 2,100 ft (640 m) of head.

The pump range consists of many pump sizes, and each pump size is available with an optional number of stages to match any duty point.

High pump efficiency

Often pump efficiency is given less consideration than the price of a pump; however, owners who choose efficiency will find substantial savings in energy costs over time. See fig. 2 for an illustration of SP efficiencies in relation to flow rate.

Example

For example, a pump and motor with a 10 % higher efficiency than a cheaper, less efficient pump, can save its owner more than \$80,000 over 10 years*.

* If producing 880 gpm at 325 ft of head for 10 years at 13.8 cents per kWh. U.S. kWh costs range from 6 cents to more than 20 cents, depending on region.

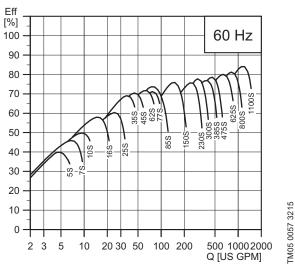


Fig. 2 SP pump and motor efficiencies in relation to flow rate

Pump design

Grundfos SP submersible pumps feature components that contribute to the superior performance and durability of the range.

Lower installation costs

Stainless steel means low weight for ease in the handling of pumps, resulting in lower equipment costs and reduced installation and service time.

Bearings with sand channels

All bearings are water-lubricated and have a squared shape enabling sand particles, if any, to leave the pump together with the pumped liquid.

Fig. 3 Bearing

Inlet strainer

The inlet strainer prevents particles over a certain size from entering the pump.

TM00 7302 1096

Fig. 4 Inlet strainer

Check valve

All pumps are equipped with a reliable check valve in the valve casing preventing back flow in connection with pump stoppage.

Furthermore, the short closing time of the check valve means that the risk of destructive water hammer is reduced to a minimum.

The valve casing is designed for optimum hydraulic properties to minimize the pressure loss across the valve and thus to contribute to the high efficiency of the pump.

Note: As shown in fig. 5 the check valve is spring-assisted intended for vertical pump applications. When installing pump at an angle, installation requires an additional check valve installed in the outlet piping. This prevents misalignment or failure to seat the pump check valve at an angle. Additional check valves in outlet piping are sold separately.

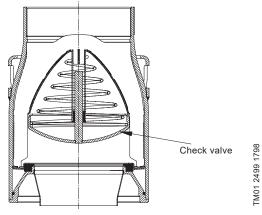


Fig. 5 Check valve

Priming screw

All Grundfos 4" pumps with radial impellers are fitted with a priming screw. Consequently, dry running is prevented because the priming screw will make sure that pump bearings are always lubricated.

Due to the semi-axial impellers of large SP pumps, this priming is provided automatically.

However, it applies to all pump types that if the water table is lowered to a level below the pump inlet, neither pump nor motor will be protected against dry running.

Fig. 6 Priming screw

FM00 7304 1096

Stop ring

The stop ring prevents damage to the pump during transport and in case of up-thrust in connection with startup.

The stop ring, which is designed as a thrust bearing, limits axial movements of the pump shaft.

Example: SP 385S

The stationary part of the stop ring (A) is secured in the upper intermediate chamber.

The rotating part (B) is fitted above the split cone (C).

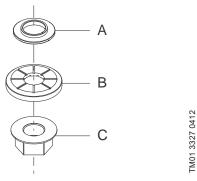


Fig. 7 Stop ring (rotating and stationary part) and the split cone

TM03 3478 0406

Grundfos submersible motors

A complete motor range

Grundfos offers a complete submersible motor range in different voltages. For an overview of motor types, sizes and voltages, see page 106.

- MS 402 is designed for the domestic ground water market and covers outputs.
- The MS 4000 and MS 6000C series are designed for use in a variety of applications in water supply. When equipped with features like oversized motor, temperature measurement, cooling jacket, and SiC/SiC mechanical shaft seals, these motors are suitable for heavy-duty industrial applications, such as dewatering operations.

As a standard, all external surfaces of Grundfos MS motors in contact with water are made of AISI 304 stainless steel. For aggressive water, such as seawater or brackish water, R versions made of AISI 904L are available.

Grundfos rewindable MMS motor range

Grundfos MMS motors are suitable for any submersible installation, including heavy-duty industrial applications and dewatering operations (when equipped with temperature control, oversized motor, cooling jacket, and SiC/SiC mechanical shaft seals).

As standard MMS motors are supplied with black cast-iron end-bells. Optionally, the range is available in all-stainless steel AISI 316 or AISI 904L versions.

The 2-pole Grundfos MMS submersible motors are all easy to rewind. The windings of the stator are made of a special waterproof wire of pure electrolytic copper sheathed with special non-hydroscopic thermoplastic material. The fine dielectric properties of this material allow direct contact between the windings and the liquid for efficient cooling of the windings.

FM00 7305 1096 - GrA4011 - GrA4013

Fig. 8 Grundfos MS motors

Fig. 9 Grundfos MMS motors

Industrial submersible motors and MS 6000C T60 versions

For heavy-duty applications Grundfos offers a complete motor range of industrial motors with up to 5 % higher efficiency than that of Grundfos' standard

The cooling of the motor is very efficient due to the large motor surface. The efficient cooling makes it possible to increase the liquid temperature on T60 motors to 140 °F (60 °C) at a minimum flow rate of 3.3 fps (1.0 m/s) past the motor.

The industrial motors are for customers who value low operating costs and long life higher than price.

Grundfos industrial motors are developed for difficult operating conditions. These motors will stand a higher thermal load than standard motors and thus have a longer life when subjected to high load. This applies whether the high load is caused by bad power supply, hot water, bad cooling conditions, high pump load etc. Please note that heavy duty motors are longer than motors for standard conditions.

GRUNDFOS X

Overtemperature protection

Accessories for protection against overtemperature are available for both Grundfos MS and MMS submersible motors. When the temperature becomes too high, the protection device will cut out so damage to the pump and motor can be avoided.

Restart of the motor after cut-out can be achieved in two ways:

- · manual restart
- · automatic restart.

Automatic restart means that MP 204 attempts to restart the motor after 15 minutes. If the first attempt is not successful, restarting will be reattempted at 30-minute intervals.

MS: The Grundfos MS submersible motors (with the exception of MS 402) are available with a built-in Tempcon temperature transmitter for protection against overtemperature. By means of the transmitter, it is possible to read out and/or monitor the motor temperature via an MP 204.

The Grundfos MS 402, MS 4000, and MS 6000C submersible motors can be fitted with a Pt100/Pt1000. Pt100/Pt1000 is fitted in the motor and connected directly to MP 204 or monitored by the PR 5714 relay.

MMS: For the protection of the Grundfos MMS submersible motors against overtemperature, Grundfos offers the Pt100/Pt1000 temperature sensor as an optional extra.

Pt100/Pt1000 is fitted in the motor and connected directly to MP 204 or monitored by the PR 5714 relay.

Protection against upthrust

In case of a very low counter pressure in connection with startup, there is a risk that the entire chamber stack may rise. This is called upthrust. Upthrust may damage both pump and motor. Grundfos pumps and motors are protected against upthrust as standard, preventing upthrust from occurring during the critical startup phase. The protection consists of either a built-in stop ring or hydraulic balancing.

Built-in cooling chambers

In all Grundfos MS submersible motors, efficient cooling is ensured by cooling chambers at the top and at the bottom of the motor, and by an internal circulation of motor liquid. See fig. 10.

As long as the required flow velocity past the motor is maintained, cooling of the motor will be efficient.

Lightning protection

The smallest Grundfos submersible motors, such as MS 402, are all insulated in order to minimize the risk of motor burnout caused by lightning strike.

Reduced risk of short-circuit

The embedded stator winding in the Grundfos MS submersible motor is hermetically enclosed in stainless steel. The result is high mechanical stability and optimum cooling. Also, this eliminates the risk of short-circuit of the windings caused by water condensation.

Shaft seal

MS 402

The shaft seal is of the lip seal type characterized by low friction against the rotor shaft.

The rubber material offers good wear resistance, good elasticity and resistance to particles, and it is approved for use in drinking water.

MS 4000

Ceramic/carbon materials provide the MS shaft seals with optimum sealing, optimum wear resistance and long life.

MS 6000C

The MS 6000C shaft seal material is SiC/SiC. The spring loaded shaft seal is designed with a large surface and a sand shield. The result is a minimum exchange of pumped and motor liquids and no penetration of particles.

Motors, version R, are supplied with a SiC/SiC shaft seal. Other combinations are available on request. See figs 10 and 11 for an illustration of shaft seal components and configuration.

MMS rewindable motors

The standard shaft seal is a SiC/SiC mechanical shaft seal. The shaft seal is replaceable.

The material features good wear resistance and resistance to particles.

Together with the shaft seal housing, the sand shield forms a labyrinth seal, which during normal operating conditions prevents penetration of sand particles into the shaft seal.

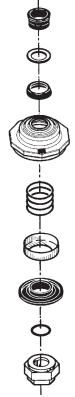
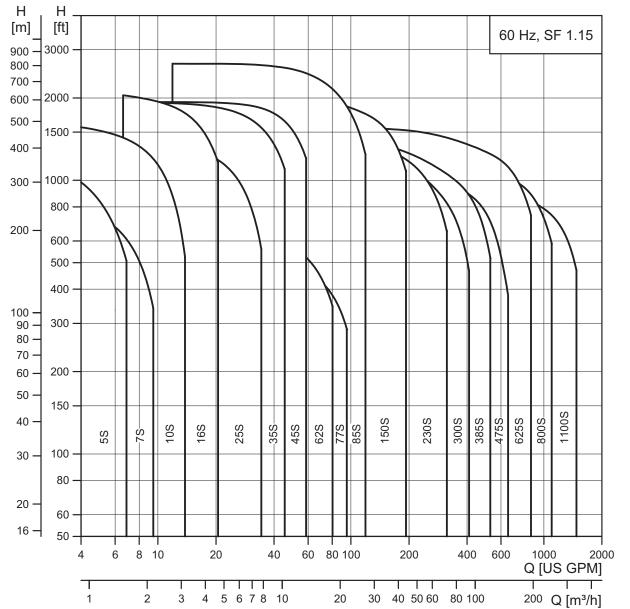



Fig. 10 Shaft seal, MS 4000

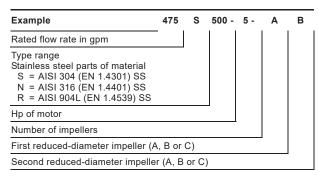
Fig. 11 Shaft seal, MS 6000C

Performance range 60 Hz

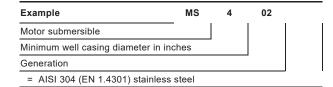
Pump range

Туре		5S	108	168	25S	35S	45S	62S	77S	85S	150S	230S	300S	385S	475S	625S	800S	1100S
AISI 304 (EN 1.4301) stainless steel		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AISI 316 (EN 1.4401) stainless steel				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AISI 904L (EN 1.4539) stainless steel)				•	•	•	•	•	•	•	•	•	•	•	•	•	•
Connection ★ N	РТ	1"	1.25"	1.25"	1.5"	1.5" (2")	2" (2")	2"	2"	(3")	(3")	3" (4")	3" 4"	4"	6"	6"	6"	6"
Flange connection: Grundfos flange														4"	6"	6"	6"	6"

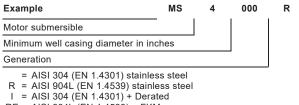
[★] Figures in brackets () indicate connection for pumps including sleeve and male thread.


Motor protection and controllers range

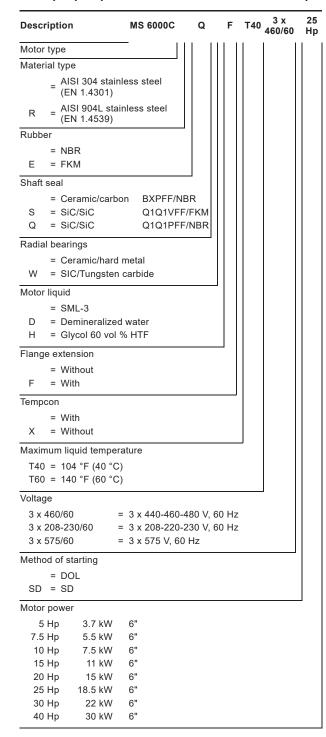
Motor output [Hp]	0.5	0.75	1.0	1.5	1.5	3.0	5.0	7.5	10.0	15	20	25	30	40	50	60	75	100	125	150	175	200	250
MP 204	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Pt100							•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Pt1000	•	•	•	•	•	•	•	•															
Zinc anode				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Vertical flow sleeve	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Horizontal flow sleeve	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SA-SPM6	•	•	•	•	•	•	•																
GO remote	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
RS-485 communication module	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•


Motor protection of single-phase motors, see page 106.

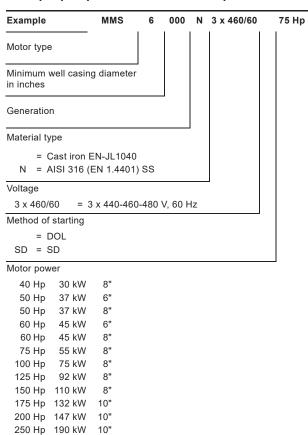
Identification


Type key, SP pumps

Type key, MS 402 motors


Type key, MS 4000 motors

- RE = AISI 904L (EN 1.4539) + FKM
- EI = AISI 304 (EN 1.4301) + Derated + FKM


Type key, MS 6000C

Example pump: MS 6000CQFT40 3 x 460/60 25 Hp

Type key, MMS motors

Example pump: MMS 3 x 460/60 75 Hp

2. Construction

Sectional drawing, SP pump 4" spline shaft (SP 5S - 25S)

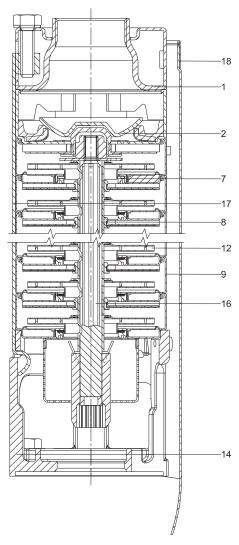


Fig. 12 SP pump, 4" spline shaft (SP 5S - 25S)

Material specification

			Standard	N-version	R-version
Pos.	Component	Material	Otanidard	14-46131011	14-46131011
				[AISI (EN)]	
1	Valve casing	Stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)
2	Valve cup	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
7	Neck ring	Elastomer	NBR/TPU	NBR/TPU	NBR/TPU
8	Bearing	Elastomer	NBR	NBR	NBR
9	Chamber	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
12	Impeller	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
14	Suction interconnector	Cast stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)
16	Shaft complete	Stainless steel	431 (1.4057)	329 (1.4460)	904L (1.4462)
17	Strap	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
18	Cable guard	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
	Washer for stop ring	Carbon/graphite	HY22 in PTFE mass	HY22 in PTFE mass	HY22 in PTFE mass
	Strainer	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
	Valve seat	Elastomer	NBR	NBR-FKM	NBR-FKM

TM06 1193 1614

Sectional drawing, SP pump 4" smooth shaft (SP 35S - 77S)

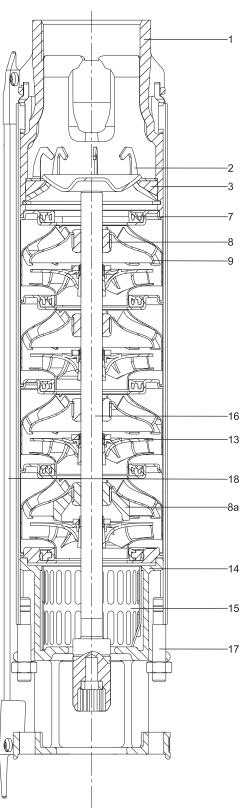


Fig. 13 SP pump, 4" smooth shaft (SP 35S - 77S)

Material specification

Pos.	Component	Material	Standard	N-version	R-version				
PUS.	Component	Material		[AISI (EN)]					
1	Valve casing	Cast stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)				
2	Valve cup	Cast stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)				
3	Valve seat	NBR-FKM	NBR-FKM	NBR-FKM	NBR-FKM				
7	Neck ring	TPU/PPS-FKM	TPU/ PPS-FKM	TPU/ PPS-FKM	TPU/ PPS-FKM				
8	Bearing	LSR-FKM	LSR/FKM	LSR/FKM	LSR/FKM				
8a	Washer for stop ring	Carbon/graphite	HY22 in PTFE mass	HY22 in PTFE mass	HY22 in PTFE mass				
9	Chamber	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)				
13	Impeller	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)				
14	Suction interconnector	Cast stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)				
15	Strainer	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)				
16	Shaft complete	Stainless steel	1.4057	1.4460	1.4462				
17	Strap	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)				
18	Cable guard	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)				

TM06 1110 1614

Sectional drawing, SP pump 6" (SP 85S - 300S)

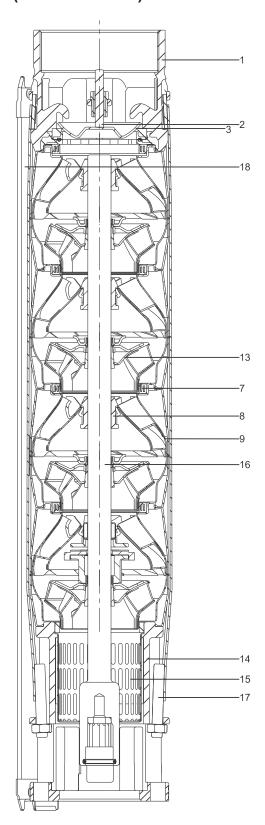


Fig. 14 Example, SP pump, 6" (SP 85S - 300S)

Material specification

Pos.	Component	Material	Standard	N-version	R-version
FUS.	Component	Material		[AISI (EN)]	
1	Valve casing	Stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)
2	Valve cup	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
3	Valve seat	Elastomer	NBR-FKM	NBR-FKM	NBR-FKM
7	Neck ring	Elastomer	NBR-FKM	NBR-FKM	NBR-FKM
8	Bearing	NBR-FKM-LSR	NBR-FKM- LSR	NBR-FKM- LSR	NBR-FKM- LSR
9	Chamber	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
13	Impeller	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
14	Suction interconnector	Cast stainless steel	304 (1.4308)	316 (1.4408)	904L (1.4517)
15	Strainer	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
16	Shaft complete	Stainless steel	431 (1.4057)	329 (1.4460)	904L (1.4462)
17	Strap	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)
18	Cable guard	Stainless steel	304 (1.4301)	316 (1.4401)	904L (1.4539)

Sectional drawing, SP pump 8" (SP 385S - 475S)

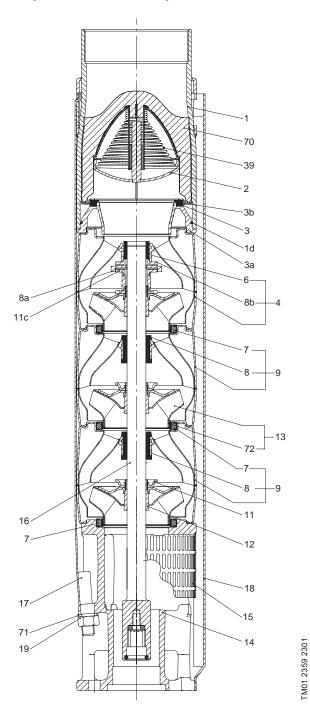


Fig. 15 SP pump, 8" (SP 385S - 475S)

Material specification

1	Pos.	Component	Materials	Standard	N version	R version
1		·			[AISI (EN)]	
1d	1	Valve casing	Stainless steel			904L
2 Valve cup Stainless steel 304	1d	O-ring	Elastomer		. ,	(1.4539) NBR
1.4301 (1.4401) (1.45)				304	316	904L
Stainless steel					. ,	(1.4539) FKM
Tetainer		Lower valve seat		316	316	904L
Top chamber Stainless steel (1.4301) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.4401) (1.45) (1.4401) (1.4401) (1.45) (1.4401) (1.4401) (1.45) (1.4401) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.4401) (1.45) (1.45) (1.4401) (1.45)					, ,	(1.4517) 904L
Top chamber Stainless steel (1.4301) (1.4401) (1.45)	3b		Stainless steel			(1.4539)
6 Upper bearing steel/NBR (1.4301) (1.4401) (1.451) 7 Neck ring Elastomer (optional FKM) NBR/PPS NBR/PPS NBR/PPS NBR/F 8 Bearing Elastomer (optional FKM) NBR NBR NBR 8a Washer for stop ring Carbon graphite HY22 in PTFE mass PTFE HY22 in PTFE mass PTFE mass 8b Stop ring Stainless steel 316 (1.4401) (1.4401) (1.4501) 316 (1.4401) (1.4401) (1.4501) 904 9 Chamber Stainless steel 304 (1.4301) (1.4401) (1.4501) 316 (1.4401) (1.4501) 904 11c Nut for stop ring Stainless steel 316 (1.4301) (1.4401) (1.4501) 316 (1.4401) (1.4501) 904 12 Split cone Stainless steel 304 (1.4301) (1.4401) (1.4501) 316 (1.4301) (1.4401) (1.4501) 904 13 Impeller Stainless steel 304 (1.4301) (1.4401) (1.4501) 316 (1.4301) (1.4401) 904 14 Suction interconnector Stainless steel 304 (1.4301) (1.4401) (1.4501) 1.4501 15 St	4	Top chamber	Stainless steel			904L (1.4539)
7 Neck ring Elastomer (optional FKM) (optional FKM) NBR/PPS	6	Upper bearing				904L (1.4539)
Bearing	7	Neck ring	Elastomer			NBR/PPS
Searing Coptional FKM NBR NBRR NB		Neck Hillig	, , ,			NDIV/FF3
8a Washer for stop ring Carbon HY22 in PTFE mass PTFE mass HY22 in PTFE mass PTFE mass PTFE mass HY22 in PTFE mass HY22 in PTFE mass PTFE mass PTFE mass PTFE mass HY22 in PTFE mass PTF pTF mass PTF pTF mass PTF pTF pTF pTF PTF pTF pTF pTF PTF pTF pTF PTF pTF pTF pTF PTF	8	Bearing		NBR	NBR	NBR
Stop ring Carbon PTFE HY22 in pTFE mass PTFE		Washer for			graphite	graphite HY22 in
Mass PIFE Mass	8a		Carbon			PTFE
Stop ring Stainless steel (1.4401) (1.4401) (1.45) 9		. 0			PTFE mass	mass
9 Chamber Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 11 Split cone nut Stainless steel 316 316 904 (1.4301) (1.4401) (1.45) 11c Nut for stop ring Stainless steel 316 316 904 (1.4401) (1.4401) (1.45) 12 Split cone Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 13 Impeller Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 14 Suction 316 304 316 904 (1.4301) (1.4401) (1.45) 15 Strainer Stainless steel 304 316 904 (1.4308) (1.4401) (1.45) 16 Shaft complete Stainless steel 431 329 329 (1.4301) (1.4401) (1.45) 17 Strap Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 18 Cable guard Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 19 Nut for strap Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 19 Spring for valve cup Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 39 Spring for valve cup Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 30 Spring for valve cup Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 30 Spring for valve cup Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 30 Spring for valve Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 30 Spring for valve Cup Stainless steel 304 316 904 (1.4301) (1.4401) (1.45)	8b	Stop ring	Stainless steel			904L (1.4539)
11 Split cone nut Stainless steel 304 316 904	9	Chamber	Stainless steel	304	316	904L
11c Nut for stop ring Stainless steel 316 316 (1.4401) (1.45) 12 Split cone Stainless steel 304 316 904 13 Impeller Stainless steel 304 316 904 14 Suction Interconnector Stainless steel 304 316 904 15 Strainer Stainless steel 304 316 904 16 Shaft complete Stainless steel 304 316 904 17 Strap Stainless steel 431 329 325 18 Cable guard Stainless steel 304 316 904 19 Nut for strap Stainless steel 304 316 904 19 Spring for valve Stainless steel 304 316 904 19 Stainless steel 304 316 904 19 Spring for valve Stainless steel 304 316 904 19 Stainless steel 304 316 904 19 Spring for valve Stainless steel 304 316 904 19 Stainless steel 304 316 904 10 Spring for valve Stainless steel 304 316 904 11 Strap Stainless steel 304 316 904 12 Spring for valve Stainless steel 304 316 316 304 316 304 316 304 316 SAF 2 307 Stainless steel 304 316 316 308 316 304 316 316 309 Spring for valve Stainless steel 304 316 300 300 316 300 300 300 316 300 300 300 316 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300		0.111				(1.4539) 904L
11c Nut for stop ring Stainless steel (1.4401) (1.4401) (1.4401) (1.451) 12 Split cone Stainless steel 304 316 904 13 Impeller Stainless steel 304 316 904 14 Suction interconnector Stainless steel 304 316 904 15 Strainer Stainless steel 304 316 904 16 Shaft complete Stainless steel 431 329 329 17 Strap Stainless steel 304 316 904 18 Cable guard Stainless steel 304 316 904 18 Cable guard Stainless steel 304 316 904 19 Nut for strap Stainless steel 304 316 904 19 Spring for valve cup Stainless steel 304 316 904 14401) (1.4301) (1.4401) (1.4501) (1.4501) (1.4501)	11	Split cone nut	Stainless steel		. ,	(1.4539)
12 Split cone Stainless steel (1.4301) (1.4401) (1.4501) 13 Impeller Stainless steel 304 316 904 14 Suction interconnector Stainless steel 304 316 904 15 Strainer Stainless steel 304 316 904 16 Shaft complete Stainless steel 431 329 329 17 Strap Stainless steel 304 316 904 17 Strap Stainless steel 304 316 904 18 Cable guard Stainless steel 304 316 904 19 Nut for strap Stainless steel 304 316 904 19 Spring for valve cup Stainless steel 304 316 904 14,4301) (1,4401) (1,4501) (1,4501) (1,4401) (1,4501) 19 Nut for strap Stainless steel 304 316 904 10 S	11c	Nut for stop ring	Stainless steel			904L (1.4539)
13 Impeller Stainless steel 304 (1.4301) (1.4401) (1.45) 316 (1.4401) (1.45) 904 (1.4301) (1.4401) (1.45) 14 Suction interconnector Stainless steel 304 (1.4308) (1.4408) (1.4408) (1.45) 316 904 (1.4301) (1.4401) (1.45) 15 Strainer Stainless steel 431 329 329 (1.4057) (1.4460) (1.440) 329 329 (1.4057) (1.4460) (1.4401) (1.45) 17 Strap Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 904 (1.4301) (1.4401) (1.45) 18 Cable guard Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 19 Nut for strap Stainless steel 304 316 904 (1.4301) (1.4401) (1.45) 39 Spring for valve cup Stainless steel 304 316 (1.4301) (1.4401) (1.45) 70 Valve quide Stainless steel 304 316 904	12	Split cone	Stainless steel			904L (1.4539)
14 Suction Stainless steel 304 316 904 15 Strainer Stainless steel 304 316 904 16 Shaft complete Stainless steel 41,4301 (1,4401) (1,45) 17 Strap Stainless steel 304 316 904 17 Strap Stainless steel 431 329 329 18 Cable guard Stainless steel 304 316 904 18 Cable guard Stainless steel 304 316 904 19 Nut for strap Stainless steel 304 316 904 19 Spring for valve Stainless steel 304 316 904 19 Spring for valve Stainless steel 304 316 304 307 Spring for valve Stainless steel 304 316 304 307 Spring for valve Stainless steel 304 316 304 308 309 316 304 316 309 Spring for valve Stainless steel 304 316 304 300 Spring for valve Stainless steel 304 316 304 307 Spring for valve Stainless steel 304 316 304 307 Spring for valve Stainless steel 304 316 304 308 316 304 316 304 316 304 316 304 316 308 309 316 304 316 309 309 309 316 309 309 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300	13	Impeller	Stainless steel	304	316	904L
14 interconnector Stainless steel (1.4308) (1.4408) (1.45 15 Strainer Stainless steel 304 (1.4301) 316 (1.4401) 904 (1.457) 16 Shaft complete Stainless steel 431 (1.4057) 329 (1.4460) 329 (1.4407) 17 Strap Stainless steel 304 (1.4301) 316 (1.4401) 904 (1.4301) 18 Cable guard Stainless steel 304 (1.4301) 316 (1.4401) 904 (1.4301) 19 Nut for strap Stainless steel 304 (1.4301) 316 (1.4401) 904 (1.4401) 39 Spring for valve cup Stainless steel 304 (1.4301) 316 (1.4401) SAF 2 (1.4301) 70 Valve guide Stainless steel 304 (1.4301) 316 (1.4401) 904		'	Claimicoo dicci		. ,	(1.4539)
15 Strainer Stainless steel (1.4301) (1.4401) (1.45 16 Shaft complete Stainless steel 431 329 329 17 Strap Stainless steel 304 316 904 18 Cable guard Stainless steel 304 316 904 19 Nut for strap Stainless steel 304 316 904 19 Spring for valve cup Stainless steel 304 316 904 39 Spring for valve cup Stainless steel 304 316 304 10 1.4401) 1.4401) 1.4401) SAF 2 20 Valve guide Stainless steel 304 316 904	14		Stainless steel			904L (1.4517)
16 Shaft complete Stainless steel 431 (1.4057) (1.4460) (1.446) (1.4461) 17 Strap Stainless steel 304 (1.4301) (1.4401) (1.4561) 18 Cable guard Stainless steel 304 (1.4301) (1.4401) (1.4561) 19 Nut for strap Stainless steel 304 (1.4301) (1.4401) (1.4561) 39 Spring for valve cup Stainless steel 304 (1.4301) (1.4401) (1.4401) SAF 2 (1.4301) (1.4401) 70 Valve guide Stainless steel 304 316 904	15	Strainer	Stainless steel			904L (1.4539)
17 Strap Stainless steel 304 316 904 1.4501	16	Shaft complete	Stainless steel	431	329	329
18 Cable guard Stainless steel 304 316 904 19 Nut for strap Stainless steel 304 316 904 19 Spring for valve cup Stainless steel 304 316 904 10 Spring for valve Stainless steel 304 316 904 10 Spring for valve Stainless steel 304 316 SAF 2 20 Valve guide Stainless steel 304 316 904			0	, ,	. ,	(1.4460) 904L
18 Cable guard Stainless steel (1.4301) (1.4401) (1.45) 19 Nut for strap Stainless steel 304 (1.4301) 316 (1.4401) 904 (1.45) 39 Spring for valve cup Stainless steel 304 (1.4301) 316 (1.4401) SAF 2 (1.4301) 70 Valve quide Stainless steel 304 (1.4301) 316 (1.4301) 904	17	Strap	Stainless steel		. ,	(1.4539)
19 Nut for strap Stainless steel (1.4301) (1.4401) (1.45) 39 Spring for valve cup Stainless steel 304 (1.4301) (1.4401) SAF 2 70 Valve guide Stainless steel 304 316 904	18	Cable guard	Stainless steel			904L (1.4539)
39 Spring for valve cup Stainless steel 304 316 (1.4301) (1.4401) SAF 2	19	Nut for strap	Stainless steel			904L (1.4539)
	39		Stainless steel	304	316	SAF 2205
	70	Valve guide	Stainless steel			904L (1.4539)
71 Washer Stainless steel 316 316 904	71	Washer	Stainless steel	316	316	904L (1.4539)
72 Wear ring Stainless steel 304 316 904	72	Wear ring	Stainless steel	304	316	904L (1.4539)

Sectional drawing, SP pump 10" (SP 625S - 1100S)

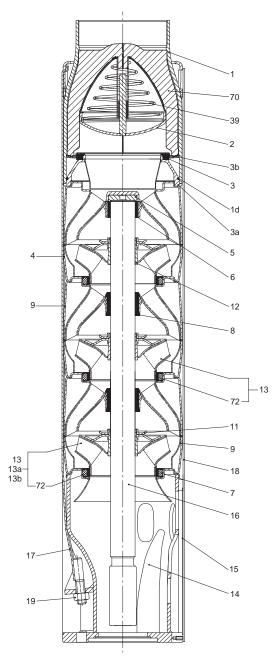


Fig. 16 SP pump, 10" (SP 625S - 1100S)

TM01 2363 2701

Material specification

Pos.	Description	Material	Standard	N version
			[AISI	(EN)]
		Valve casing		
1	Valve casing	Stainless steel	304 (1.4301)	316 (1.4401)
1d	O-ring	Elastomer	(1.4301) NBR	(1.4401) NBR
2	Valve cup	Stainless steel	304 (1.4301)	316 (1.4401)
3	Valve seat	Stainless steel	304	316
	Lower valve seat		(1.4301)	(1.4401)
3a	retainer	Stainless steel	(1.4301)	(1.4401)
3b	Upper valve seat retainer	Stainless steel	304 (1.4301)	316 (1.4401)
39	Spring for valve cup	Stainless steel	301 (1.4310)	316 (1.4401)
70	Valve guide	Stainless steel	304	316
78	Nameplate	Stainless steel	(1.4301)	(1.4401)
	·		(1.4301)	(1.4401)
79	Rivet	Stainless steel	(1.4301)	(1.4401)
63	Connecting piece	Stainless steel	304 (1.4301)	316 (1.4401)
		Chamber stack		
4	Top chamber	Stainless steel	304 (1.4301)	316 (1.4401)
5	Upthrust disc	Carbon/graphite HY22 in PTFE mass	(66.)	(
6	Top bearing	Stainless steel/ NBR	304	316
7	Neck ring	Elastomer	(1.4301) NBR/PPS	(1.4401) NBR/PPS
8	Bearing	Elastomer	NBR	NBR
9	Chamber	Stainless steel	304 (1.4301)	316 (1.4401)
11	Nut for split cone	Stainless steel	304 (1.4301)	316 (1.4401)
12	Split cone	Stainless steel	304 (1.4301)	316 (1.4401)
13	Impeller	Stainless steel	304 (1.4301)	316 (1.4401)
16	Shaft with coupling	Stainless steel	431	329
			(1.4057)	(1.4460)
18	Cable guard	Stainless steel	(1.4301)	(1.4401)
18a, 18b	Screw for cable guard	Stainless steel	(1.4301)	316 (1.4401)
23	Rubber guard	Elastomer	NBR	NBR
72	Wear ring	Stainless steel	304 (1.4301)	316 (1.4401)
	Suc	tion interconnector		
14	Suction interconnector	Stainless steel	304 (1.4308)	316 (1.4408)
15	Strainer	Stainless steel	304 (1.4301)	316 (1.4401)
15	Strainer Strap	Stainless steel Stainless steel		
			(1.4301)	(1.4401) 316
17	Strap	Stainless steel	(1.4301) 304 (1.4301) 304	(1.4401) 316 (1.4401) 316
17	Strap Nut for strap	Stainless steel Stainless steel	(1.4301) 304 (1.4301) 304 (1.4301) 316	(1.4401) 316 (1.4401) 316 (1.4401) 316

Sectional drawing, MS motors

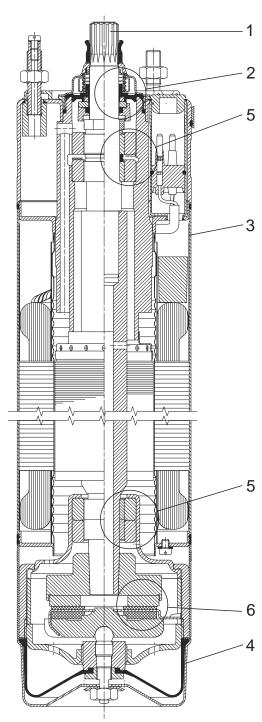


Fig. 17 MS 4000 motor

Material specification, MS 402, MS 4000, and MS 6000C motors $\,$

Pos.	Part	MS 402	MS 4000 MS 6000C
		[AISI	(EN)]
1	Shaft	431	431
2	Shaft seal	NBR	NBR/SiC/SiC
3	Motor sleeve	304 (1.4301)	304 (1.4301)
4	Motor end shield	304 (1.4301)	304 (1.4301)
5	Radial bearing	Ceramic	Ceramic/ tungsten carbide
6	Axial bearing	Ceramic/carbon	Ceramic/carbon
	Rubber parts	NBR	NBR

R-version motor

TM00 7865 2196

Pos.	Part	MS 4000 MS 6000C
1	Shaft	318 LN
2	Shaft seal	SiC/SiC
3	Motor sleeve	904L (1.4539)
4	Motor end shield	904L (1.4539)
5	Radial bearing	Ceramic/tungsten carbide
6	Thrust bearing	Ceramic/carbon
	Rubber parts	NBR

Sectional drawing, MMS motors

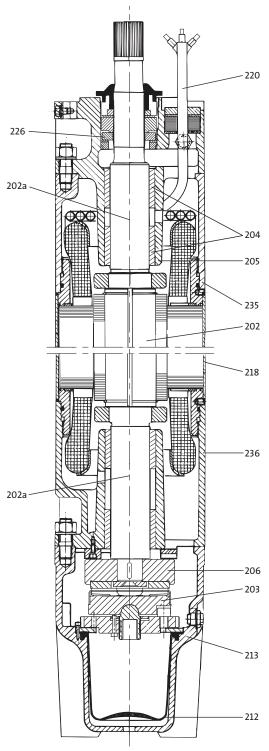


Fig. 18 MMS 10000 motor

Material specification

MMS motors, submersible rewindable versions

Pos.	Component		Material	[AISI (EN)]
202	Shaft		Steel	(1.0533)
202a	Shaft ends		Stainless steel	316/329 (1.4401/1.4460)
203/	Thrust bearing	6", 0.5 - 20 Hp	Hardened steel/EPDM	
206	Stationary/ rotating part	6", 25-50 Hp	- Ceramic/ carbon	
	rotating part	8" - 10"	- Ceramic/ carbon	
204	Bearing bush	6" - 10"	Carbon	
205	Bearing housing	, upper	Cast iron	A126 Class B
212	Diaphragm		CR	
213	Motor end shield	I	Cast iron	A126 Class B
218	Motor sleeve		Stainless steel	304 (1.4301)
220	Motor cable		EPR	
226	Shaft seal		SiC/SiC	
235	Intermediate hou	using	Cast iron	A126 Class B
236	Bearing housing	, lower	Cast iron	A126 Class B

MMS motors, N and R versions

				Version	1
Pos.	Component		Material	N	R
				[AISI (EN	1)]
202	Shaft		Steel	(1.0533)
202a	Shaft ends		Stainless steel	316/329 (1.4401/1.4460)	318LN (1.4462)
203/	Thrust bearing	6", 0.5 - 20 Hp	Hardened steel/EPDM		
206	Stationary/ rotating part	6", 25-50 Hp 8" - 10"	Ceramic/ carbon		
204	Bearing bush	6" - 10"	Carbon		
205	Bearing housin	g, upper	Stainless steel	316 (1.4401)	904L (1.4539)
212	Diaphragm		CR		
213	Motor end shie	ld	Stainless steel	316 (1.4401)	904L (1.4539)
218	Motor sleeve		Stainless steel	316 (1.4401)	904L (1.4539)
220	Motor cable		EPR		
226	Shaft seal		SiC/SiC		
235	Intermediate ho	ousing	Stainless steel	316 (1.4401)	904L (1.4539)
236	Bearing housing	g, lower	Stainless steel	316 (1.4401)	904L (1.4539)

3. Operating conditions

Operating conditions

Flow rate, Q: 0.44 - 1475 gpm (0.1 - 335 m³/h).

Head, H: Maximum 2657 ft (810 m).

Maximum liquid temperature

	Min. well casing or	Minimum	Minimum	Maximum temperatur	e of pumped liquid
Motor type	sleeve diameter	velocity	flow	Vertical installation	Horizontal installation
•	in. (mm)	fps (m/s)	gpm (m ³ /h)	° F (° C)	° F (° C)
MS402, MS4000	4 (102)	If at 0.0	If at 0.0	86 (30)	Flow sleeve recommended
MS402, MS4000	4 (102)	0.25 (0.08)	1.2 (0.27)	104 (40)	104 (40)
MS6000C (T40) (Standard)	6 (152)	0.50 (0.15)	9 (2)	104 (40)	104 (40)
MS6000C (T60) (High temperature)	6 (152)	3.3 (1.0)	30 (6.8)	140 (60)	140 (60)
MMS6	6 (152)	0.15 (0.05)	13 (3)	86 (30)	86 (30)
MMS8000	8 (203)	0.50 (0.15)	25 (5.7)	86 (30)	86 (30)
MMS10000 (175, 200 HP)	10 (254)	0.50 (0.15)	55 (12.5)	86 (30)	86 (30)
MMS10000 (250 HP)	10 (254)	0.50 (0.15)	41 (9.3)	86 (30)	86 (30)

Note: For MMS 6, 50 Hp; MMS 8000, 150 Hp; the maximum liquid temperature is 9 °F (5 °C) lower than the values stated in the table. For MMS 10000, 250 Hp, the temperature is 18 °F (10 °C) lower.

Operating pressure

Motor	Maximum operating pressure
MS 402, 4"	217 psi (1.5 Mpa) (15 bar)
MS4000, 4"	
MS6000C, 6"	870 psi (6 Mpa) (60 bar)
MMS 6" to 10" rewindable	

4. Selection

5S - 25S easy selection charts

5 gpm easy selection chart

Flow range 1.2 to 7 gpm

Pump outlet 1" NPT

Ratings in gallons per minute (gpm)

Pump model	Нр	nei										Dept	h to p	oumpi	ng wa	iter le	vel (li	ft) in	ft								
rump moder	пр	psi	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	110
		0				7.1	6.7	6.2	5.8	5.3	4.8	4.3	3.2	2.1													
		20		7.0	6.6	6.1	5.7	5.2	4.6	4.0	2.8	1.6															
5S03-9	0.33	30		6.5	6.0	5.6	5.1	4.6	3.8	2.9	1.5																
3303-9	0.33	40	6.7	6.0	5.5	5.1	4.4	3.8	2.4																		
		50	6.2	5.5	4.9	4.4	3.4	2.5	1.3																		
		60	4.6	4.9	4.2	3.5	1.9																				
Shut-off psi			102	94	85	76	68	59	50	42	33	24	16	7													
		0						7.1	6.8	6.4	6.1	5.8	5.5	5.2	4.8	4.5	3.9	2.3									
		20			7.3	7.0	6.7	6.3	6.0	5.7	5.4	5.1	4.7	4.3	3.7	3.1	2.0										
5S05-13	0.5	30		7.2	6.9	6.6	6.3	6.0	5.7	5.4	5.0	4.7	4.2	3.7	2.8	2.0											
		40	7.2	6.9	6.6	6.3	5.9	5.6	5.3	5.0	4.6	4.2	3.5	2.8	1.6												
		50	6.8	6.5	6.2	5.9	5.6	5.3	4.9	4.6	4.0	3.5	2.6	1.6													
		60	6.5	6.2	5.8	5.5	5.2	4.9	4.5	4.0	3.3	2.6	1.3														
Shut-off psi			152	143	134	126	117	108	100	91	82	74	65	56	48	39	30	13									
										7 4	6.0	6.7	6.4	6.0	6.0	F 0	F ^	F 4	4.0	0.7							
		20						7.1	6.8	7.1 6.6	6.9	6.7	5.9	6.2 5.7	6.0 5.5	5.8	5.6	5.1 4.5	3.2	2.7							
							7.0																				
S07-18	0.75	30			7.0	7.0	7.0	6.8	6.6	6.3	6.1	5.9	5.7	5.5	5.2	5.0	4.7	4.0	2.5								
		40		7.0	7.2	7.0	6.8	6.5	6.3	6.1	5.9	5.6	5.4	5.2	4.9	4.7	4.4	3.5	1.5								
		50	7.4	7.2	7.0	6.7	6.5	6.3	6.1	5.8	5.6	5.4	5.1	4.9	4.6	4.3	3.9	2.9									
214 ee 1		60	7.1	6.9	6.7	6.5	6.2	6.0	5.8	5.6	5.3	5.1	4.9	4.6	4.3	3.9	3.4	2.1	40	00							
Shut-off psi			213	204	195	187	178	169	161	152	143	135	126	117	109	100	91	74	48	22							
		0										7.1	6.9	6.7	6.6	6.4	6.2	5.8	5.3	4.7	3.8	1.7					
		20								7.1	6.9	6.7	6.5	6.3	6.1	6.0	5.8	5.4	4.8	4.7	2.8	1.7					
		30							7.0	6.8	6.7	6.5	6.3	6.1	5.9	5.7	5.6	5.4	4.6	3.6	2.0						
S10-22	1.0	40						7.0	6.8	6.6	6.5	6.3	6.1	5.9	5.7	5.5	5.4	5.0	4.0	3.1	1.3						
		50				7.2	7.0	6.8	6.6	6.4	6.2	6.1	5.9	5.7	5.5	5.3	5.4	4.7	3.9	2.5	1.3						
		60			7.1	6.9	6.8	6.6	6.4	6.2	6.0	6.0	5.7	5.5	5.3	5.1	4.9	4.7	3.5	1.7							
Shut-off psi		60			245	237	228	219	211	202	194	185	176	168	159	150	142	124	98	72	46	12					
mut-on psi					243	231	220	219	211	202	134	100	170	100	133	130	142	124	90	12	40	12					
		0												7.1	7.0	6.8	6.7	6.4	5.9	5.4	4.9	4.1	2.1				
		20										7.1	6.9	6.8	6.6	6.5	6.3	6.0	5.5	5.1	4.5	3.4					
		30									7.1	6.9	6.7	6.6	6.4	6.3	6.1	5.8	5.4	4.8	4.2	2.9					
S15-26	1.5	40								7.0	6.9	6.7	6.6	6.4	6.3	6.1	6.0	5.6	5.2	4.6	5.6	2.4					
		50							7.0	6.9	6.7	6.5	6.4	6.2	6.1	5.9	5.8	5.5	5.0	4.4	3.6	1.7					
		60						7.0	6.8	6.7	6.5	6.4	6.2	6.1	5.9	5.8	5.6	5.3	4.8	4.1	3.1	1.7					
Shut-off psi		- 00						269	260	252	243	234	226	217	208	200	191	174	148	122	96	61	18				
mut-on par								203	200	202	240	204	220	211	200	200	101	17-7	140	122	30	01	10				
		0														7.1	7.0	6.7	6.3	5.9	5.5	6.7	4.1	2.6			
		20												7.1	6.9	6.8	6.7	6.4	6.0	5.6	5.2	4.6	3.5	1.6			
													7.0	6.9	6.8	6.6	6.5	6.2	5.9	5.5	5.1	4.4	3.2	0.9			
		30										7.0	6.9	6.8	6.6	6.5	6.4	6.1	5.7	5.3	4.9	4.2	2.8				
S15-31	1.5	30 40										/ .U	0.9														
5S15-31	1.5	40								7.1	7.0																
5S15-31	1.5								7.1	7.1	7.0	6.9	6.7	6.6	6.5	6.3	6.2	6.0	5.6 5.4	5.2	4.7	4.0	2.3				

See 5S performance curves for higher head models.

Specifications are subject to change without notice.

These values are approximate. For more precise values, see the performance curves in section 6. Curve charts and technical data.

Flow range 3 to 10 gpm

Pump outlet 1" NPT

Ratings in gallons per minute (gpm)

	_		•																								
Pump model	Нр	psi		40		00	400	400	446	400	400						vel (li			400	500	000	700	000	000	4000	110
		20	20	40 9.5	60	8.0	7.2	120 6.4	140 5.0	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	11
		30	9.3	8.7	7.9	7.1	6.1	5.1	2.6	3.1	1.0																
7S03-8	0.33	40	8.5	7.8	7.0	6.1	4.5	2.9	1.5																		
7303-0	0.33	50	7.6	6.9	5.8	4.7	2.3	2.9	1.5																		
		60	6.7	5.8		2.0	2.3																				
Chut off noi		60	86	77	3.9		F.0	42	24	26	17	0															
Shut-off psi			00	11	69	60	52	43	34	26	17	8															
		0					9.9	9.5	8.9	8.4	7.8	7.3	6.7	6.0	5.0	4.0											
		20			9.8	9.3	8.8	8.2	7.7	7.1	6.5	5.8	4.7	3.5	1.8	4.0											
		30	10.1	9.7	9.2	8.7	8.1	7.6	7.0	6.4	5.6	4.7	2.9	3.3	1.0												
7S05-11	0.5	40	9.6	9.2	8.6	8.1	7.5	6.9	6.2	5.6	4.3	3.0	1.5														
		50	9.1	8.5	8.0	7.4	6.8	6.2	5.3	4.3	2.2	3.0	1.5														
		60	8.4	7.9	7.3	6.8	6.0	5.3	3.8	2.3	2.2																
Chut off noi		60	122	113	105	96	87	79			E2	11	25	27	10	10											
Shut-off psi			122	113	105	90	01	79	70	61	53	44	35	27	18	10											
		0						10.2	9.9	9.5	9.2	8.8	8.4	8.0	7.6	7.1	6.7	5.6	2.9								
		20				10.1	9.8	9.4	9.0	8.6	8.2	7.8	7.4	7.0	6.5	6.1	5.4	3.6	2.0								
		30			10.0	9.7	9.4	9.0	8.6	8.2	7.8	7.4	6.9	6.5	5.9	5.4	4.5	1.8									
7S07-15	0.75	40		10.0	9.7	9.3	8.9	8.5	8.1	7.7	7.3	6.9	6.4	5.9	5.2	4.5	3.2	1.0									
		50	9.9	9.6	9.2	8.9	8.5	8.1	7.6	7.2	6.8	6.4	5.8	5.2	4.2	3.2	1.6	1.0									
		60	9.5	9.0	8.8	8.4	8.0	7.6	7.0	6.7	6.2	5.7	4.9	4.2	2.8	1.4	1.0										
Shut-off psi		60	170	101	153	144	135	127	118	110	101	92	84	75	66	58	49	32	6								
Silut-oii psi			170	101	100	144	133	121	110	110	101	92	04	73	00	30	49	32	0								
		0								10.1	9.8	9.6	9.3	9.0	8.7	8.4	8.0	7.4	6.4	4.8							
		20						10.0	9.8	9.5	9.2	8.9	8.6	8.3	7.9	7.6	7.3	6.6	5.3	2.8							
		30					10.0	9.7	9.5	9.2	8.9	8.5	8.2	7.9	7.6	7.3	6.9	6.2	4.6	1.4							
7S10-19	1.0	40				10.0	9.7	9.4	9.5	8.8	8.5	8.2	7.8	7.5	7.0	6.9	6.5	5.6	3.7	1.4							
		50		10.2	9.9	9.7	9.7	9.4	8.8	8.4	8.1	7.8	7.5	7.2	6.8	6.5	6.0	5.0	2.4								
			10.1	_		_		-											2.4								
Chus off not		60	10.1	9.9	9.6	9.3	9.0	8.7	8.4	8.1	7.8	7.4	7.1	6.8	6.4	6.0	5.5	4.2	F.2	27							
Shut-off psi			218	209	200	192	183	174	166	157	148	140	131	123	114	105	97	79	53	27							
		0											10.1	0.0	0.7	0.5	0.2	0.0	0.1	7.4	6.7						
		20									10.0	0.0	9.6	9.9	9.7	9.5	9.3	8.8	8.1	7.4 6.9	6.7	5.5					
										10.0		9.8		9.4					7.6		6.1	4.4					
7S15-26	1.5	30						10.1	10.0	10.0	9.8	9.6	9.4	9.2	9.0	8.7	8.5	8.0	7.3	6.6	5.7	3.7					
		40					10.1	10.1	10.0	9.8	9.6	9.4	9.1	8.9	8.7	8.5	8.2	7.8	7.1	6.3	5.2	2.9					
		50				10.1	10.1	9.9	9.7	9.6	9.3	9.1	8.9	8.7	8.4	8.2	8.0	7.5	6.8	5.9	4.7	1.9					
		60				10.1	9.9	9.7	9.5	9.3	9.1	8.9	8.6	8.4	8.2	7.9	7.7	7.2	6.5	5.5	4.1	40					
Shut-off psi						274	265	257	248	239	231	222	213	205	196	187	179	161	135	110	84	49					
		_											10.0	10.5	10 1	10.1	10.0	10.4	0.0	0.4	0.4	7.0	F 7				
		0									40.5	40.5	10.6	10.5	10.4	10.4	10.3	10.1	9.6	9.1	8.4	7.3	5.7				
		20								10.5	10.5	10.5	10.4	10.3	10.3	10.2	10.0	9.8	9.2	8.6	7.8	6.6	4.8				
		30							10.5	10.5	10.5	10.4	10.3	10.2	10.1	10.0	9.9	9.6	9.0	8.3	7.5	6.2	4.3				
7S20-32	2.0								10.5	10.5	10.4	10.3	10.2	10.1	10.0	9.9	9.7	9.4	8.8	8.0	7.2	5.8	3.9				
7\$20-32	2.0	40								10 /	10.3	10.2		10.0	9.8	9.7	9.5	9.1	8.5	7.7	6.8	5.4	3.3				
7\$20-32	2.0	50							10.5	10.4			10.1										0.0				
7S20-32 Shut-off psi	2.0						343	10.5	10.5	10.4	10.3	10.1	10.1	9.8	9.7	9.5	9.3	8.9	8.2 213	7.4 187	6.4 161	5.0	83				

See 7S performance curves for higher head models.
Specifications are subject to change without notice.
These values are approximate. For more precise values, see the performance curves in section *6. Curve charts and technical data*.

Flow range 5 to 14 gpm

Pump outlet 1.25" NPT

Ratings in gallons per minute (gpm)

												Dep	th to i	umpi	ng wa	ter le	vel (li	ft) in	ft								
Pump model	Нр	psi	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	110
		20	14.0	13.2	12.4	10.6	8.9	5.3																			
		30	13.2	11.8	10.4	8.4																					
0S03-6	0.33	40	11.9	10.1	8.3																						
		50	9.8	7.5																							
		60	7.7	3.9																							
Shut-off psi			64	55	47	38	29	21	12	3																	
mut on por			0-1		-11				-12																		
		0				14.1	13.4	12.4	11.4	10.4	9.5	8.3	6.6	3.5													
		20		13.9	13.1	12.1	11.1	10.1	9.2	7.9	5.8	2.0															
		30	13.8	13.0	12.0	11.0	10.0	9.0	7.6	5.3	1.2																
0S05-9	0.5	40	12.8	11.8	10.8	9.8	8.8	7.3	4.8																		
		50	11.7	10.7	9.7	8.6	7.0	4.3																			
		60	10.5	9.5	8.4	6.7	3.7	7.0																			
hut-off psi		- 00	100	92	83	74	66	57	48	40	31	23	14	5													
nut-on psi			100	92	00	74	00	31	40	40	JI	23	14	J													
		0					14.3	13.8	13.2	12.5	11.7	11.0	10.2	9.5	8.7	7.6	6.0										_
		20			14.2	13.6	12.9	12.2	11.5	10.7	10.0	9.3	8.4	7.2	5.4	2.6											
		30		14.1	13.5	12.9	12.1	11.4	10.6	9.9	9.2	8.2	7.0	5.0	2.0												
0S07-12	.75	40	14.0	13.4	12.8	12.0	11.3	10.5	9.8	9.0	8.1	6.7	4.7	1.4													
		50	13.3	12.6	11.9	11.1	10.4	9.7	8.9	7.9	6.5	4.2	7.7	1													
		60	12.5	11.8	11.0	10.3	9.6	8.8	7.7	6.2	3.8	7.2															
hut-off psi		- 00	137	129	120	111	103	94	85	77	68	59	51	42	33	25	16										
nut-on par			101	120	120		100	J-T	00	- ' '	00	55	01	72	55	20	10										
		0							14.1	13.6	13.1	12.5	11.9	11.3	10.7	10.1	9.6	8.2	3.8								
		20					13.9	13.5	12.9	12.3	11.7	11.1	10.5	10.0	9.4	8.7	7.9	5.2	0.0								
		30				13.9	13.4	12.8	12.2	11.6	11.0	10.5	9.9	9.3	8.6	7.7	6.6	2.6									
0S10-15	1.0	40		14.2	13.8	13.3	12.7	12.1	11.5	10.9	10.4	9.8	9.2	8.5	7.6	6.3	4.6	2.0									
			44.4																								
		50 60	14.1	13.7	13.2	12.6	12.1	11.4	10.9	9.6	9.7	9.1	7.2	7.4 5.9	6.1	4.3	1.7										
Shut-off psi		60	13.6 174	13.1 165	12.6 157	12.0	11.4	131	122	113	9.0	8.2 96	87	79	3.9 70	61	53	35	10								
mut-on psi			174	103	137	140	139	131	122	113	105	90	01	19	70	01	55	33	10								
		0									14.2	13.9	13.6	13.3	12.9	12.5	12.0	11.2	9.9	8.5	6.3						
		20							14.1	12.0																	
		30						44.4		13.9	13.5	13.1	12.7	12.3	11.9	11.5	11.0	10.2	8.9	6.9	2.9						
0S15-21	1.5						444	14.1	13.8	13.5	13.1	12.7	12.3	11.8	11.4	11.0	10.5	9.7	8.3	5.7							
		40				440	14.1	13.8	13.4	13.0	12.6	12.2	11.8	11.3	10.9	10.5	10.1	9.2	7.5	4.1							
		50				14.0	13.7	13.3	13.0	12.5	12.1	11.7	11.3	10.8	10.4	10.0	9.6	8.7	6.5	2.0							
		60		14.2	14.0	13.6	13.3	12.9	12.5	12.1	11.6	11.2	10.8	10.4	9.9	9.5	9.1	8.0	5.1								
hut-off psi				237	229	220	211	203	194	185	177	168	159	151	142	133	125	107	81	55	29						
		_												44.4	10.0	10.7	10.1	10.0	44.0	40.0	0.0	0.0					
		0										42.1	46.5	14.1	13.9	13.7	13.4	12.8	11.8	10.8	9.8	8.3	4.7				
		20										14.1	13.8	13.6	13.3	13.0	12.7	12.0	11.0	10.0	9.0	7.1	1.5				
0S30-27	2.0	30									14.0	13.8	13.5	13.3	12.9	12.6	12.3	11.6	10.6	9.7	8.6	6.2					
		40							14.2	14.0	13.8	13.5	13.2	12.9	12.6	12.2	11.9	11.2	10.3	9.3	8.1	5.2					
		50						14.2	14.0	13.7	13.5	13.2	12.8	12.5	12.2	11.9	11.5	10.9	9.9	8.9	7.4	3.8					
		60					14.1	13.9	13.7	13.4	13.1	12.8	12.5	12.1	11.8	11.5	11.1	10.5	9.5	8.4	6.6	2.1					
hut-off psi							285	276	268	259	250	242	233	224	216	207	198	181	155	129	103	68	25				
		0																13.8		12.5	11.9	10.9	9.6	7.9	4.8		
		20														13.9	13.7	13.3	12.7	12.0	11.3	10.3	8.9	6.7	2.7		
0S30-34	3.0	30													13.9	13.7	13.5	13.1	12.4	11.7	11.0	10.0	8.5	6.0	1.3		
0000-04	3.0	40											14.0	13.8	13.7	13.5	13.3	12.8	12.2	11.5	10.8	9.7	8.0	5.1			
		50										14.0	13.8	13.6	13.4	13.2	13.0	12.6	11.9	11.2	10.5	9.4	7.5	4.2			
		60										13.8	13.6	13.4	13.2	13.0	12.8	12.3	11.6	10.9	10.2	9.0	6.9	3.1			

See 10S performance curves for higher head models.
Specifications are subject to change without notice.
These values are approximate. For more precise values, see the performance curves in section 6. Curve charts and technical data.

Flow range 10 to 20 gpm

Pump outlet 1.25" NPT

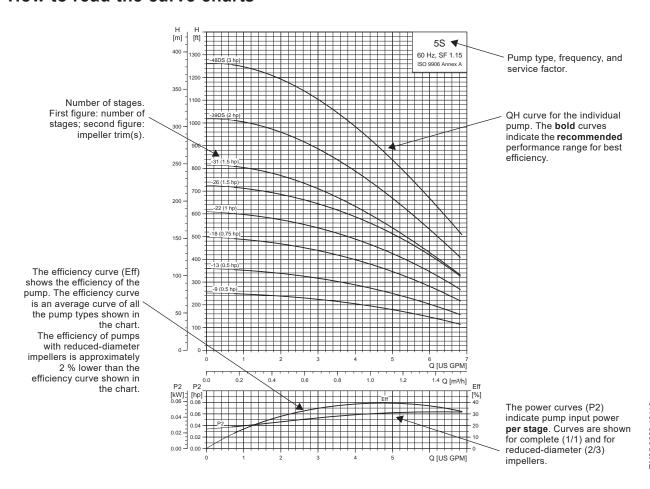
Ratings in gallons per minute (gpm)

												Don	th to I	umn	ina w	tor lo	vel (li	ft) in	F#								
Pump model	Нр	psi	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	110
		20	20.3	18.2	14.1	10.0	5.0	120	140									040	400	400	020	-	700			1000	
		30	17.3	14.4	8.0	1.6	0.0																				
6205-5	.5	40	12.7	8.0	4.0	1.0																					
0203-3	.5	50	6.5	0.0	4.0																						
01 4 66 1		60	2.9	40	40																						
Shut-off psi			58	49	40	32	23	14																			
		0					20.5	19.2	17.5	15.8	12.8	9.8	5.2														
		20			20.1	18.8	16.9	15.2	11.8	8.5	4.3																
		30	21.2	19.9	18.4	16.9	14.3	11.8	7.5	3.2	1.6																
16S07-8	.75	40	19.7	18.3	16.3	14.3	10.8	7.2	3.6	0.2	1.0																
		50	17.9	16.3	13.5	10.7	6.2	1.7	3.0																		
								1.7																			
		60	15.7	13.5	9.6	5.8	2.9		45			40	40														
Shut-off psi			97	88	80	71	62	54	45	36	28	19	10														
		0						20.8	19.8	18.8	17.3	15.9	13.7	11.4	8.0	4.7											
		20				20.5	19.4	18.3	16.8	15.3	12.9	10.5	7.0	3.5	1.8												
		30			20.3	19.3	18.1	16.8	14.8	12.8	9.8	6.7	3.3	0													
I6S10-10	1.0	40		20.2	19.1	18.0	16.4	14.8	12.2	9.6	5.9	2.3	0.0														
		50	20.0	19.0	17.7		14.2	12.0	8.8		2.8	2.3															
						16.3				5.6	2.0																
		60	18.8	17.6	15.8	14.1	11.3	8.6	4.8			45	07		40	- 4.4											
Shut-off psi			123	115	106	97	89	80	71	63	54	45	37	28	19	11											
		0								21.0	20.3	19.6	18.8	18.0	16.9	15.8	14.3	10.7	3.3								
		20							20.1	19.3	18.5	17.7	16.6	15.4	13.8	12.2	10.0	5.1									
		30					20.7	20.0	19.2	18.4	17.4	16.5	15.1	13.7	11.8	9.8	7.3	2.4									
I6S15-14	1.5	40				20.6	19.8	19.1	18.3	17.4	16.0	15.0	13.3	11.6	9.3	7.0	4.3	2.7									
					00.4																						
		50 60		20.3	20.4 19.6	19.8	18.9	18.2	17.2 15.8	16.1	14.7	13.2	11.2 8.6	9.1	6.5 3.4	3.9	2.0										
Shut-off psi				167	158	149	141	132	123	115	106	97	89	80	71	63	54	37	28								
		0										21.2	20.6	20.0	19.5	18.9	18.2	16.7	13.5	8.8	2.7						
		20									20.4	19.8	19.3	18.7	18.0	17.3	16.4	14.3	10.0	4.2							
		30								20.3	19.8	19.2	18.6	17.9	17.2	16.3	15.3	12.8	7.9	1.9							
16S20-18	2.0	40							20.3	19.7	19.1	18.5	17.8	17.1	16.1	15.2		11.1	5.7								
		50						20.2	19.6	19.0	18.3	17.7	16.8	16.0	14.9	13.8	12.3	9.2	3.2								
		60					20.1	19.5	18.9	18.3	17.5	16.8	15.8	14.8	13.5	12.3	10.6	7.0	0.2								
Shut-off psi		- 00					194	186	177	168	160	151	142	134	125	116	10.0	90	65	39	13						
mut on por							104	100		100	100	101	172	104	120	110	100				10						
		0																19.6	18.3	16.5	14.2	9.8	2.1				
		20													20.3	19.9	19.5	18.6	17.0	14.8	11.8	6.5					
		30												20.3	19.8	19.4	19.0	18.0	16.3	13.7	10.4	4.7					
16S30-24	3.0	40											20.2	19.8	19.3	18.9	18.4	17.3	15.3	12.5	8.9	2.8					
		50										20.2	19.8	19.3	18.8	18.3	17.8	16.7	14.3	11.3	7.3						
		60									20.1	19.7	19.2	18.8	18.3	17.8	17.2	15.8	13.3	9.8	5.5						
		00									239	230	221	213	204	195	187	169	143	117	91	57	13				
Shut-off psi																							_				
Shut-off psi																					21.5	20.4	18.7	16.5	13.4	8.9	2
Shut-off psi		0																						10.5	13.4	0.9	-
Shut-off psi		0 20																			20.9	19.6	17.7	15.2	11.5	6.1	
																				21.4				15.2			
	5.0	20 30																			20.9	19.6 19.2	17.7 17.2	15.2 14.5	11.5 10.5	6.1 4.5	
-	5.0	20 30 40																	21.6	21.1	20.9 20.5 20.2	19.6 19.2 18.8	17.7 17.2 16.7	15.2 14.5 13.7	11.5 10.5 9.3	6.1 4.5 2.7	
Shut-off psi	5.0	20 30																	21.6		20.9	19.6 19.2	17.7 17.2	15.2 14.5	11.5 10.5	6.1 4.5	

See 16S performance curves for higher head models.
Specifications are subject to change without notice.
These values are approximate. For more precise values, see the performance curves in section 6. Curve charts and technical data.

Flow range 18 to 32 gpm

Pump outlet 1.5" NPT


Ratings in gallons per minute (gpm)

Pump model	Hn	nei										Dep		oump	ng wa	ater le	evel (li	ft) in	ft								
ump model	пр	psi	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	340	400	460	520	600	700	800	900	1000	110
		20	18.6	6.5	3.3																						
		30	10.5																								
5505-3	.5	40																									
		50																									
		60																									
Shut-off psi			31	22	13	5																					
mut-on psi			31	22	13	J																					
		0			215	29.8	22.0	10 1																			
			00.0	00.0				10.1																			
		20	32.9	28.6	21.8		7.5																				
25807-5	.75	30	27.1	22.5	12.3	2.0																					
		40	19.5	11.8	5.8																						
		50	10.1																								
		60	4.1																								
Shut-off psi			57	48	39	31	22	13																			
		0					31.3	28.5	24.3	20.2	12.7	5.1															
		20		33.2	30.3	27.6	22.9	18.3	10.4	2.5	1.3																
		30	33.0	29.9	26.5		13.0	9.6	4.8																		
25S10-7	1.0	40	29.4	26.6	21.3		8.2																				
		50	25.3	21.5	14.3	7.0	3.5																				
		60	19.7	13.9	7.0	7.0	0.0																				
Church off mai		00	83			F7	40	20	24	22	10	-															
Shut-off psi			83	74	65	57	48	39	31	22	13	5															
		_						00.0	00.0	07.0	04.0	04.0	10.0	10.0													
		0							30.0	27.9		21.6	16.3	10.8													
		20				31.5			23.7	20.3		8.8	4.4														
25S15-9	1.5	30			31.3		26.4	23.7	18.9	14.2	7.8	1.5															
.00100		40		30.8	28.6	26.3	22.6	18.8	12.8	6.8	3.4																
		50	30.6	28.4	25.5	22.5	17.4	12.3	6.2																		
		60	27.8	25.5	21.3	17.2	11.0	4.8	2.4																		
Shut-off psi			109	100	91	83	74	65	57	48	39	31	22	13													
-																											
		0						33.1	31.1	29.3	27.6	25.1	22.5	18.5	14.5	9.3											
		20					32.5	30.6	28.8	27.0	24.3	21.5	17.3	13.0	7.8	2.5											
		30				32.0			26.4	24.2		16.9	12.0	7.0	3.5												
25S20-11	2.0	40			31.8		28.2	26.3	23.3	20.4	15.9	11.4	6.3	7.0	0.0												
				24 5																							
		50	04.0	31.5	29.8	28.1	25.7	23.3	19.4	15.6	10.4	5.3	2.7														
		60	31.3	29.6	27.6		22.4	19.3	14.5	9.8	4.9																
Shut-off psi			135	126	118	109	100	92	83	74	66	57	48	40	31	23											
		0										32.3				27.1											
		20								31.8		29.3	28.0	26.6	24.6	22.7	19.8	13.5									
.5S30-15	3.0	30						33.0	31.7	30.4	29.2	27.8	26.2	24.5	22.1	19.7	16.4	9.3									
.5550-15	3.0	40					32.8	31.5	30.3	29.0	27.5	26.0	24.0	21.9	19.0	16.1	12.4	4.9									
		50				32.6	31.3	30.0	28.7	27.4	25.7	23.8	21.3	18.8	15.3	12.0	8.2	2.2									
		60			32.4	31.1	29.8	28.6	27.0	25.5	23.3	21.2	18.1	15.0	11.3	7.6	3.8										
hut-off psi					170	161	152	144	135	126	118	109	100	92	83	74	66	48									
F											-				_												
		0																32.5	30.3	28.0	25.3	19.9	10.2				
		20															32.3	30.8	28.6	25.9		15.8	5.0				
		30														32.1	31.3	29.9	27.7	24.7		13.5	2.5				
25850-26	5.0														20.0								∠.5				
		40											00 =	04.5	32.0		30.5	29.1	26.7	23.3		11.0					
		50											32.7		31.2	30.4	29.7	28.2	25.5	21.8		8.5					
		60										32.5	31.8	31.0	30.3	29.6	28.8	27.3	24.3	20.0	14.6	5.8					
Shut-off psi												253	245	236	227	219	210	193	167	141	115	80	37				

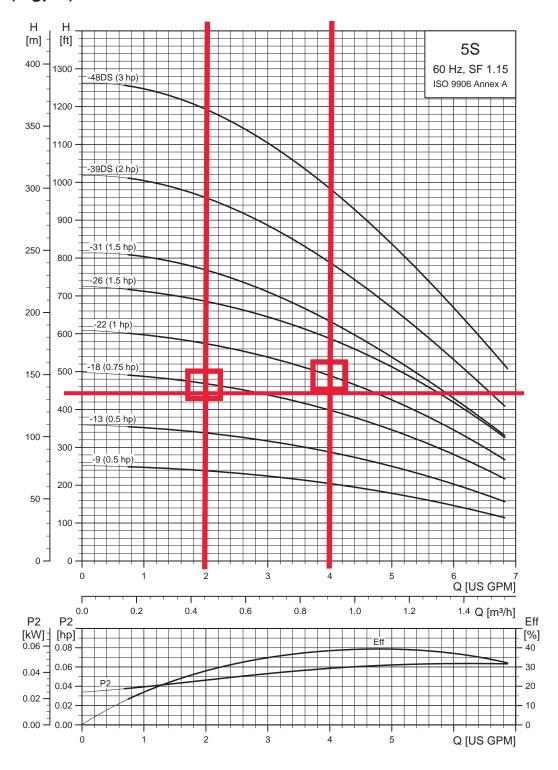
See 25S performance curves for higher head models.
Specifications are subject to change without notice.
These values are approximate. For more precise values, see the performance curves in section 6. Curve charts and technical data.

5. Performance curves and technical data

How to read the curve charts

Curve conditions

The conditions below apply to the curves shown in section 6. Curve charts and technical data on pages 29-105:


General

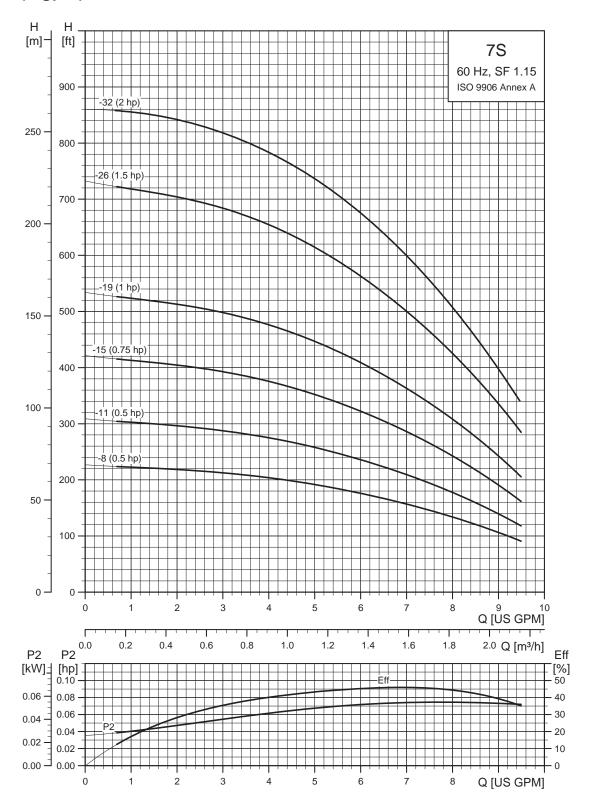
- · Curve tolerances according to ISO 9906, Annex A.
- The performance curves show pump performance at actual speed, cf. standard motor range.
 The motor speeds are listed in the data tables in section 6. Curve charts and technical data.
- The measurements were made with airless water at a temperature of 68 °F (20 °C). The curves apply to a kinematic viscosity of 1 mm²/s (1 cSt). When pumping liquids with a density higher than that of water, use motors with correspondingly higher outputs.
- The **bold** curves indicate the recommended performance range.
- The performance curves are inclusive of possible losses such as check valve loss.
- Pump rpm: The curves include the actual motor rpm. The actual motor rpm is listed in the data charts in section 6. Curve charts and technical data.
- Q/H: The curves are inclusive of valve and inlet losses at the actual speed.
 Operation without check valve will increase the actual head at rated performance by 1.6 to 3.3 ft (0.5 to 1.0 m).
- NPSH: The curve is inclusive of pressure loss in the suction interconnector and shows required inlet pressure.
- Power curve: P₂ shows pump power input [Hp] at the actual speed of each individual pump size.
- Efficiency curve: Eta shows pump stage efficiency.
 If Eta for the actual pump size is needed, please consult Grundfos Product Center.

6. Curve charts and technical data

4" and larger wells

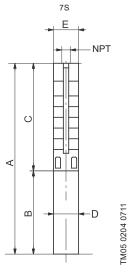
SP 5S (5 gpm)

SP 5S (5 gpm) pump with 4" motor


Pump	Nom. head			Motor				Dimen	sions [in (mm)]		Net weight				5S _	
model	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]			-	<u>E</u>	NPT
		58	, moto	r diam	ete	r 4-inch	, 2-wire motor,	60 Hz - rated f	low rate 5 gpm	(1" NPT)			_	*	-	H	- NPI
5S05-9	184	1	230	0.5	-	3517	24.57 (624)	11.03 (280)	13.55 (344)	3.74 (95)	3.98 (101)	21.6			-	$\perp \parallel \perp$	
5005.40	050		115	0.5	-	3360	27.88 (708)	11.03 (280)	16.86 (428)	3.74 (95)	3.98 (101)	26.9					
5S05-13	258	1	230	0.5		3474	27.88 (708)	11.03 (280)	16.86 (428)	3.74 (95)	3.98 (101)	26.1				$\exists ! \sqsubseteq$	
5S07-18	357	1	230	0.75	-	3465	32.60 (828)	11.62 (295)	20.99 (533)	3.74 (95)	3.98 (101)	29.7		U		$\exists \Vdash$	
5S10-22	439	1	230	1	-	3400	36.50 (927)	12.21 (310)	24.30 (617)	3.74 (95)	3.98 (101)	32.4			L	$\exists \Vdash$	
5S15-26	529	1	230	1.5	•	3439	41.30 (1049)	13.71 (348)	27.60 (701)	3.74 (95)	3.98 (101)	41.4			-	╢⊢	-
5S15-31	585	1	230	1.5	•	3410	47.21 (1199)	13.71 (348)	33.51 (851)	3.74 (95)	3.98 (101)	47.7			H	┵┵	-
													⋖		lſ	ור	
		58	, moto	r diam	ete	r 4-inch	, 3-wire motor,	60 Hz - rated f	low rate 5 gpm	(1" NPT)				†	Ť		
5S05-9	184	1	230	0.5	-	3450	24.57 (624)	11.03 (280)	13.55 (344)	3.74 (95)	3.98 (101)	22.5				i	
5S05-13	258	1	115	0.5	-	3382	27.88 (708)	11.03 (280)	16.86 (428)	3.74 (95)	3.98 (101)	26.9				ı	
3303-13	230		230	0.5	•	3352	27.88 (708)	11.03 (280)	16.86 (428)	3.74 (95)	3.98 (101)	25.2		B	-		⊸ -D
5S07-18	357	1	230	0.75		3346	32.60 (828)	11.62 (295)	20.99 (533)	3.74 (95)	3.98 (101)	28.8					
5S10-22	439	1	230	1	•	3379	36.50 (927)	12.21 (310)	24.30 (617)	3.74 (95)	3.98 (101)	32.4					
		1	230	1.5	•	3459	41.30 (1049)	13.71 (348)	27.60 (701)	3.74 (95)	3.98 (101)	37.8		•			
5S15-26	529	3	230	1.5	•	3465	39.81 (1011)	12.21 (310)	27.60 (701)	3.74 (95)	3.98 (101)	38.7					
			460	1.5	•	3465	39.81 (1011)	12.21 (310)	27.60 (701)	3.74 (95)	3.98 (101)	38.7		- Movir	mum a	liomo	ter of pum
		1	230	1.5	•	3423	47.21 (1199)	13.71 (348)	33.51 (851)	3.74 (95)	3.98 (101)	47.7					d and mot
5S15-31	585	3	230	1.5	•	3437	45.71 (1161)	12.21 (310)	33.51 (851)	3.74 (95)	3.98 (101)	45.0				3	
			460	1.5	•	3437	45.71 (1161)	12.21 (310)	33.51 (851)	3.74 (95)	3.98 (101)	45.0					
		1	230	2	•	3428	59.61 (1514)	19.49 (495)	40.12 (1019)	3.74 (95)	4.25 (108)	57.6					
5S20-39DS	730	3	230	2	•	3426	53.82 (1367)	13.71 (348)	40.12 (1019)	3.74 (95)	4.25 (108)	54.0					
			460	2	•	3426	53.82 (1367)	13.71 (348)	40.12 (1019)	3.74 (95)	4.25 (108)	54.0					
		1	230	3	•	3450	70.16 (1782)	22.60 (574)	47.56 (1208)	3.74 (95)	4.25 (108)	77.4					
5S30-48DS	909		208	3	•	3485	65.56 (1665)	18.00 (457)	47.56 (1208)	3.74 (95)	4.25 (108)	77.4					
0000-4000	303	3	230	3	•	3485	65.56 (1665)	18.00 (457)	47.56 (1208)	3.74 (95)	4.25 (108)	77.4					
			460	3	•	3485	65.56 (1665)	18.00 (457)	47.56 (1208)	3.74 (95)	4.25 (108)	77.4					

Control box is required for 3-wire, single-phase applications. Data does not include control box. DS designation = Built into sleeve, 1 - 1/2" NPT, 6" minimum well diameter.

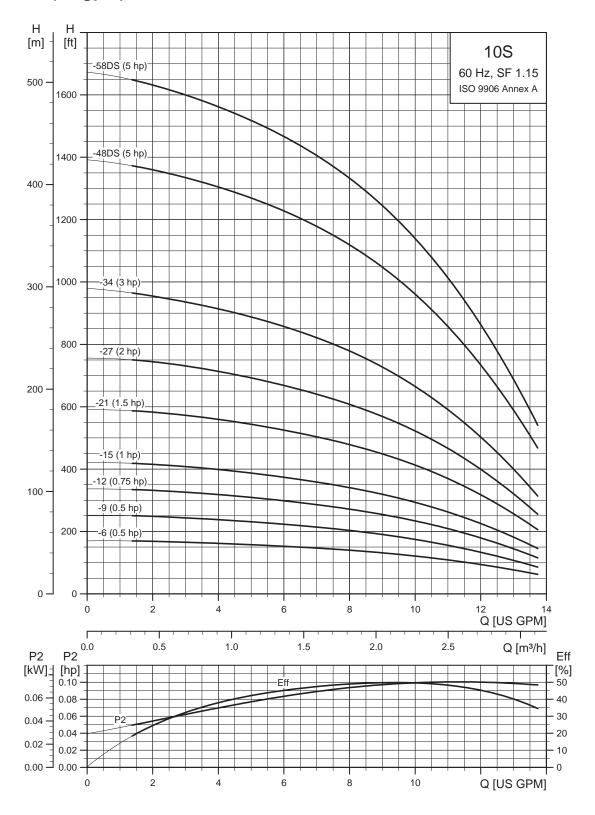
Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 2 ft (0.6 m).


- MS 402 motor.
- MS 4000 motor.

SP 7S (7 gpm)

SP 7S (7 gpm) pump with 4" motor

Pump model	Nom. head [ft]	Motor				Dimensions [in (mm)]					Net weight
		Ph	Volts [V]	[Hp]	[rpm]	А	В	С	D	E	(complete) [lb]
		75	, moto	r diame	eter 4-inch,	2-wire motor,	60 Hz - rated	flow rate 7 gpr	n (1" NPT)		
7S05-8	164	1	230	.5	3512	23.75 (603)	11.03 (280)	12.72 (323)	3.74 (95)	3.98 (101)	21.6
7S05-11	222	1	115	.5	■ 3359	26.23 (666)	11.03 (280)	15.20 (386)	3.74 (95)	3.98 (101)	29.7
			230	.5	3472	26.23 (666)	11.03 (280)	15.20 (386)	3.74 (95)	3.98 (101)	24.3
7S07-15	303	1	230	.75	3467	30.12 (765)	11.62 (295)	18.51 (470)	3.74 (95)	3.98 (101)	29.7
7S10-19	385	1	230	1	3394	34.02 (864)	12.21 (310)	21.82 (554)	3.74 (95)	3.98 (101)	32.4
7S15-26	525	1	230	1.5	3408	41.3 (1049)	13.71 (348)	27.60 (701)	3.74 (95)	3.98 (101)	41.4
		7S.	. moto	r diame	eter 4-inch.	3-wire motor,	60 Hz - rated	flow rate 7 gpr	n (1" NPT)		
7S05-8	164	1	230	.5	3438	23.75 (603)	11.03 (280)	12.72 (323)	3.74 (95)	3.98 (101)	21.6
7S05-11	222	1	115	.5	3380	26.23 (666)	11.03 (280)	15.20 (386)	3.74 (95)	3.98 (101)	21.6
			230	.5	3349	26.23 (666)	11.03 (280)	15.20 (386)	3.74 (95)	3.98 (101)	30.6
7S07-15	303	1	230	.75	3349	30.12 (765)	11.62 (295)	18.51 (470)	3.74 (95)	3.98 (101)	27.9
7S10-19	385	1	230	1	3 369	34.02 (864)	12.21 (310)	21.82 (554)	3.74 (95)	3.98 (101)	39.6
		1	230	1.5	3419	41.30 (1049)	13.71 (348)	27.60 (701)	3.74 (95)	3.98 (101)	38.7
7S15-26	525		230	1.5	3435	39.81 (1011)	12.21 (310)	27.60 (701)	3.74 (95)	3.98 (101)	38.7
		3	460	1.5	3435	39.81 (1011)	12.21 (310)	27.60 (701)	3.74 (95)	3.98 (101)	38.7
7S20-32		1	230	2	• 3590	52.05 (1322)	19.49 (495)	32.56 (827)	3.74 (95)	3.98 (101)	48.5
	630	_	230	2	■ 3596	46.26 (1175)	13.71 (348)	32.56 (827)	3.74 (95)	3.98 (101)	48.5
		3	460	2	■ 3596	46.26 (1175)	13.71 (348)	32.56 (827)	3.74 (95)	3.98 (101)	48.5



E = Maximum diameter of pump including cable guard and motor.

Notes:
Control box is required for 3-wire, single-phase applications. Data does not include control box.
DS designation = Built into sleeve, 1 - 1/2" NPT, 6" minimum well diameter.
Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 2 ft (0.6 m).

- MS 402 motor.
- MS 4000 motor.

SP 10S (10 gpm)

TM05 0230 1812

230

460 3

208

230

460

230

208

3 230 5

1020

SP 10S (10 gpm) pump with 4" motor

Dumm madel	Nom.			Motor			Dime	nsions [in (mn	1)]		Net weight
Pump model	head [ft]	Ph	Volts [V]	[Hp]	[rpm]	Α	В	С	D	E	(complete
	1	0S, r	notor d	liamete	er 4-inch, 2	-wire motor, 6	0 Hz - rated flo	ow rate 10 gpr	n (1.25" NP	Γ)	
10S05-6	126	1	230	.5	3 454	22.05 (560)	10.99 (279)	11.07 (281)	3.74 (95)	3.98 (101)	20.7
40005.0	405		115	.5	3336	24.53 (623)	10.99 (279)	13.55 (344)	3.74 (95)	3.98 (101)	24.3
10S05-9	185	1	230	.5	3 457	24.53 (623)	10.99 (279)	13.55 (344)	3.74 (95)	3.98 (101)	23.4
10S07-12	246	1	230	.75	3 453	27.60 (701)	11.58 (294)	16.03 (407)	3.74 (95)	3.98 (101)	24.3
10S10-15	309	1	230	1	3382	30.67 (779)	12.17 (309)	18.51 (470)	3.74 (95)	3.98 (101)	29.7
10S15-21	433	1	230	1.5	■ 3392	37.17 (944)	13.71 (348)	23.47 (596)	3.74 (95)	3.98 (101)	35.1
10S05-6	126	1	230	.5	31 4-111C11, 3 ■ 3279	-wire motor, 6 24.77 (629)	13.71 (348)	11.07 (281)	3.74 (95)	3.98 (101)	21.6
10005.6									`	<u>, </u>	21.6
10S05-9	185	1	115	.5	3 350	24.53 (623)	10.99 (279)	13.55 (344)	3.74 (95)	3.98 (101)	25.4
10505-9	100	'	230	.5	3313	24.53 (623)	10.99 (279)	13.55 (344)	3.74 (95)	3.98 (101)	24.3
10S07-12	246	1	230	.75	3320	27.60 (701)	11.58 (294)	16.03 (407)	3.74 (95)	3.98 (101)	28.8
10S10-15	309	1	230	1	■ 3348	30.67 (779)	12.17 (309)	18.51 (470)	3.74 (95)	3.98 (101)	29.7
		1	230	1.5	3398	37.17 (944)	13.71 (348)	23.47 (596)	3.74 (95)	3.98 (101)	35.1
10S15-21	433	3	230	1.5	3419	35.63 (905)	12.17 (309)	23.47 (596)	3.74 (95)	3.98 (101)	32.4
		3	460	1.5	3419	35.63 (905)	12.17 (309)	23.47 (596)	3.74 (95)	3.98 (101)	36.0
		1	230	2	• 3400	47.92 (1217)	19.49 (495)	28.43 (722)	3.74 (95)	3.98 (101)	45.9
10S20-27	554	3	230	2	3 399	42.13 (1070)	13.71 (348)	28.43 (722)	3.74 (95)	3.98 (101)	44.1
			460	2	3 399	42.13 (1070)	13.71 (348)	28.43 (722)	3.74 (95)	3.98 (101)	44.1
			230	3	• 3418	58.59 (1488)	22.6 (574)	35.99 (914)	3.74 (95)	3.98 (101)	81.9

18.00 (457)

18.00 (457)

18.00 (457)

26.62 (676)

22.60 (574)

22.60 (574)

22.60 (574)

26.62 (676)

22.60 (574)

35.99 (914)

35.99 (914)

35.99 (914)

47.56 (1208)

47.56 (1208)

47.56 (1208)

47.56 (1208)

62.88 (1597)

62.88 (1597)

62.88 (1597)

3.74 (95)

3.74 (95)

3.74 (95)

3.74 (95)

3.74 (95)

3.74 (95)

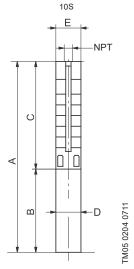
3.74 (95)

3.98 (101)

3.98 (101)

4.25 (108)

4.25 (108)


4.25 (108)

4.25 (108)

4.25 (108)

4.25 (108)

4.25 (108)

E = Maximum diameter of pump including cable guard and motor.

74.7

74.7

74.7

103.5

103.5

103.5

132.3

132.3

132.3

132.3

Notes:

10S30-34

10S50-48DS

10S50-58DS

Control box is required for 3-wire, single-phase applications. Data does not include control box. DS designation = Built into sleeve, 1 - 1/2" NPT, 6" minimum well diameter. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 2 ft (0.6 m).

3465

3465

3476

3499

3497

3441

3473

3473

3470

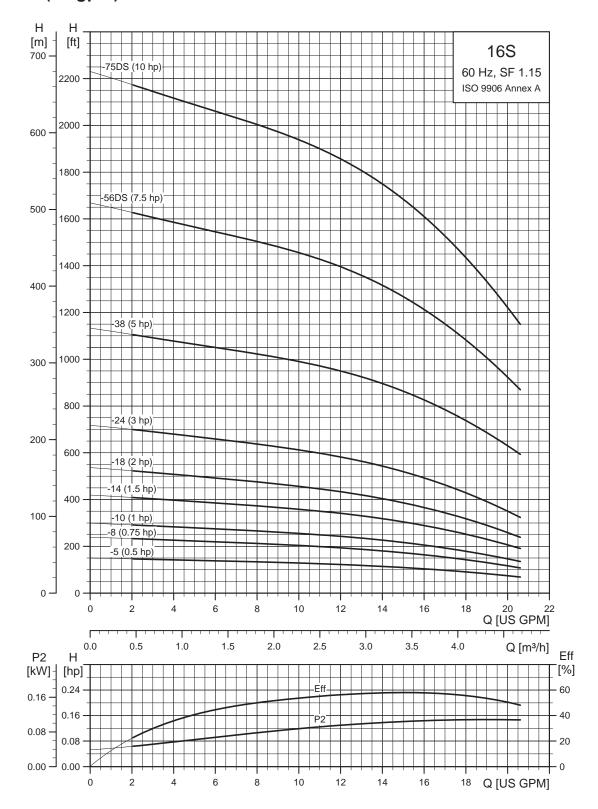
53.98 (1371)

53.98 (1371)

74.18 (1884)

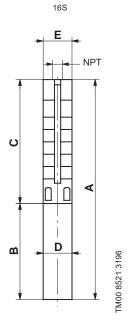
70.16 (1782)

70.16 (1782)


89.49 (2272)

85.48 (2171)

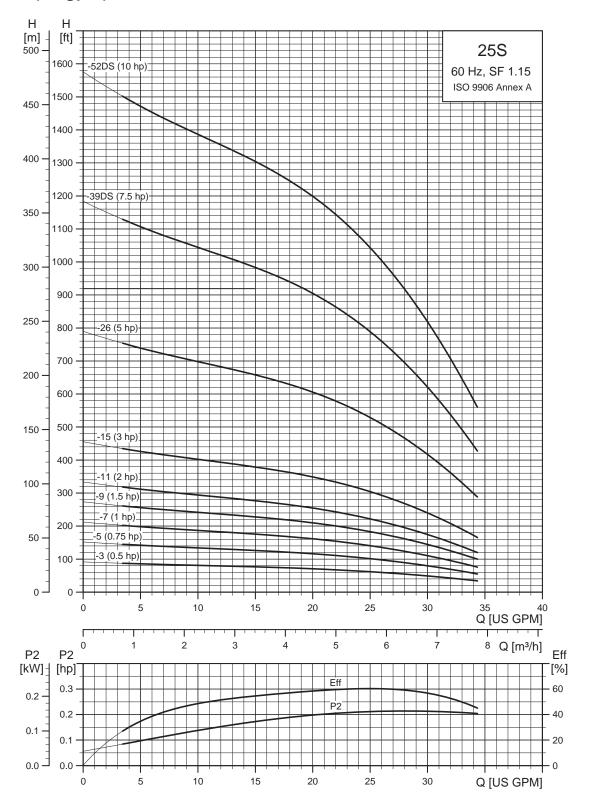
85.48 (2171) 22.60 (574)


- MS 402 motor.
- MS 4000 motor.

SP 16S (16 gpm)

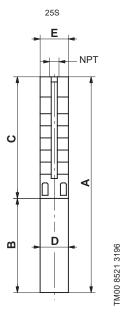
SP 16S (16 gpm) pump with 4", 6" motors

Pump model	Nom.		I	Motor				Dime	ensions [in (mi	m)]		Net weight
rump moder	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]
		166	motor	diama	tor 1	lingh	2-wire motor,	CO Uz rotod	flow rote 16 au	am /1 25" ND3	F)	
		100,								`	<u> </u>	
16S05-5	112	1	115	.5	•	3391	21.26 (540)	11.03 (280)	10.24 (260)	3.74 (95)	3.98 (101)	21.6
40007.0	477		230	.5		3393	21.26 (540)	11.03 (280)	10.24 (260)	3.74 (95)	3.98 (101)	23.4
16S07-8	177	1	230	.75	•	3464	24.34 (618)	11.62 (295)	12.72 (323)	3.74 (95)	3.98 (101)	24.3
16S10-10	223	1	230	11	•	3394	26.58 (675)	12.21 (310)	14.38 (365)	3.74 (95)	3.98 (101)	27.9
16S15-14	313	1	230	1.5	•	3403	31.38 (797)	13.71 (348)	17.68 (449)	3.74 (95)	3.98 (101)	36.0
		16S,	motor	diame	ter 4	l-inch,	3-wire motor,	60 Hz - rated	flow rate 16 g _l	om (1.25" NP1	Γ)	
			115	.5	_	3419	21.26 (540)	11.03 (280)	10.24 (260)	3.74 (95)	3.98 (101)	21.6
16S05-5	112	1	230	.5	•	3396	21.26 (540)	11.03 (280)	10.24 (260)	3.74 (95)	3.98 (101)	21.6
16S07-8	177	1	230	.75	•	3343	24.34 (618)	11.62 (295)	12.72 (323)	3.74 (95)	3.98 (101)	27.0
16S10-10	223	1	230	1	•	3369	26.58 (675)	12.21 (310)	14.38 (365)	3.74 (95)	3.98 (101)	27.9
		1	230	1.5	-	3414	31.38 (797)	13.71 (348)	17.68 (449)	3.74 (95)	3.98 (101)	32.4
16S15-14	313		230	1.5	-	3430	29.89 (759)	12.21 (310)	17.68 (449)	3.74 (95)	3.98 (101)	28.8
		3	460	1.5	•	3430	29.89 (759)	12.21 (310)	17.68 (449)	3.74 (95)	3.98 (101)	28.8
		1	230	2	•	3414	40.48 (1028)	19.49 (495)	20.99 (533)	3.74 (95)	3.98 (101)	36.0
16S20-18	397	_	230	2	•	3413	34.69 (881)	13.71 (348)	20.99 (533)	3.74 (95)	3.98 (101)	36.0
		3	460	2	•	3413	34.69 (881)	13.71 (348)	20.99 (533)	3.74 (95)	3.98 (101)	36.0
		1	230	3	•	3416	48.55 (1233)	22.60 (574)	25.95 (659)	3.74 (95)	3.98 (101)	62.1
			208	3	•	3464	43.94 (1116)	18.00 (457)	25.95 (659)	3.74 (95)	3.98 (101)	57.6
16S30-24	533	3	230	3	•	3464	43.94 (1116)	18.00 (457)	25.95 (659)	3.74 (95)	3.98 (101)	57.6
			460	3	•	3464	43.94 (1116)	18.00 (457)	25.95 (659)	3.74 (95)	3.98 (101)	57.6
		1	230	5	•	3449	65.91 (1674)	26.62 (676)	39.30 (998)	3.74 (95)	3.98 (101)	97.2
10050.00	205		208	5	•	3479	62.01 (1575)	22.72 (577)	39.30 (998)	3.74 (95)	3.98 (101)	90.0
16S50-38	832	3	230	5	•	3479	62.01 (1575)	22.72 (577)	39.30 (998)	3.74 (95)	3.98 (101)	90.0
			460	5	•	3476	62.01 (1575)	22.72 (577)	39.30 (998)	3.74 (95)	3.98 (101)	90.0
				•			er 6 inch, 60 Hz		rate 16 gpm (1			
			208	5		3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0
-	-	3	230	5	A	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			208	7.5	A	3478	92.28 (2344)	23.51 (597)	68.78 (1747)	5.63 (143)	5.51 (140)	165.1
16S75-56DS	1224	3	230	7.5	A	3478	92.28 (2344)	23.51 (597)	68.78 (1747)	5.63 (143)	5.51 (140)	165.1
			460	7.5	A	3491	92.28 (2344)	23.51 (597)	68.78 (1747)	5.63 (143)	5.51 (140)	165.1
16S100-75DS	1636	3	460	10	A	3482	109.18 (2773)	24.69 (627)	84.49 (2146)	5.63 (143)	5.51 (140)	190.0


E = Maximum diameter of pump including cable guard and motor.

Notes:

Control box is required for 3-wire, single-phase applications. Data does not include control box. DS designation = Built into sleeve, 1 - 1/2" NPT, 6" minimum well diameter. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 2 ft (0.6 ft).

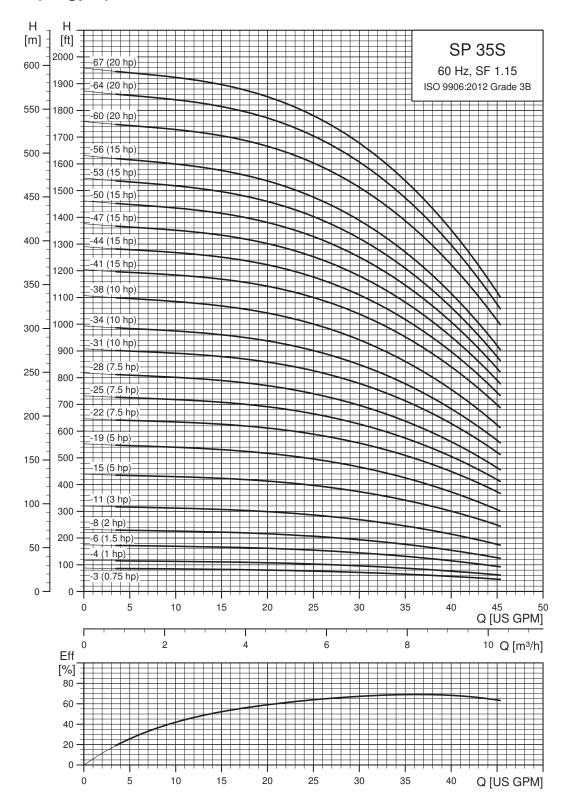

- MS 402 motor.
- MS 4000 motor.
- ▲ MS 6000C motor.

SP 25S (25 gpm)

SP 25S (25 gpm) pump with 4", 6" inch motors

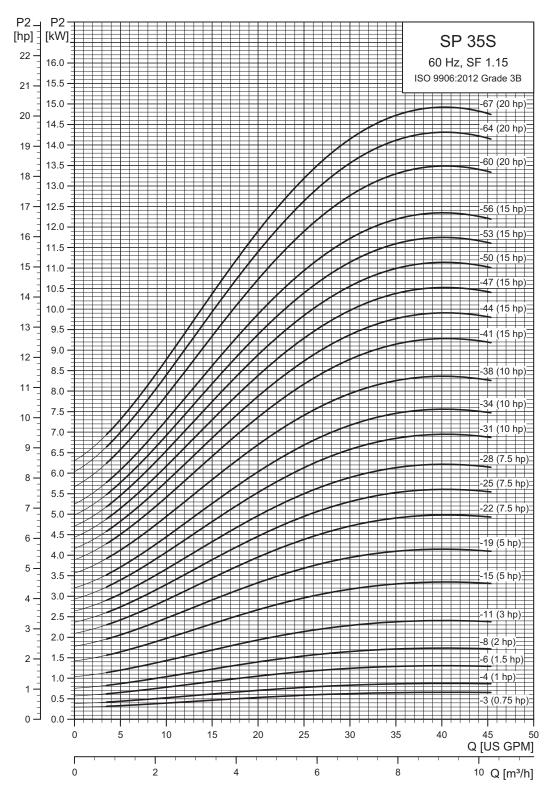
Pump model	Nom. head			Motor				Dime	ensions [in (m	m)]		Net weight
Pump model	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]
		258	, motor	diame	er 4	l-inch, 2	2-wire motor,	60 Hz - rated	flow rate 25 g	pm (1.5" NPT))	
			115	.5	-	3411	19.61 (498)	11.03 (280)	8.59 (218)	3.74 (95)	3.98 (101)	21.6
25S05-3	64	1 -	230	.5	-	3505	19.61 (498)	11.03 (280)	8.59 (218)	3.74 (95)	3.98 (101)	21.6
25S07-5	105	1	230	.75	_	3474	21.86 (555)	11.62 (295)	10.24 (260)	3.74 (95)	3.98 (101)	23.4
25S10-7	146	1	230	1	_	3383	24.10 (612)	12.21 (310)	11.89 (302)	3.74 (95)	3.98 (101)	25.2
25S15-9	189	1	230	1.5	•	3410	27.25 (692)	13.71 (348)	13.55 (344)	3.74 (95)	3.98 (101)	28.8
		25S	, motor	diame	er 4	I-inch, 3	3-wire motor,	60 Hz - rated	flow rate 25 g	pm (1.5" NPT))	
05005.0	0.4		115	.5	-	3441	19.61 (498)	11.03 (280)	8.59 (218)	3.74 (95)	3.98 (101)	21.6
25S05-3	64	1 -	230	.5	_	3423	19.61 (498)	11.03 (280)	8.59 (218)	3.74 (95)	3.98 (101)	21.6
25S07-5	105	1	230	.75	-	3365	21.86 (555)	11.62 (295)	10.24 (260)	3.74 (95)	3.98 (101)	23.4
25S10-7	146	1	230	1	-	3349	24.10 (612)	12.21 (310)	11.89 (302)	3.74 (95)	3.98 (101)	25.2
		1	230	1.5	_	3422	27.25 (692)	13.71 (348)	13.55 (344)	3.74 (95)	3.98 (101)	29.7
25S15-9	189		230	1.5	-	3437	25.75 (654)	12.21 (310)	13.55 (344)	3.74 (95)	3.98 (101)	27.0
		3 -	460	1.5	_	3437	25.75 (654)	12.21 (310)	13.55 (344)	3.74 (95)	3.98 (101)	28.8
		1	230	2	•	3434	34.69 (881)	19.49 (495)	15.20 (386)	3.74 (95)	3.98 (101)	33.1
25S20-11	229		230	2	_	3431	28.90 (734)	13.71 (348)	15.20 (386)	3.74 (95)	3.98 (101)	37.0
		3 -	460	2	_	3431	28.90 (734)	13.71 (348)	15.20 (386)	3.74 (95)	3.98 (101)	33.3
		1	230	3	•	3432	41.11 (1044)	22.60 (574)	18.51 (470)	3.74 (95)	3.98 (101)	61.2
			208	3	•	3474	36.50 (927)	18.00 (457)	18.51 (470)	3.74 (95)	3.98 (101)	53.1
25S30-15	314	3	230	3	•	3474	36.50 (927)	18.00 (457)	18.51 (470)	3.74 (95)	3.98 (101)	53.1
		•	460	3	•	3474	36.50 (927)	18.00 (457)	18.51 (470)	3.74 (95)	3.98 (101)	53.1
		1	230	5	•	3449	54.22 (1377)	26.62 (676)	27.60 (701)	3.74 (95)	3.98 (101)	72.9
05050.00	5.40		208	5	•	3479	50.32 (1278)	22.72 (577)	27.60 (701)	3.74 (95)	3.98 (101)	72.9
25S50-26	546	3	230	5	•	3479	50.32 (1278)	22.72 (577)	27.60 (701)	3.74 (95)	3.98 (101)	72.9
		•	460	5	•	3476	50.32 (1278)	22.72 (577)	27.60 (701)	3.74 (95)	3.98 (101)	72.9
			SP 25	S, mote	or d	iameter	6 inch, 60 Hz	- rated flow i	rate 25 gpm (1	.5" NPT)		
			208	5	A	3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0
-	-	3	230	5	A	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0
		•	460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			208	7.5	A	3475	66.06 (1678)	23.51 (597)	42.56 (1081)	5.63 (143)	5.43 (138)	122.1
25S75-39DS	815	3	230	7.5	A	3475	66.06 (1678)	23.51 (597)	42.56 (1081)	5.63 (143)	5.43 (138)	122.1
			460	7.5	A	3488	66.06 (1678)	23.51 (597)	42.56 (1081)	5.63 (143)	5.43 (138)	122.1
25S100-52DS	1082	3	460	10	A	3480	90.17 (2290)	24.69 (627)	65.48 (1663)	5.63 (143)	5.51 (140)	163.1

E = Maximum diameter of pump including cable guard and motor.

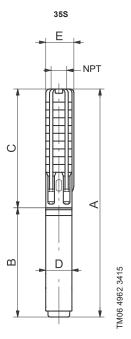

Notes:

Control box is required for 3-wire, single-phase applications. Data does not include control box. DS designation = Built into sleeve, 1 - 1/2" NPT, 6" minimum well diameter. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 2 ft (0.6 m).

- MS 402 motor.
- MS 4000 motor.
- ▲ MS 6000C motor.


4" and larger wells - continued

SP 35S (35 gpm)

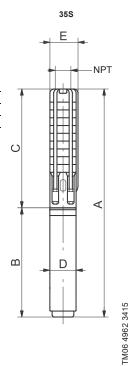

4" and larger wells - continued

SP 35S (35 gpm) pump power requirement (P2)

SP 35S (35 gpm) pump with 4" motor

Pump model	Nom. head			Motor				Dimen	sions [in (mm)	1		Net weight
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]
	3	5S -	Motor	diame	ter	4-inch,	3-wire motor, 6	0 Hz, rated flo	ow rate 35 gpm	(1 1/2" NP	T)	
		1	230	.75		3427	28.35 (720)	13.08 (332)	15.28 (388)	3.75 (95)	3.98 (101)	29.9
2507.2	61	3	230	.75		3439	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.9
35S07-3	01	3	460	.75	-	3439	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.9
		3	575	.75	-	3428	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.9
	82	1	230	1	-	3429	30.91 (785)	13.67 (347)	17.25 (438)	3.75 (95)	3.98 (101)	32.8
35S10-4	83	3	230	1	-	3445	29.73 (755)	12.49 (317)	17.25 (438)	3.75 (95)	3.98 (101)	30.1
33310-4	83	3	460	1	-	3445	29.73 (755)	12.49 (317)	17.25 (438)	3.75 (95)	3.98 (101)	29.9
	82	3	575	1	-	3431	29.73 (755)	12.49 (317)	17.25 (438)	3.75 (95)	3.98 (101)	29.9
	126	1	230	1.5	-	3442	36.42 (925)	15.24 (387)	21.19 (538)	3.75 (95)	3.98 (101)	39.1
25045.6	126	3	230	1.5	-	3451	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	35.5
35S15-6	126	3	460	1.5	-	3451	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	35.5
	125	3	575	1.5	-	3427	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	35.3
		1	230	2	•	3434	44.69 (1135)	19.57 (497)	25.12 (638)	3.75 (95)	3.98 (101)	57.3
05000 0	400	3	230	2	-	3432	40.36 (1025)	15.24 (387)	25.12 (638)	3.75 (95)	3.98 (101)	41.9
35S20-8	168	3	460	2	-	3432	40.36 (1025)	15.24 (387)	25.12 (638)	3.75 (95)	3.98 (101)	42.1
		3	575	2	-	3430	40.36 (1025)	15.24 (387)	25.12 (638)	3.75 (95)	3.98 (101)	41.9
	232	1	230	3	•	3431	53.75 (1365)	22.72 (577)	31.03 (788)	3.75 (95)	3.98 (101)	69.9
05000 44	233	3	208	3	•	3440	49.02 (1245)	18.00 (457)	31.03 (788)	3.75 (95)	3.98 (101)	56.7
35S30-11	233	3	230	3	•	3440	49.02 (1245)	18.00 (457)	31.03 (788)	3.75 (95)	3.98 (101)	56.7
	237	3	460	3	•	3468	49.02 (1245)	18.00 (457)	31.03 (788)	3.75 (95)	3.98 (101)	56.7
	327	1	230	5	•	3483	65.56 (1665)	26.66 (677)	38.90 (988)	3.75 (95)	3.98 (101)	86.1
05050.45	331	3	208	5	•	3502	61.62 (1565)	22.72 (577)	38.90 (988)	3.75 (95)	3.98 (101)	75.1
35850-15	331	3	230	5	•	3502	61.62 (1565)	22.72 (577)	38.90 (988)	3.75 (95)	3.98 (101)	75.1
	331	3	460	5	•	3501	61.62 (1565)	22.72 (577)	38.90 (988)	3.75 (95)	3.98 (101)	75.1
	407	1	230	5	•	3446	73.43 (1865)	26.66 (677)	46.78 (1188)	3.75 (95)	3.98 (101)	91.2
	413	3	208	5	•	3473	69.49 (1765)	22.72 (577)	46.78 (1188)	3.75 (95)	3.98 (101)	80.2
35S50-19	413	3	230	5	•	3473	69.49 (1765)	22.72 (577)	46.78 (1188)	3.75 (95)	3.98 (101)	80.2
	413	3	460	5	•	3471	69.49 (1765)	22.72 (577)	46.78 (1188)	3.75 (95)	3.98 (101)	80.2
		3	208	7.5	•	3495	79.34 (2015)	26.66 (677)	52.68 (1338)	3.75 (95)	3.98 (101)	95.0
		3	230	7.5	•	3495	79.34 (2015)	26.66 (677)	52.68 (1338)	3.75 (95)	3.98 (101)	95.0
35875-22	485	3	460	7.5	•	3495	79.34 (2015)	26.66 (677)	52.68 (1338)	3.75 (95)	3.98 (101)	95.0
		3	575	7.5	•	3495	79.34 (2015)	26.66 (677)	52.68 (1338)	3.75 (95)	3.98 (101)	95.0
		3	208	7.5	•	3479	85.24 (2165)	26.66 (677)	58.59 (1488)	3.75 (95)	3.98 (101)	98.9
		3	230	7.5	•	3479	85.24 (2165)	26.66 (677)	58.59 (1488)	3.75 (95)	3.98 (101)	98.9
35S75-25	547	3	460	7.5	•	3479	85.24 (2165)	26.66 (677)	58.59 (1488)	3.75 (95)	3.98 (101)	98.9
		3	575	7.5	•	3479	85.24 (2165)	26.66 (677)	58.59 (1488)	3.75 (95)	3.98 (101)	98.9
		3	208	7.5	•	3463	91.15 (2315)	26.66 (677)	64.49 (1638)	3.75 (95)	3.98 (101)	102.7
		3	230	7.5	•	3463	91.15 (2315)	26.66 (677)	64.49 (1638)	3.75 (95)	3.98 (101)	102.7
35S75-28	607	3	460	7.5	•	3463	91.15 (2315)	26.66 (677)	64.49 (1638)	3.75 (95)	3.98 (101)	102.7
		3	575	7.5	•	3463	91.15 (2315)	26.66 (677)	64.49 (1638)	3.75 (95)	3.98 (101)	102.7
-		3	460	10	÷	3487	100.99 (2565)	30.60 (777)	70.40 (1788)	3.75 (95)	3.98 (101)	115.4
35S100-31	682	3	575	10	÷	3487	100.99 (2565)	30.60 (777)	70.40 (1788)	3.75 (95)	3.98 (101)	115.4
		3	460	10	÷	3475	106.89 (2715)	30.60 (777)	76.30 (1938)	3.75 (95)	3.98 (101)	119.2
35\$100-34	743	3	575	10	÷	3475	106.89 (2715)	30.60 (777)	76.30 (1938)	3.75 (95)	3.98 (101)	119.2
-		3	460	10	•	3459	114.77 (2915)	30.60 (777)	84.18 (2138)	3.75 (95)	3.98 (101)	124.3
35S100-38	823	3	575	10		3459	114.77 (2915)	30.60 (777)	84.18 (2138)	3.75 (95)	3.98 (101)	124.3
		J	3/3	10	•	3439	114.77 (2915)	30.00 (111)	04.10 (2138)	3.75 (95)	3.90 (101)	124.3

E = Maximum diameter of pump including cable guard and motor.

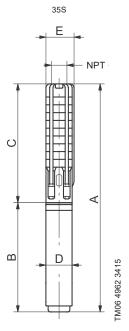

Notes:

Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

- MS 402 motor.
- MS 4000 motor.

SP 35S (35 gpm) pump with 6" motor

Pump model	Nom.			Motor				Dime	nsions [in (mn	n)]		Net weight
rump moder	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]
			358	- Mot	or c	diamete	r 6 inch, 60 Hz,	rated flow ra	te 35 gpm (1 1	(2" NPT)		
			208	5	A	3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0
-	-	3	230	5	A	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0
	487	3	208	7.5	A	3502	78.67 (1998)	23.51 (597)	55.16 (1401)	5.50 (140)	5.50 (140)	123.6
35875-22	487	3	230	7.5	A	3502	78.67 (1998)	23.51 (597)	55.16 (1401)	5.50 (140)	5.50 (140)	123.6
33373-22	490	3	460	7.5	A	3510	78.67 (1998)	23.51 (597)	55.16 (1401)	5.50 (140)	5.50 (140)	123.6
	489	3	575	7.5	A	3509	78.67 (1998)	23.51 (597)	55.16 (1401)	5.50 (140)	5.50 (140)	123.6
	549	3	208	7.5	A	3487	84.57 (2148)	23.51 (597)	61.07 (1551)	5.50 (140)	5.50 (140)	127.5
35875-25	549	3	230	7.5	A	3487	84.57 (2148)	23.51 (597)	61.07 (1551)	5.50 (140)	5.50 (140)	127.5
33373-23	553	3	460	7.5	A	3498	84.57 (2148)	23.51 (597)	61.07 (1551)	5.50 (140)	5.50 (140)	127.5
	552	3	575	7.5	A	3496	84.57 (2148)	23.51 (597)	61.07 (1551)	5.50 (140)	5.50 (140)	127.5
	611	3	208	7.5	A	3472	90.48 (2298)	23.51 (597)	66.97 (1701)	5.50 (140)	5.50 (140)	131.4
05075 00	611	3	230	7.5	A	3472	90.48 (2298)	23.51 (597)	66.97 (1701)	5.50 (140)	5.50 (140)	131.4
35S75-28	615	3	460	7.5	A	3484	90.48 (2298)	23.51 (597)	66.97 (1701)	5.50 (140)	5.50 (140)	131.4
	614	3	575	7.5	A	3483	90.48 (2298)	23.51 (597)	66.97 (1701)	5.50 (140)	5.50 (140)	131.4
	688	3	208	10	A	3489	97.56 (2478)	24.69 (627)	72.88 (1851)	5.50 (140)	5.50 (140)	142.0
35S100-31	687	3	230	10	A	3489	97.56 (2478)	24.69 (627)	72.88 (1851)	5.50 (140)	5.50 (140)	142.0
355100-31	687	3	460	10	A	3499	97.56 (2478)	24.69 (627)	72.88 (1851)	5.50 (140)	5.50 (140)	142.0
	687	3	575	10	A	3498	97.56 (2478)	24.69 (627)	72.88 (1851)	5.50 (140)	5.50 (140)	142.0
	744	3	208	10	A	3476	103.47 (2628)	24.69 (627)	78.78 (2001)	5.50 (140)	5.50 (140)	145.9
050400 04	744	3	230	10	A	3476	103.47 (2628)	24.69 (627)	78.78 (2001)	5.50 (140)	5.50 (140)	145.9
35S100-34	749	3	460	10	A	3488	103.47 (2628)	24.69 (627)	78.78 (2001)	5.50 (140)	5.50 (140)	145.9
	749	3	575	10	A	3488	103.47 (2628)	24.69 (627)	78.78 (2001)	5.50 (140)	5.50 (140)	145.9
	824	3	208	10	A	3459	111.34 (2828)	24.69 (627)	86.66 (2201)	5.50 (140)	5.50 (140)	151.1
050400 00	824	3	230	10	A	3459	111.34 (2828)	24.69 (627)	86.66 (2201)	5.50 (140)	5.50 (140)	151.1
35S100-38	830	3	460	10	A	3474	111.34 (2828)	24.69 (627)	86.66 (2201)	5.50 (140)	5.50 (140)	151.1
	830	3	575	10	A	3473	111.34 (2828)	24.69 (627)	86.66 (2201)	5.50 (140)	5.50 (140)	151.1

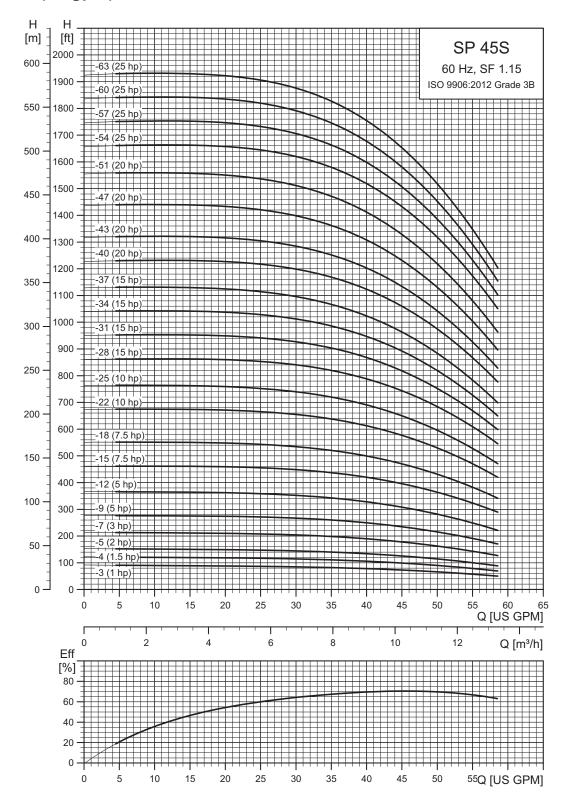

E = Maximum diameter of pump including cable guard and motor.

Notes: Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

▲ MS 6000C motor.

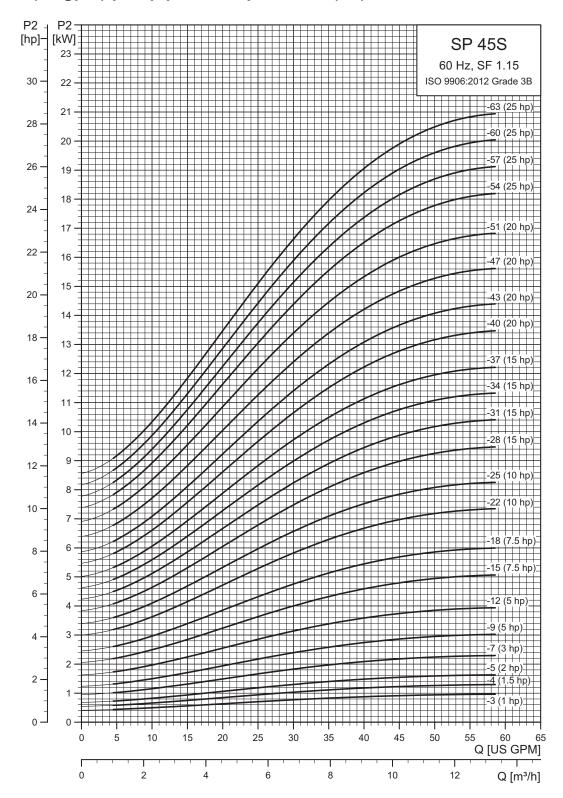
SP 35S (35 gpm) pump with 6" motor

Pump model	Nom.			Motor				Dime	nsions [in (mm)	1		Net weight
Pump model	head [ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]
			050	M-4			. 0 ! 00		4- 05 (011)	IDT)		
					or c				ite 35 gpm (2" N			
	912	3	208	15	<u> </u>	3503	131.23 (3333)	27.05 (687)	104.18 (2646)	5.50 (140)	5.50 (140)	217.3
35S150-41DS	912	3	230	15	A	3503	131.23 (3333)	27.05 (687)	104.18 (2646)	5.50 (140)	5.50 (140)	217.3
	914	3	460	15	A	3507	131.23 (3333)	27.05 (687)	104.18 (2646)	5.50 (140)	5.50 (140)	217.3
	913	3	575	15	A	3506	131.23 (3333)	27.05 (687)	104.18 (2646)	5.50 (140)	5.50 (140)	217.3
	975	3	208	15	A	3496	137.13 (3483)	27.05 (687)	110.08 (2796)	5.50 (140)	, ,	223.1
35S150-44DS	975	3	230	15	A	3496	137.13 (3483)	27.05 (687)	110.08 (2796)	5.50 (140)	5.50 (140)	223.1
000.00 1.50	977	3	460	15	A	3500	137.13 (3483)	27.05 (687)	110.08 (2796)	5.50 (140)	5.50 (140)	223.1
	976	3	575	15	A	3499	137.13 (3483)	27.05 (687)	110.08 (2796)	5.50 (140)	5.50 (140)	223.1
	1037	3	208	15	A	3488	143.04 (3633)	27.05 (687)	115.99 (2946)	5.50 (140)	5.50 (140)	228.8
35S150-47DS	1037	3	230	15	A	3488	143.04 (3633)	27.05 (687)	115.99 (2946)	5.50 (140)	5.50 (140)	228.8
330130-4700	1040	3	460	15	\blacktriangle	3493	143.04 (3633)	27.05 (687)	115.99 (2946)	5.50 (140)	5.50 (140)	228.8
	1039	3	575	15	A	3491	143.04 (3633)	27.05 (687)	115.99 (2946)	5.50 (140)	5.50 (140)	228.8
	1098	3	208	15	A	3480	148.94 (3783)	27.05 (687)	121.89 (3096)	5.50 (140)	5.50 (140)	234.6
35S150-50DS	1098	3	230	15	A	3480	148.94 (3783)	27.05 (687)	121.89 (3096)	5.50 (140)	5.50 (140)	234.6
333130-3003	1101	3	460	15	\blacktriangle	3485	148.94 (3783)	27.05 (687)	121.89 (3096)	5.50 (140)	5.50 (140)	234.6
	1100	3	575	15	\blacktriangle	3484	148.94 (3783)	27.05 (687)	121.89 (3096)	5.50 (140)	(140) 5.50 (140) (140) 5.50 (140)	234.6
	1159	3	208	15	\blacktriangle	3472	154.85 (3933)	27.05 (687)	127.80 (3246)	5.50 (140)	5.50 (140)	240.3
050450 5000	1159	3	230	15	\blacktriangle	3472	154.85 (3933)	27.05 (687)	127.80 (3246)	5.50 (140)	5.50 (140)	240.3
35S150-53DS	1163	3	460	15	A	3478	154.85 (3933)	27.05 (687)	127.80 (3246)	5.50 (140)	5.50 (140)	240.3
	1161	3	575	15	\blacktriangle	3476	154.85 (3933)	27.05 (687)	127.80 (3246)	5.50 (140)	5.50 (140)	240.3
	1218	3	208	15	A	3464	160.75 (4083)	27.05 (687)	133.71 (3396)	5.50 (140)	5.50 (140)	246.1
050450 5000	1218	3	230	15	A	3464	160.75 (4083)	27.05 (687)	133.71 (3396)	5.50 (140)	5.50 (140)	246.1
35S150-56DS	1223	3	460	15	A	3470	160.75 (4083)	27.05 (687)	133.71 (3396)	5.50 (140)	5.50 (140)	246.1
	1222	3	575	15	A	3468	160.75 (4083)	27.05 (687)	133.71 (3396)	5.50 (140)	5.50 (140)	246.1
	1329	3	208	20	A	3494	171.19 (4348)	29.61 (752)	141.58 (3596)	5.50 (140)	5.50 (140)	269.2
	1329	3	230	20	A	3494	171.19 (4348)	29.61 (752)	141.58 (3596)	5.50 (140)	5.50 (140)	269.2
35S200-60DS	1337	3	460	20	A	3503	171.19 (4348)	29.61 (752)	141.58 (3596)	5.50 (140)	5.50 (140)	269.2
	1338	3	575	20	A	3506	171.19 (4348)	29.61 (752)	141.58 (3596)	5.50 (140)	5.50 (140)	269.2
	1412	3	208	20	A	3486	179.06 (4548)	29.61 (752)	149.45 (3796)	5.50 (140)	5.50 (140)	276.9
	1412	3	230	20	<u> </u>	3486	179.06 (4548)	29.61 (752)	149.45 (3796)	5.50 (140)	5.50 (140)	276.9
35S200-64DS	1420	3	460	20	_	3497	179.06 (4548)	29.61 (752)	149.45 (3796)	5.50 (140)	5.50 (140)	276.9
	1422	3	575	20	_	3499	179.06 (4548)	29.61 (752)	149.45 (3796)	5.50 (140)	5.50 (140)	276.9
	1473	3	208	20	_	3491	184.97 (4698)	29.61 (752)	155.36 (3946)	5.50 (140)	5.50 (140)	282.7
	1473	3	230	20	_	3491	184.97 (4698)	29.61 (752)	155.36 (3946)	5.50 (140)	5.50 (140)	282.7
35S200-67DS	1482	3	460	20	ī	3480	184.97 (4698)	29.61 (752)	155.36 (3946)	5.50 (140)	5.50 (140)	282.7
	1485	3	575	20	Î	3494	184.97 (4698)	29.61 (752)	155.36 (3946)	5.50 (140)	5.50 (140)	282.7

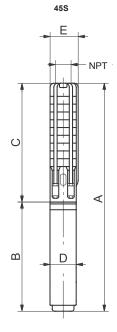

E = Maximum diameter of pump including cable guard and motor.

DS designation = Built into sleeve, 2" NPT, 6" minimum well diameter.
Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

▲ MS 6000C motor.


4" and larger wells - continued

SP 45S (45 gpm)


4" and larger wells - continued

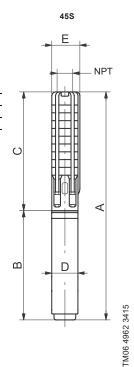
SP 45S (45 gpm) pump power requirement (P2)

SP 45S (45 gpm) pump with 4" motor

Pump model	Nom. head			Motor			Dimer	nsions [in (mn	n)]		Net weight
	[ft]	Ph	Volts [V]	[Hp]	[rpm]	A	В	С	D	E	(complete) [lb]
	41		Motor	diamot	or 4 inch	3-wire motor,	60 Hz ratod	flow rato 45 a	nm (2" ND	Τ\	
	72		230				•			·	24.5
	73	3	230	1		28.94 (735) 27.76 (705)	13.67 (347) 12.49 (317)	15.28 (388) 15.28 (388)	3.75 (95) 3.75 (95)	3.98 (101) 3.98 (101)	31.5 28.8
45S10-3	73	3	460	1	■ 3435 ■ 3435	27.76 (705)	12.49 (317)	15.28 (388)	3.75 (95)	3.98 (101)	28.6
	72	3	575	1	■ 3433 ■ 3422	27.76 (705)	12.49 (317)	15.28 (388)	3.75 (95)	3.98 (101)	28.6
	98	1	230	1.5	■ 3422 ■ 3451	32.49 (825)	15.24 (387)	17.25 (438)	3.75 (95)	3.98 (101)	36.5
	99	3	230	1.5	■ 3451 ■ 3458	30.91 (785)	13.67 (347)	17.25 (438)	3.75 (95)	3.98 (101)	33.0
45S15-4	99	3	460	1.5	■ 3458	30.91 (785)	13.67 (347)	17.25 (438)	3.75 (95)	3.98 (101)	33.0
	97	3	575	1.5	■ 3435	30.91 (785)	13.67 (347)	17.25 (438)	3.75 (95)	3.98 (101)	32.8
	124	1	230	2	• 3454	38.78 (985)	19.57 (497)	19.22 (488)	3.75 (95)	3.98 (101)	53.4
	124	3	230	2	■ 3451	34.45 (875)	15.24 (387)	19.22 (488)	3.75 (95)	3.98 (101)	38.0
45S20-5	124	3	460	2	■ 3451 ■ 3451	34.45 (875)	15.24 (387)	19.22 (488)	3.75 (95)	3.98 (101)	38.2
	123	3	575	2	■ 3446	34.45 (875)	15.24 (387)	19.22 (488)	3.75 (95)	3.98 (101)	38.0
	174	1	230	3	• 3448	45.87 (1165)	22.72 (577)	23.15 (588)	3.75 (95)	3.98 (101)	64.8
	174	3	208	3	• 3452	41.15 (1045)	18.00 (457)	23.15 (588)	. ,	, ,	51.6
45S30-7	174	3	230	3	• 3452	41.15 (1045)	18.00 (457)	23.15 (588)	. ,	, ,	51.6
45550-7	174	3	460	3	• 3481	41.15 (1045)	18.00 (457)	23.15 (588)	` '	,	51.6
	185	3	575	3		- (/	(- ,	()	. ,	75 (95) 3.98 (101) 75 (95) 3.98 (101)	
	232	1	230	5		41.15 (1045)	18.00 (457)	23.15 (588)	. ,	,	51.4 78.4
	234	3	208	5	35023517	53.75 (1365) 49.81 (1265)	26.66 (677) 22.72 (577)	27.09 (688) 27.09 (688)	()	, ,	67.4
45S50-9	234	3	230	5	• 3517 • 3517	()	, ,	()	. ,	, ,	
45550-9	234	3	460	5		49.81 (1265) 49.81 (1265)	22.72 (577) 22.72 (577)	27.09 (688) 27.09 (688)	3.75 (95) 3.75 (95)	3.98 (101) 3.98 (101)	67.4 67.4
	237	3	575	5	35163515	,	22.72 (577)	, ,	3.75 (95)	, ,	67.4
	301	1	230	5		()	, ,	()	. ,	3.98 (101)	82.2
	306	3	208	5		59.65 (1515) 55.71 (1415)	26.66 (677) 22.72 (577)	33.00 (838)	3.75 (95)	3.98 (101)	71.2
45S50-12	306	3	230	5	34863486	55.71 (1415)	22.72 (577)	33.00 (838) 33.00 (838)	3.75 (95) 3.75 (95)	3.98 (101) 3.98 (101)	71.2
45550-12	306	3	460	5	• 3483	55.71 (1415)	22.72 (577)	33.00 (838)	3.75 (95)	3.98 (101)	71.2
	308	3	575	5	• 3485	,	, ,	, ,	. ,	, ,	
	386	3	208	7.5		55.71 (1415)	22.72 (577)	33.00 (838)	3.75 (95)	3.98 (101)	71.0 86.1
	386	3	230	7.5		65.56 (1665) 65.56 (1665)	26.66 (677) 26.66 (677)	38.90 (988)	3.75 (95) 3.75 (95)	3.98 (101) 3.98 (101)	86.1
45S75-15							(- ,	38.90 (988)	(,	(- ,	
	386	3	460 575	7.5	34973497	65.56 (1665)	26.66 (677)	38.90 (988)	3.75 (95)	3.98 (101)	86.1
				7.5		65.56 (1665)	26.66 (677)	38.90 (988)	3.75 (95)	3.98 (101)	86.1
	458	3	208		• 3474	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	89.9
45S75-18	458	3	230	7.5	• 3474	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	89.9
	458	3	460	7.5	• 3474	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	89.9
	458	3	575	7.5	• 3474	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	89.9
45S100-22	564	3	460	10	• 3484	83.27 (2115)	30.60 (777)	52.68 (1338)	3.75 (95)	3.98 (101)	103.8
	564	3	575	10	• 3484	83.27 (2115)	30.60 (777)	52.68 (1338)	3.75 (95)	3.98 (101)	103.8
45S100-25	632	3	460	10	• 3466	89.18 (2265)	30.60 (777)	58.59 (1488)	3.75 (95)	3.98 (101)	107.7
	632	3	575	10	• 3466	89.18 (2265)	30.60 (777)	58.59 (1488)	3.75 (95)	3.98 (101)	107.7

TM06 4962 3415

E = Maximum diameter of pump including cable guard and motor.

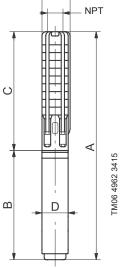

Notes:

Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

- MS 402 motor.
- MS 4000 motor.

SP 45S (45 gpm) pump with 6" motor

Pump model	Nom. head			Motor				Dime	ensions [in (mn	n)]		Net weight
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]
			41	-C M	-4	diamen	ar Cinah COII		unto 45 mm m (2)	L NDT)		
			208	5 - IVI			er 6 inch, 60 n		rate 45 gpm (2'			80.0
		3	230	5	<u> </u>	3480 3510		23.51 (597) 23.51 (597)		5.50 (139.5) 5.50 (139.5)		80.0
-	-	3	460	5	<u> </u>	3500	<u>-</u>	23.51 (597)	-	5.50 (139.5)		80.0
	388	3	208	7.5	<u> </u>	3504	64.89 (1648)	23.51 (597)	41.38 (1051)	5.50 (139.3)	5.50 (140)	114.4
	388	3	230	7.5	_	3504	64.89 (1648)	23.51 (597)	41.38 (1051)	5.50 (140)	5.50 (140)	114.4
45S75-15	390	3	460	7.5	-	3512	64.89 (1648)	23.51 (597)	41.38 (1051)	5.50 (140)	5.50 (140)	114.4
	390	3	575	7.5	_	3511	64.89 (1648)	23.51 (597)	41.38 (1051)	5.50 (140)	5.50 (140)	114.4
	460	3	208	7.5	_	3482	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	118.3
	460	3	230	7.5	A	3482	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	118.3
45S75-18	463	3	460	7.5	A	3493	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	118.3
	462	3	575	7.5	A	3492	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	118.3
-	564	3	208	10	A	3485	79.85 (2028)	24.69 (627)	55.16 (1401)	5.50 (140)	5.50 (140)	130.2
450400.00	564	3	230	10	A	3485	79.85 (2028)	24.69 (627)	55.16 (1401)	5.50 (140)	5.50 (140)	130.2
45S100-22	568	3	460	10	A	3496	79.85 (2028)	24.69 (627)	55.16 (1401)	5.50 (140)	5.50 (140)	130.2
	568	3	575	10	A	3496	79.85 (2028)	24.69 (627)	55.16 (1401)	5.50 (140)	5.50 (140)	130.2
	632	3	208	10	A	3467	85.75 (2178)	24.69 (627)	61.07 (1551)	5.50 (140)	5.50 (140)	134.1
45S100-25	632	3	230	10	A	3467	85.75 (2178)	24.69 (627)	61.07 (1551)	5.50 (140)	5.50 (140)	134.1
455100-25	640	3	460	10	A	3481	85.75 (2178)	24.69 (627)	61.07 (1551)	5.50 (140)	5.50 (140)	134.1
	640	3	575	10	A	3480	85.75 (2178)	24.69 (627)	61.07 (1551)	5.50 (140)	5.50 (140)	134.1
	727	3	208	15	A	3505	94.02 (2388)	27.05 (687)	66.97 (1701)	5.50 (140)	5.50 (140)	160.6
45S150-28	727	3	230	15	A	3505	94.02 (2388)	27.05 (687)	66.97 (1701)	5.50 (140)	5.50 (140)	160.6
430130-20	729	3	460	15	A	3508	94.02 (2388)	27.05 (687)	66.97 (1701)	5.50 (140)	5.50 (140)	160.6
	728	3	575	15	A	3507	94.02 (2388)	27.05 (687)	66.97 (1701)	5.50 (140)	5.50 (140)	160.6
	801	3	208	15	A	3494	99.93 (2538)	27.05 (687)	72.88 (1851)	5.50 (140)	5.50 (140)	164.7
45\$150-31	801	3	230	15	A	3494	99.93 (2538)	27.05 (687)	72.88 (1851)	5.50 (140)	5.50 (140)	164.7
	803	3	460	15	A	3498	99.93 (2538)	27.05 (687)	72.88 (1851)	5.50 (140)	5.50 (140)	164.7
	802	3	575	15	A	3497	99.93 (2538)	27.05 (687)	72.88 (1851)	5.50 (140)	5.50 (140)	164.7
	869	3	208	15	A	3482	105.83 (2688)	27.05 (687)	78.78 (2001)	5.50 (140)	5.50 (140)	168.8
45S150-34	869	3	230	15	A	3482	105.83 (2688)	27.05 (687)	78.78 (2001)	5.50 (140)	5.50 (140)	168.8
	876	3	460	15	<u> </u>	3487	105.83 (2688)	27.05 (687)	78.78 (2001)	5.50 (140)	5.50 (140)	168.8
	875	3	575	15	<u>*</u>	3486	105.83 (2688)	27.05 (687)	78.78 (2001)	5.50 (140)	5.50 (140)	168.8
	939	3	208	15	<u> </u>	3470	111.74 (2838)	27.05 (687)	84.69 (2151)	5.50 (140)	5.50 (140)	172.9
45\$150-37	939	3	230	15	<u> </u>	3470	111.74 (2838)	27.05 (687)	84.69 (2151)	5.50 (140)	5.50 (140)	172.9
	942	3	460	15 15	<u> </u>	3476	111.74 (2838)	27.05 (687)	84.69 (2151)	5.50 (140)	5.50 (140)	172.9
	1037	3	575 208	20	<u> </u>	3474	111.74 (2838) 131.82 (3348)	27.05 (687) 29.61 (752)	84.69 (2151) 102.21 (2596)	5.50 (140) 5.50 (140)	5.50 (140) 5.50 (140)	172.9 230.8
	1037	3	230	20	<u> </u>	3498	131.82 (3348)	29.61 (752)	102.21 (2596)	5.50 (140)	5.50 (140)	230.8
45S200-40DS	1043	3	460	20	<u> </u>	3507	131.82 (3348)	29.61 (752)	102.21 (2596)	5.50 (140)	5.50 (140)	230.8
	1043	3	575	20	Ŧ	3509	131.82 (3348)	29.61 (752)	102.21 (2596)	5.50 (140)	5.50 (140)	230.8
	1105	3	208	20	<u> </u>	3489	137.72 (3498)	29.61 (752)	108.12 (2746)	5.50 (140)	5.50 (140)	236.6
	1105	3	230	20	-	3489	137.72 (3498)	29.61 (752)	108.12 (2746)	5.50 (140)	5.50 (140)	236.6
45S200-43DS	1117	3	460	20	-	3500	137.72 (3498)	29.61 (752)	108.12 (2746)	5.50 (140)	5.50 (140)	236.6
	1118	3	575	20	<u> </u>	3502	137.72 (3498)	29.61 (752)	108.12 (2746)	5.50 (140)	5.50 (140)	236.6
	1199	3	208	20	_	3478	145.60 (3698)	29.61 (752)	115.99 (2946)	5.50 (140)	5.50 (140)	244.2
	1208	3	230	20	_	3489	145.60 (3698)	29.61 (752)	115.99 (2946)	5.50 (140)	5.50 (140)	244.2
45S200-47DS	1208	3	460	20	_	3489	145.60 (3698)	29.61 (752)	115.99 (2946)	5.50 (140)	5.50 (140)	244.2
	1216	3	575	20	_	3492	145.60 (3698)	29.61 (752)	115.99 (2946)	5.50 (140)	5.50 (140)	244.2
	1291	3	208	20	_	3466	153.47 (3898)	29.61 (752)	123.86 (3146)	5.50 (140)	5.50 (140)	251.9
	1291	3	230	20	_	3466	153.47 (3898)	29.61 (752)	123.86 (3146)	5.50 (140)	5.50 (140)	251.9
45S200-51DS	1392	3	460	20	_	3479	153.47 (3898)	29.61 (752)	123.86 (3146)	5.50 (140)	5.50 (140)	251.9
	1302	3	575	20	_	3482	153.47 (3898)	29.61 (752)	123.86 (3146)	5.50 (140)	5.50 (140)	251.9
		_		_			()	\ · -/	()	\ -/	(-/	


E = Maximum diameter of pump including cable guard and motor.

Notes: DS designation = Built into sleeve, 2" NPT, 6" minimum well diameter. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

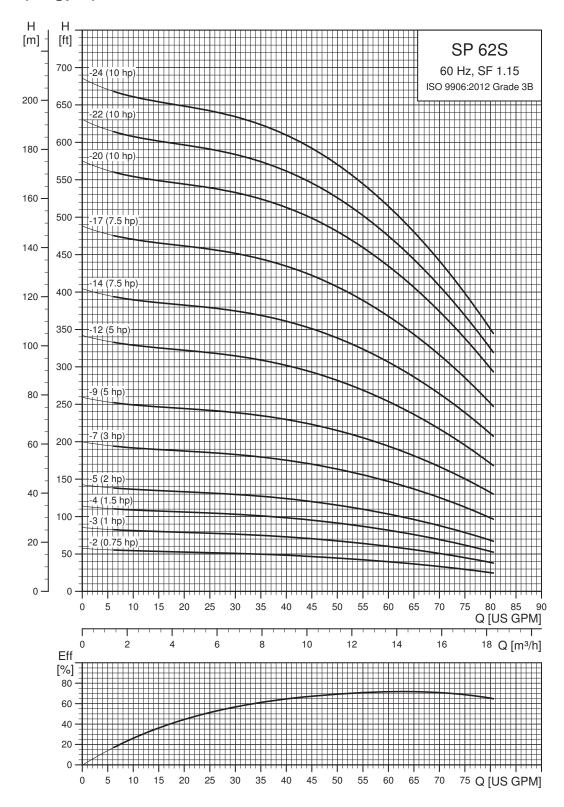
▲ MS 6000C motor.

SP 45S (45 gpm) pump with 6" motor

Pump model	Nom. head			Motor				Dime	nsions [in (mm)	1		Net weight
rump model	[ft]	Ph	Volts [V]	[Hp]		[rpm]	A	В	С	D	E	(complete) [lb]
			458	- Mot	or d	iameter	6 inch, 60 Hz,	rated flow ra	te 45 gpm (2" N	PT)		
	1389	3	208	25	A	3490	161.54 (4103)	31.78 (807)	129.77 (3296)	5.50 (140)	5.50 (140)	267.6
45S250-54DS	1389	3	230	25	A	3490	161.54 (4103)	31.78 (807)	129.77 (3296)	5.50 (140)	5.50 (140)	267.6
455250-54D5	1404	3	460	25	A	3501	161.54 (4103)	31.78 (807)	129.77 (3296)	5.50 (140)	5.50 (140)	267.6
	1405	3	575	25	A	3501	161.54 (4103)	31.78 (807)	129.77 (3296)	5.50 (140)	5.50 (140)	267.6
	1460	3	208	25	A	3484	167.45 (4253)	31.78 (807)	135.67 (3446)	5.50 (140)	5.50 (140)	273.4
45S250-57DS	1460	3	230	25	A	3484	167.45 (4253)	31.78 (807)	135.67 (3446)	5.50 (140)	5.50 (140)	273.4
455250-5705	1471	3	460	25	A	3494	167.45 (4253)	31.78 (807)	135.67 (3446)	5.50 (140)	5.50 (140)	273.4
	1471	3	575	25	A	3495	167.45 (4253)	31.78 (807)	135.67 (3446)	5.50 (140)	5.50 (140)	273.4
	1530	3	208	25	A	3477	173.35 (4403)	31.78 (807)	141.58 (3596)	5.50 (140)	5.50 (140)	279.1
45S250-60DS	1530	3	230	25	A	3477	173.35 (4403)	31.78 (807)	141.58 (3596)	5.50 (140)	5.50 (140)	279.1
455250-00D5	1542	3	460	25	A	3488	173.35 (4403)	31.78 (807)	141.58 (3596)	5.50 (140)	5.50 (140)	279.1
	1543	3	575	25	A	3489	173.35 (4403)	31.78 (807)	141.58 (3596)	5.50 (140)	5.50 (140)	279.1
	1599	3	208	25	A	3470	167.64 (4258)	31.78 (807)	135.87 (3451)	5.50 (140)	5.50 (140)	233.7
45S250-63DS	1599	3	230	25	A	3470	167.64 (4258)	31.78 (807)	135.87 (3451)	5.50 (140)	5.50 (140)	233.7
400200-0000	1612	3	460	25	A	3482	167.64 (4258)	31.78 (807)	135.87 (3451)	5.50 (140)	5.50 (140)	233.7
	1613	3	575	25	A	3483	167.64 (4258)	31.78 (807)	135.87 (3451)	5.50 (140)	5.50 (140)	233.7

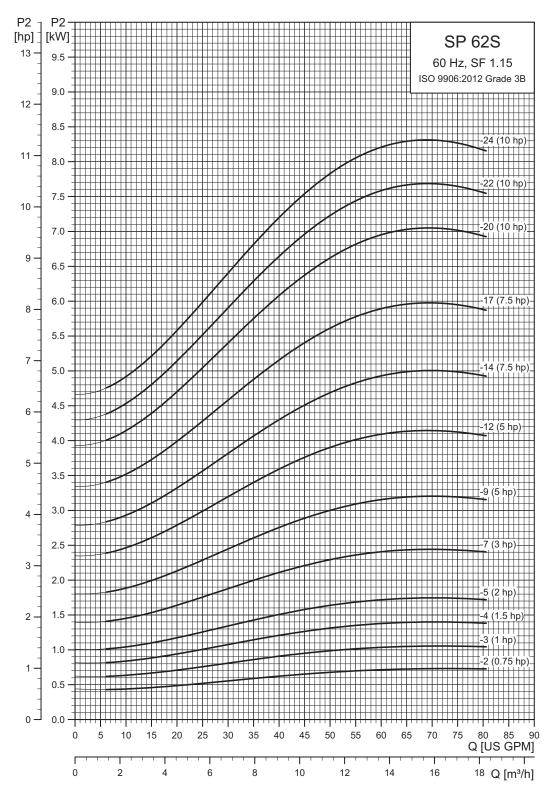
45S E

E = Maximum diameter of pump including cable guard and motor.

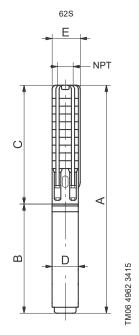

Notes

DS designation = Built into sleeve, 2" NPT, 6" minimum well diameter.
Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

▲ MS 6000C motor.


4" and larger wells - continued

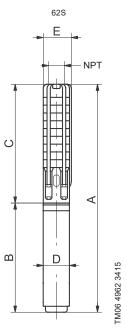
SP 62S (62 gpm)


4" and larger wells - continued

SP 62S (62 gpm) pump power requirement (P2)

SP 62S (62 gpm) pump with 4" motor

Pump model	Nom.			Motor			Dimen	sions [in (mm)]		Net weight
T ump model	[ft]	Ph	Volts [V]	[Hp]	[rpm]	A	В	С	D	E	(complete) [lb]
		62S -	Motor	diame	ter 4-inch,	3-wire motor, 6	0 Hz, rated fl	ow rate 62 gp	m (2" NPT))	
	40	1	230	.75	3 407	28.35 (720)	13.08 (332)	15.28 (388)	3.75 (95)	3.98 (101)	29.7
62S07-2	40	3	230	.75	3423	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
02507-2	40	3	460	.75	3423	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
	40	3	575	.75	3414	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
	57	1	230	1	3381	31.89 (810)	13.67 (347)	18.23 (463)	3.75 (95)	3.98 (101)	33.0
62S10-3	58	3	230	1	3 407	30.71 (780)	12.49 (317)	18.23 (463)	3.75 (95)	3.98 (101)	30.4
02310-3	58	3	460	1	3407	30.71 (780)	12.49 (317)	18.23 (463)	3.75 (95)	3.98 (101)	30.2
	57	3	575	1	3398	30.71 (780)	12.49 (317)	18.23 (463)	3.75 (95)	3.98 (101)	30.2
	78	1	230	1.5	3 427	36.42 (925)	15.24 (387)	21.19 (538)	3.75 (95)	3.98 (101)	38.5
62S15-4	79	3	230	1.5	3439	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	35.0
02315-4	79	3	460	1.5	3439	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	35.0
	78	3	575	1.5	3415	34.85 (885)	13.67 (347)	21.19 (538)	3.75 (95)	3.98 (101)	34.8
	98	1	230	2	• 3433	43.71 (1110)	19.57 (497)	24.14 (613)	3.75 (95)	3.98 (101)	56.0
62S20-5	98	3	230	2	3431	39.38 (1000)	15.24 (387)	24.14 (613)	3.75 (95)	3.98 (101)	40.5
02320-3	98	3	460	2	3431	39.38 (1000)	15.24 (387)	24.14 (613)	3.75 (95)	3.98 (101)	40.7
	98	3	575	2	■ 3430	39.38 (1000)	15.24 (387)	24.14 (613)	3.75 (95)	3.98 (101)	40.5
	136	1	230	3	• 3427	52.76 (1340)	22.72 (577)	30.04 (763)	3.75 (95)	3.98 (101)	68.3
62S30-7	138	3	208	3	• 3437	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	55.1
	138	3	230	3	• 3437	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	55.1
	141	3	460	3	• 3466	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	55.1
	141	3	575	3	• 3470	48.04 (1220)	18.00 (457)	30.04 (763)	3.75 (95)	3.98 (101)	54.9
	184	1	230	5	• 3490	62.60 (1590)	26.66 (677)	35.95 (913)	3.75 (95)	3.98 (101)	82.8
	186	3	208	5	• 3507	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.8
62S50-9	186	3	230	5	• 3507	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.8
	186	3	460	5	• 3506	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.8
	182	3	575	5	• 3470	58.67 (1490)	22.72 (577)	35.95 (913)	3.75 (95)	3.98 (101)	71.6
	237	1	230	5	• 3446	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	88.1
	242	3	208	5	• 3473	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	77.1
62S50-12	242	3	230	5	• 3473	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	77.1
	242	3	460	5	• 3471	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	77.1
	244	3	575	5	• 3470	67.52 (1715)	22.72 (577)	44.81 (1138)	3.75 (95)	3.98 (101)	76.9
	287	3	208	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
62S75-14	287	3	230	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
02373-14	287	3	460	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
	287	3	575	7.5	• 3494	77.37 (1965)	26.66 (677)	50.71 (1288)	3.75 (95)	3.98 (101)	91.6
	342	3	208	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
62S75-17	342	3	230	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
02013-11	342	3	460	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
	342	3	575	7.5	• 3469	86.23 (2190)	26.66 (677)	59.57 (1513)	3.75 (95)	3.98 (101)	96.9
62S100-20	407	3	460	10	• 3485	99.02 (2515)	30.60 (777)	68.43 (1738)	3.75 (95)	3.98 (101)	111.0
020100-20	407	3	575	10	• 3485	99.02 (2515)	30.60 (777)	68.43 (1738)	3.75 (95)	3.98 (101)	111.0
62S100-22	445	3	460	10	• 3472	104.93 (2665)	30.60 (777)	74.34 (1888)	3.75 (95)	3.98 (101)	114.5
023100-22	445	3	575	10	• 3472	104.93 (2665)	30.60 (777)	74.34 (1888)	3.75 (95)	3.98 (101)	114.5
62S100-24	478	3	460	10	• 3460	110.83 (2815)	30.60 (777)	80.24 (2038)	3.75 (95)	3.98 (101)	118.0
023100-24	478	3	575	10	• 3460	110.83 (2815)	30.60 (777)	80.24 (2038)	3.75 (95)	3.98 (101)	118.0

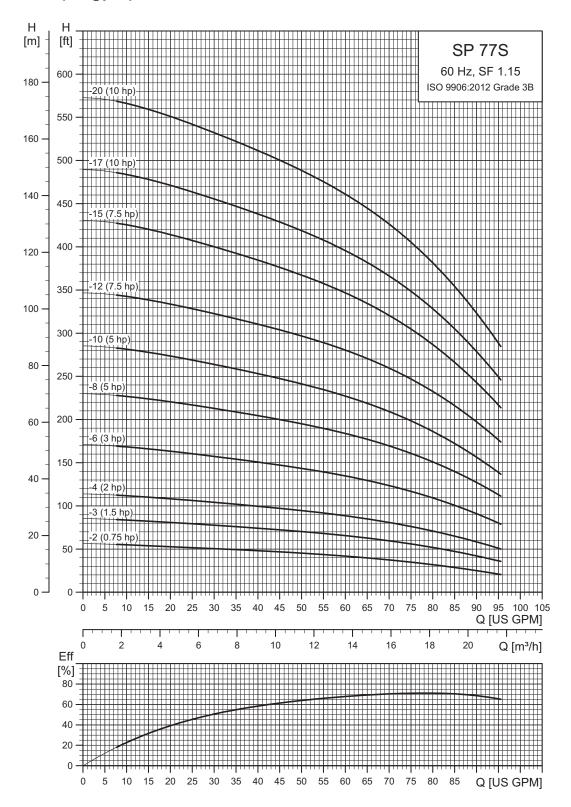

E = Maximum diameter of pump including cable guard and motor.

Notes: Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

- MS 402 motor.
- MS 4000 motor.

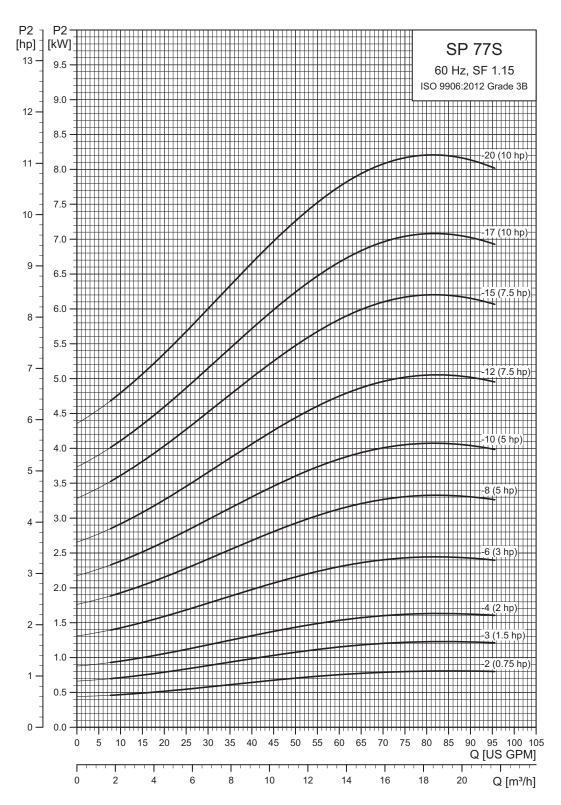
SP 62S (62 gpm) pump with 6" motor

	Nom.			Motor				Dime	nsions [in (mr	n)]		Net weight
Pump model	head [ft]	Ph	Volts [V]	[Hp]		[rpm]	А	В	С	D	E	(complete) [lb]
			62	2S - Mo	otor	diamete	er 6 inch, 60 Hz	, rated flow r	ate 62 gpm (2'	' NPT)		
			208	5	A	3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0
-	-	3	230	5	A	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0
	288	3	208	7.5	A	3501	76.70 (1948)	23.51 (597)	53.19 (1351)	5.50 (140)	5.50 (140)	119.3
62S75-14	288	3	230	7.5	A	3501	76.70 (1948)	23.51 (597)	53.19 (1351)	5.50 (140)	5.50 (140)	119.3
02575-14	292	3	460	7.5	A	3510	76.70 (1948)	23.51 (597)	53.19 (1351)	5.50 (140)	5.50 (140)	119.3
	291	3	575	7.5	A	3509	76.70 (1948)	23.51 (597)	53.19 (1351)	5.50 (140)	5.50 (140)	119.3
	344	3	208	7.5	A	3478	85.56 (2173)	23.51 (597)	62.05 (1576)	5.50 (140)	5.50 (140)	124.6
62S75-17	344	3	230	7.5	A	3478	85.56 (2173)	23.51 (597)	62.05 (1576)	5.50 (140)	5.50 (140)	124.6
025/5-1/	347	3	460	7.5	A	3489	85.56 (2173)	23.51 (597)	62.05 (1576)	5.50 (140)	5.50 (140)	124.6
	347	3	575	7.5	A	3488	85.56 (2173)	23.51 (597)	62.05 (1576)	5.50 (140)	5.50 (140)	124.6
	408	3	208	10	A	3486	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4
62S100-20	408	3	230	10	A	3486	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4
625100-20	411	3	460	10	A	3497	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4
	410	3	575	10	A	3496	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4
	445	3	208	10	A	3474	101.50 (2578)	24.69 (627)	76.82 (1951)	5.50 (140)	5.50 (140)	139.9
62S100-22	445	3	230	10	A	3474	101.50 (2578)	24.69 (627)	76.82 (1951)	5.50 (140)	5.50 (140)	139.9
625100-22	449	3	460	10	A	3486	101.50 (2578)	24.69 (627)	76.82 (1951)	5.50 (140)	5.50 (140)	139.9
	448	3	575	10	A	3485	101.50 (2578)	24.69 (627)	76.82 (1951)	5.50 (140)	5.50 (140)	139.9
	478	3	208	10	A	3460	107.41 (2728)	24.69 (627)	82.72 (2101)	5.50 (140)	5.50 (140)	143.4
62S100-24	478	3	230	10	A	3460	107.41 (2728)	24.69 (627)	82.72 (2101)	5.50 (140)	5.50 (140)	143.4
025100-24	486	3	460	10	A	3474	107.41 (2728)	24.69 (627)	82.72 (2101)	5.50 (140)	5.50 (140)	143.4
	486	3	575	10	A	3473	107.41 (2728)	24.69 (627)	82.72 (2101)	5.50 (140)	5.50 (140)	143.4

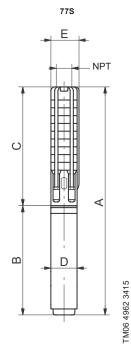

E = Maximum diameter of pump including cable guard and motor.

Notes

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).


▲ MS 6000C motor.

SP 77S (77 gpm)

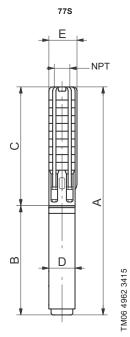

4" and larger pumps - continued

SP 77S (77 gpm) pump power requirement (P2)

SP 77S (77 gpm) pump with 4" motor

Pump model	Nom. head			Motor			Dimer	nsions [in (mm)]		Net weight
·	[ft]	Ph	Volts [V]	[Hp]	[rpm]	Α	В	С	D	E	- (complete) [lb]
		77S	- Moto	r diame	ter 4-inch	, 3-wire motor,	60 Hz, rated 1	flow rate 77 gp	m (2" NPT)		
	37	1	230	.75	3380	28.35 (720)	13.08 (332)	15.28 (388)	3.75 (95)	3.98 (101)	29.7
77S07-2	38	3	230	.75	3 401	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
11301-2	38	3	460	.75	3 401	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
	37	3	575	.75	3393	26.97 (685)	11.70 (297)	15.28 (388)	3.75 (95)	3.98 (101)	26.7
	61	1	230	1	3457	33.47 (850)	15.24 (387)	18.23 (463)	3.75 (95)	3.98 (101)	36.8
77045.0	61	3	230	1.5	3 463	31.89 (810)	13.67 (347)	18.23 (463)	3.75 (95)	3.98 (101)	33.3
77S15-3	61	3	460	1.5	3 463	31.89 (810)	13.67 (347)	18.23 (463)	3.75 (95)	3.98 (101)	33.3
	60	3	575	1.5	3440	31.89 (810)	13.67 (347)	18.23 (463)	3.75 (95)	3.98 (101)	33.0
	77	1	230	2	• 3447	40.75 (1035)	19.57 (497)	21.19 (538)	3.75 (95)	3.98 (101)	54.2
77000 4	77	3	230	2	3445	36.42 (925)	15.24 (387)	21.19 (538)	3.75 (95)	3.98 (101)	38.8
77S20-4	77	3	460	2	3445	36.42 (925)	15.24 (387)	21.19 (538)	3.75 (95)	3.98 (101)	39.0
	77	3	575	2	3441	36.42 (925)	15.24 (387)	21.19 (538)	3.75 (95)	3.98 (101)	38.8
	113	1	230	3	• 3427	49.81 (1265)	22.72 (577)	27.09 (688)	3.75 (95)	3.98 (101)	66.5
77S30-6	114	3	208	3	• 3437	45.08 (1145)	18.00 (457)	27.09 (688)	3.75 (95)	3.98 (101)	53.3
77S30-6	114	3	230	3	• 3437	45.08 (1145)	18.00 (457)	27.09 (688)	3.75 (95)	3.98 (101)	53.3
	117	3	460	3	• 3466	45.08 (1145)	18.00 (457)	27.09 (688)	3.75 (95)	3.98 (101)	53.3
	157	1	230	5	• 3484	59.65 (1515)	26.66 (677)	33.00 (838)	3.75 (95)	3.98 (101)	81.1
	159	3	208	5	• 3503	55.71 (1415)	22.72 (577)	33.00 (838)	3.75 (95)	3.98 (101)	70.1
77S50-8	159	3	230	5	• 3503	55.71 (1415)	22.72 (577)	33.00 (838)	3.75 (95)	3.98 (101)	70.1
	159	3	460	5	• 3501	55.71 (1415)	22.72 (577)	33.00 (838)	3.75 (95)	3.98 (101)	70.1
	192	1	230	5	• 3449	65.56 (1665)	26.66 (677)	38.90 (988)	3.75 (95)	3.98 (101)	84.6
	195	3	208	5	• 3476	61.62 (1565)	22.72 (577)	38.90 (988)	3.75 (95)	3.98 (101)	73.6
77S50-10	195	3	230	5	• 3476	61.62 (1565)	22.72 (577)	38.90 (988)	3.75 (95)	3.98 (101)	73.6
	195	3	460	5	• 3473	61.62 (1565)	22.72 (577)	38.90 (988)	3.75 (95)	3.98 (101)	73.6
	237	3	208	7.5	• 3493	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	88.1
	237	3	230	7.5	• 3493	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	88.1
77S75-12	237	3	460	7.5	• 3493	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	88.1
	237	3	575	7.5	• 3493	71.46 (1815)	26.66 (677)	44.81 (1138)	3.75 (95)	3.98 (101)	88.1
	293	3	208	7.5	• 3463	80.32 (2040)	26.66 (677)	53.67 (1363)	3.75 (95)	3.98 (101)	93.4
	293	3	230	7.5	• 3463	80.32 (2040)	26.66 (677)	53.67 (1363)	3.75 (95)	3.98 (101)	93.4
77S75-15	293	3	460	7.5	• 3463	80.32 (2040)	26.66 (677)	53.67 (1363)	3.75 (95)	3.98 (101)	93.4
	293	3	575	7.5	• 3463	80.32 (2040)	26.66 (677)	53.67 (1363)	3.75 (95)	3.98 (101)	93.4
	337	3	460	10	• 3484	90.16 (2290)	30.60 (777)	59.57 (1513)	3.75 (95)	3.98 (101)	105.7
77S100-17	337	3	575	10	• 3484	90.16 (2290)	30.60 (777)	59.57 (1513)	3.75 (95)	3.98 (101)	105.7
	392	3	460	10	• 3462	99.02 (2515)	30.60 (777)	68.43 (1738)	3.75 (95)	3.98 (101)	111.0
77S100-20	392	3	575	10	• 3462	99.02 (2515)	30.60 (777)	68.43 (1738)	3.75 (95)	3.98 (101)	111.0

E = Maximum diameter of pump including cable guard and motor.


Notes:

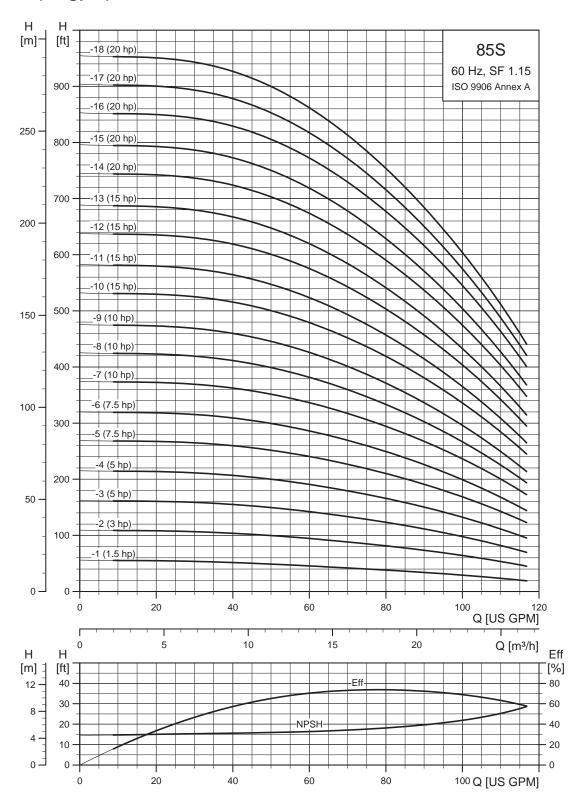
Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

- MS 402 motor.
- MS 402 motor.

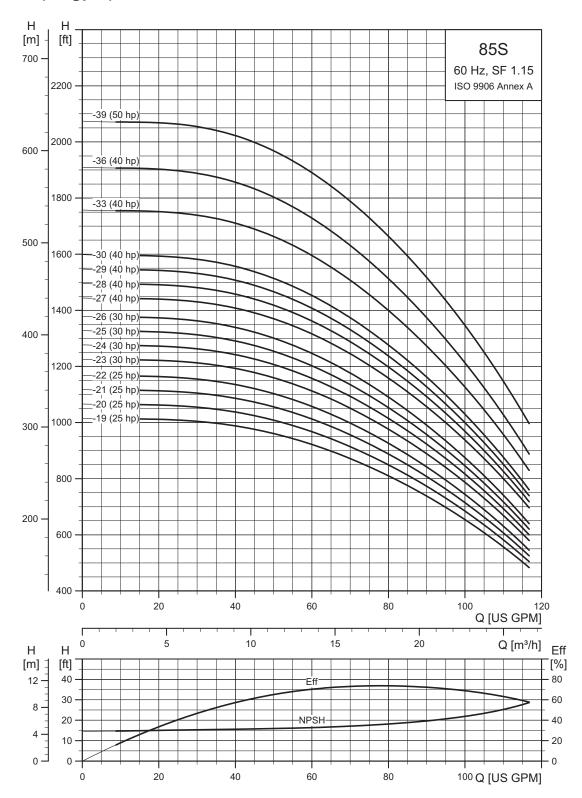
SP 77S (77 gpm) pump with 6" motor

Pump model	Nom. head			Motor				Dime	ensions [in (mr	n)]		Net weight (complete)			
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	[lb]			
	77S - Motor diameter 6 inch, 60 Hz, rated flow rate 77 gpm (2" NPT)														
			208	5	A	3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0			
-	-	3	230	5	A	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0			
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0			
	239	3	208	7.5	A	3500	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	115.8			
77\$75-12	239	3	230	7.5	A	3500	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	115.8			
	240	3	460	7.5	A	3509	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	115.8			
	240	3	575	7.5	A	3508	70.79 (1798)	23.51 (597)	47.29 (1201)	5.50 (140)	5.50 (140)	115.8			
	295	3	208	7.5	A	3472	79.65 (2023)	23.51 (597)	56.15 (1426)	5.50 (140)	5.50 (140)	121.1			
77S75-15	295	3	230	7.5	A	3472	79.65 (2023)	23.51 (597)	56.15 (1426)	5.50 (140)	5.50 (140)	121.1			
11515-15	297	3	460	7.5	A	3484	79.65 (2023)	23.51 (597)	56.15 (1426)	5.50 (140)	5.50 (140)	121.1			
	297	3	575	7.5	A	3483	79.65 (2023)	23.51 (597)	56.15 (1426)	5.50 (140)	5.50 (140)	121.1			
	337	3	208	10	A	3486	86.74 (2203)	24.69 (627)	62.05 (1576)	5.50 (140)	5.50 (140)	131.2			
77S100-17	337	3	230	10	A	3486	86.74 (2203)	24.69 (627)	62.05 (1576)	5.50 (140)	5.50 (140)	131.2			
775100-17	340	3	460	10	A	3496	86.74 (2203)	24.69 (627)	62.05 (1576)	5.50 (140)	5.50 (140)	131.2			
	340	3	575	10	A	3496	86.74 (2203)	24.69 (627)	62.05 (1576)	5.50 (140)	5.50 (140)	131.2			
	393	3	208	10	A	3462	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4			
770400 00	393	3	230	10	A	3476	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4			
77S100-20	396	3	460	10	A	3476	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4			
	396	3	575	10	A	3475	95.60 (2428)	24.69 (627)	70.91 (1801)	5.50 (140)	5.50 (140)	136.4			

E = Maximum diameter of pump including cable guard and motor.

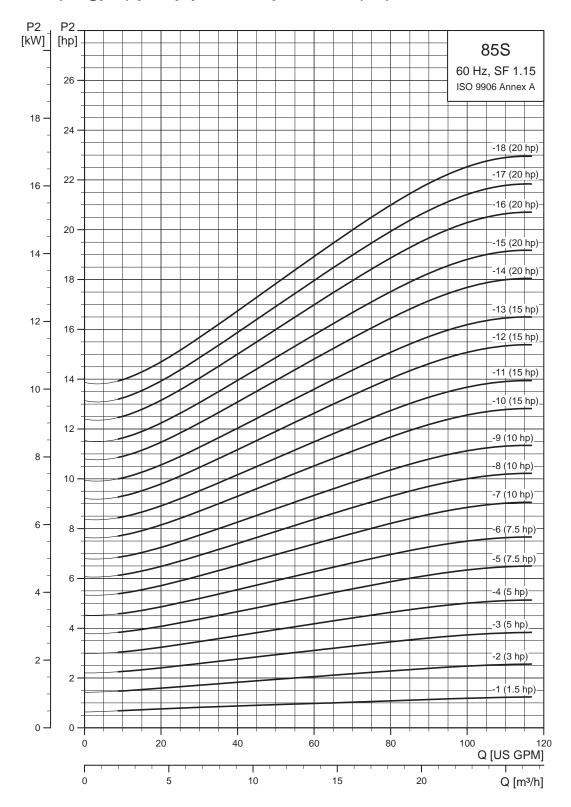

Notes:

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

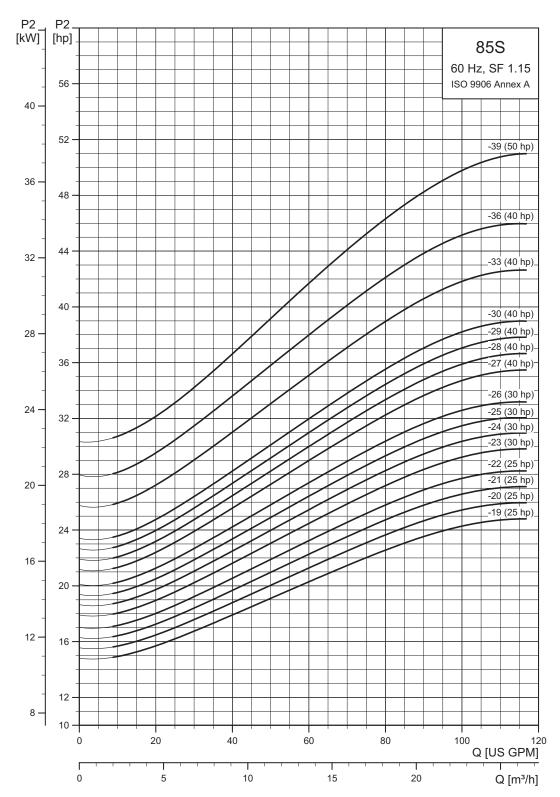

▲ MS 6000C motor.

6" and larger wells

SP 85S (85 gpm)

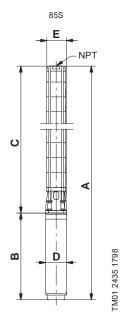


SP 85S (85 gpm)


6" and larger wells - continued

SP 85S (85 gpm) pump power requirement (P2)

6" and larger wells - continued

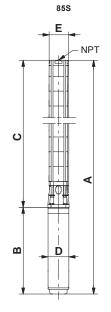

SP 85S (85 gpm) pump power requirement (P2)

SP 85S (85 gpm) pump with 4", 6" motors

Pump model	Nom. head			Motor				Dime	nsions [in (mr	n)]		weight
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete)
		855	S - Moto	or diam	eter	r 4-inch	, 3-wire motor	, 60 Hz, rated	flow rate 85 g	pm (3" NPT)		
		1	230	1.5		3519	28.04 (712)	15.24 (387)	12.80 (325)	3.75 (95)	5.28 (134)	29.7
85S15-1	42	3	230	1.5	•	3516	26.46 (672)	13.67 (347)	12.80 (325)	3.75 (95)	5.28 (134)	29.7
		3	460	1.5	•	3516	26.46 (672)	13.67 (347)	12.80 (325)	3.75 (95)	5.28 (134)	29.7
	87	1	230	3	•	3500	37.88 (962)	22.72 (577)	15.16 (385)	3.75 (95)	5.28 (134)	55.8
85S30-2	87	3	230	3	•	3491	33.12 (841)	17.96 (456)	15.16 (385)	3.75 (95)	5.28 (134)	47.7
	88	3	460	3	•	3517	33.12 (841)	17.96 (456)	15.16 (385)	3.75 (95)	5.28 (134)	47.7
	135	1	230	5	•	3520	44.22 (1123)	26.66 (677)	17.56 (446)	3.75 (95)	5.28 (134)	67.5
85S50-3	134	3	230	5	•	3531	40.24 (1022)	22.68 (576)	17.56 (446)	3.75 (95)	5.28 (134)	51.3
	135	3	460	5	•	3530	40.24 (1022)	22.68 (576)	17.56 (446)	3.75 (95)	5.28 (134)	51.3
	170	1	230	5	•	3482	46.58 (1183)	26.66 (677)	19.93 (506)	3.75 (95)	5.28 (134)	69.3
85S50-4	171	3	230	5	•	3502	42.60 (1082)	22.68 (576)	19.93 (506)	3.75 (95)	5.28 (134)	61.2
	171	3	460	5	•	3500	42.60 (1082)	22.68 (576)	19.93 (506)	3.75 (95)	5.28 (134)	61.2
85S75-5	215	3	230	7.5	•	3510	48.94 (1243)	26.62 (676)	22.33 (567)	3.75 (95)	5.28 (134)	73.8
000/0-0	215	3	460	7.5	•	3510	48.94 (1243)	26.62 (676)	22.33 (567)	3.75 (95)	5.28 (134)	73.8
85S75-6	256	3	230	7.5	•	3490	51.30 (1303)	26.62 (676)	24.69 (627)	3.75 (95)	5.28 (134)	85.5
00010-0	256	3	460	7.5	•	3490	51.30 (1303)	26.62 (676)	24.69 (627)	3.75 (95)	5.28 (134)	76.5
85S100-7	301	3	460	10	•	3503	57.64 (1464)	30.56 (776)	27.09 (688)	3.75 (95)	5.28 (134)	136.8
85S100-8	342	3	460	10	•	3488	60.00 (1524)	30.56 (776)	29.45 (748)	3.75 (95)	5.28 (134)	138.6

85S100-9	382	3	460	10	•	3472	62.41 (1585)	30.56 (776)	31.86 (809)	3.75 (95)	5.28 (134)	140.4
		858	- Moto	r dian	nete	r 6-inch	ı, 3-wire motor	, 60 Hz, rated	l flow rate 85 g	ıpm (3" NPT)		
			208	5	A	3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0
-	-	3	230	5	A	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0
85S75-5	216	3	230	7.5	A	3516	46.58 (1183)	23.51 (597)	23.08 (586)	5.52 (140)	5.52 (140)	98.1
65375-5	217	3	460	7.5	A	3523	46.58 (1183)	23.51 (597)	23.08 (586)	5.52 (140)	5.52 (140)	98.1
85S75-6	257	3	230	7.5	A	3498	48.94 (1243)	23.51 (597)	25.44 (646)	5.52 (140)	5.52 (140)	99.9
03373-0	258	3	460	7.5	A	3507	48.94 (1243)	23.51 (597)	25.44 (646)	5.52 (140)	5.52 (140)	99.9
85S100-7	301	3	230	10	A	3505	52.52 (1334)	24.69 (627)	27.84 (707)	5.52 (140)	5.52 (140)	103.5
855100-7	303	3	460	10	A	3513	52.52 (1334)	24.69 (627)	27.84 (707)	5.52 (140)	5.52 (140)	103.5
050400	342	3	230	10	A	3490	54.89 (1394)	24.69 (627)	30.20 (767)	5.52 (140)	5.52 (140)	105.3
85S100-8	344	3	460	10	A	3500	54.89 (1394)	24.69 (627)	30.20 (767)	5.52 (140)	5.52 (140)	105.3
85S100-9	383	3	230	10	A	3474	57.29 (1455)	24.69 (627)	32.60 (828)	5.52 (140)	5.52 (140)	108.0
655100-9	385	3	460	10	A	3486	57.29 (1455)	24.69 (627)	32.60 (828)	5.52 (140)	5.52 (140)	108.0
85S150-10	432	3	230	15	A	3509	62.01 (1575)	27.05 (687)	34.97 (888)	5.52 (140)	5.52 (140)	122.4
000100-10	433	3	460	15	A	3513	62.01 (1575)	27.05 (687)	34.97 (888)	5.52 (140)	5.52 (140)	122.4
85S150-11	473	3	230	15	A	3499	64.41 (1636)	27.05 (687)	37.37 (949)	5.52 (140)	5.52 (140)	126.0
000100-11	474	3	460	15	A	3503	64.41 (1636)	27.05 (687)	37.37 (949)	5.52 (140)	5.52 (140)	126.0
85S150-12	513	3	230	15	A	3489	66.78 (1696)	27.05 (687)	39.73 (1009)	5.52 (140)	5.52 (140)	133.2
000100-12	514	3	460	15	A	3494	66.78 (1696)	27.05 (687)	39.73 (1009)	5.52 (140)	5.52 (140)	133.2
050150 12	553	3	230	15	A	3479	69.18 (1757)	27.05 (687)	42.13 (1070)	5.52 (140)	5.52 (140)	135.0
85S150-13	554	3	460	15	A	3484	69.18 (1757)	27.05 (687)	42.13 (1070)	5.52 (140)	5.52 (140)	135.0

E = Maximum diameter of pump including cable guard and motor.

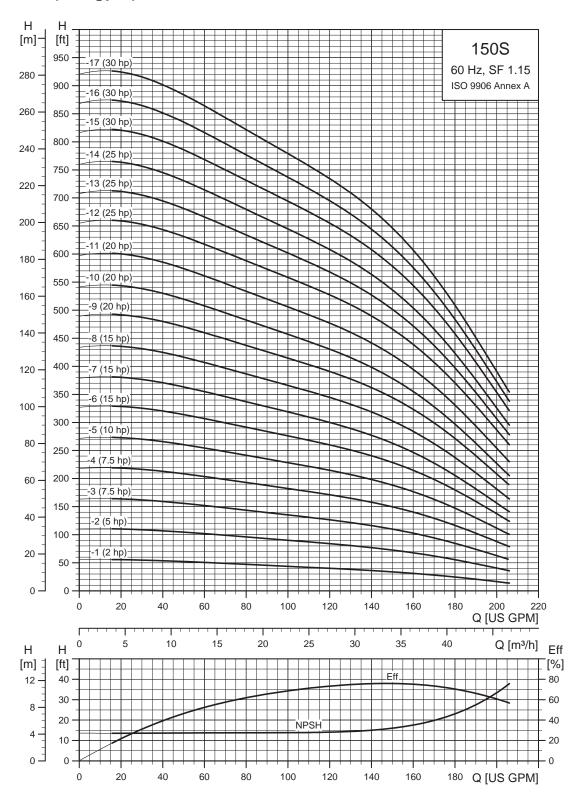

Notes:

Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m)

- MS 402 motor.
- MS 4000 motor.
- ▲ MS 6000C motor.

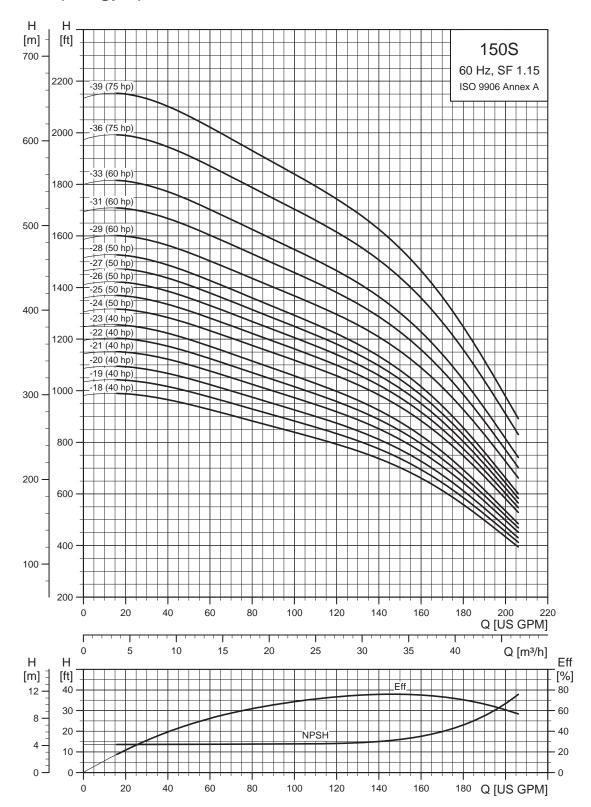
SP 85S (85 gpm) pump with 6", 8" motors

Pump model	Nom. head			Motor				Dimen	sions [in (mm)]	l		Net weight complete)
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	[lb]
				- Moto	or d	iameter	6 inch, 60 Hz, ı	rated flow rate	85 gpm (3" NF	PT)		
85S200-14	604	3	230	20	A	3505	74.10 (1882)	29.61 (752)	44.49 (1130)	5.52 (140)	5.52 (140)	143.1
030200-14	607	3	460	20	A	3513	74.10 (1882)	29.61 (752)	44.49 (1130)	5.52 (140)	5.52 (140)	143.1
85S200-15	644	3	230	20	A	3497	76.50 (1943)	29.61 (752)	46.89 (1191)	5.52 (140)	5.52 (140)	147.6
030200-13	648	3	460	20	A	3507	76.50 (1943)	29.61 (752)	46.89 (1191)	5.52 (140)	5.52 (140)	147.6
85S200-16	685	3	230	20	A	3490	78.86 (2003)	29.61 (752)	49.26 (1251)	5.52 (140)	5.52 (140)	157.5
030200-10	689	3	460	20	A	3500	78.86 (2003)	29.61 (752)	49.26 (1251)	5.52 (140)	5.52 (140)	157.5
85S200-17	724	3	230	20	A	3482	81.26 (2064)	29.61 (752)	51.66 (1312)	5.52 (140)	5.52 (140)	160.2
030200-17	729	3	460	20	A	3493	81.26 (2064)	29.61 (752)	51.66 (1312)	5.52 (140)	5.52 (140)	160.2
85S200-18	764	3	230	20	A	3474	83.63 (2124)	29.61 (752)	54.02 (1372)	5.52 (140)	5.52 (140)	161.1
033200-10	769	3	460	20	A	3486	83.63 (2124)	29.61 (752)	54.02 (1372)	5.52 (140)	5.52 (140)	179.0
85S250-19	817	3	230	25	A	3497	88.19 (2240)	31.78 (807)	56.42 (1433)	5.52 (140)	5.52 (140)	191.7
033230-19	821	3	460	25	A	3506	88.19 (2240)	31.78 (807)	56.42 (1433)	5.52 (140)	5.52 (140)	191.7
85S250-20	857	3	230	25	A	3491	90.56 (2300)	31.78 (807)	58.78 (1493)	5.52 (140)	5.52 (140)	195.3
633230-20	862	3	460	25	A	3501	90.56 (2300)	31.78 (807)	58.78 (1493)	5.52 (140)	5.52 (140)	195.3
050050.04	897	3	230	25	A	3485	92.96 (2361)	31.78 (807)	61.19 (1554)	5.52 (140)	5.52 (140)	198.0
85S250-21	902	3	460	25	A	3496	92.96 (2361)	31.78 (807)	61.19 (1554)	5.52 (140)	5.52 (140)	198.0
050050.00	936	3	230	25	A	3479	95.32 (2421)	31.78 (807)	63.55 (1614)	5.52 (140)	5.52 (140)	199.8
85S250-22	942	3	460	25	A	3490	95.32 (2421)	31.78 (807)	63.55 (1614)	5.52 (140)	5.52 (140)	199.8
050000 00	984	3	230	30	A	3487	100.08 (2542)	34.14 (867)	65.95 (1675)	5.52 (140)	5.52 (140)	199.8
85S300-23	989	3	460	30	A	3498	100.08 (2542)	34.14 (867)	65.95 (1675)	5.52 (140)	5.52 (140)	199.8
252222	1023	3	230	30	A	3482	102.45 (2602)	34.14 (867)	68.31 (1735)	5.52 (140)	5.52 (140)	216.0
85S300-24	1030	3	460	30	A	3493	102.45 (2602)	34.14 (867)	68.31 (1735)	5.52 (140)	5.52 (140)	216.0
	1063	3	230	30	A	3476	104.85 (2663)	34.14 (867)	70.71 (1796)	5.52 (140)	5.52 (140)	219.6
85S300-25	1070	3	460	30	A	3488	104.85 (2663)	34.14 (867)	70.71 (1796)	5.52 (140)	5.52 (140)	219.6
	1102	3	230	30	A	3471	107.21 (2723)	34.14 (867)	73.08 (1856)	5.52 (140)	5.52 (140)	221.4
85S300-26	1110	3	460	30	A	3483	107.21 (2723)	34.14 (867)	73.08 (1856)	5.52 (140)	5.52 (140)	221.4
85S400-27	1171	3	460	40	A	3512	109.61 (2784)	34.14 (867)	75.48 (1917)	5.52 (140)	5.52 (140)	234.9
85S400-28	1212	3	460	40	A	3508	117.09 (2974)	39.26 (997)	77.84 (1977)	5.52 (140)	5.52 (140)	246.6
85S400-29	1253	3	460	40	A	3505	119.49 (3035)	39.26 (997)	80.24 (2038)	5.52 (140)	5.52 (140)	248.4
85S400-30	1294	3	460	40	A	3501	121.86 (3095)	39.26 (997)	82.60 (2098)	5.52 (140)	5.52 (140)	270.0
85S400-33DS	1416	3	460	40	A	3490	142.88 (3629)	39.26 (997)	103.63 (2632)	5.52 (140)	6.89 (175)	515.5
85S400-36DS	1535	3	460	40	A	3479	150.00 (3810)	39.26 (997)	110.75 (2813)	5.52 (140)	6.89 (175)	454.8
85S500-39DS	1670	3	460	50	₩	3487	173.94 (4418)	56.03 (1423)	117.92 (2995)	5.63 (143)	6.89 (175)	469.0
			85S	- Moto	or d	iameter	8 inch, 60 Hz, ı	rated flow rate	85 gpm (3" NF	PT)		
85S400-33DS	1427	3	460	40	*	3505	145.12 (3686)	43.71 (1110)	101.42 (2576)	7.56 (192)	7.56 (192)	652.7
85S400-36DS	1549	3	460	40	*	3496	152.25 (3867)	43.71 (1110)	108.55 (2757)	7.56 (192)	7.56 (192)	592.0
85S400-39DS	1690	3	460	50	*	3508	159.41 (4049)	43.71 (1110)	115.71 (2939)	7.56 (192)	7.56 (192)	537.2

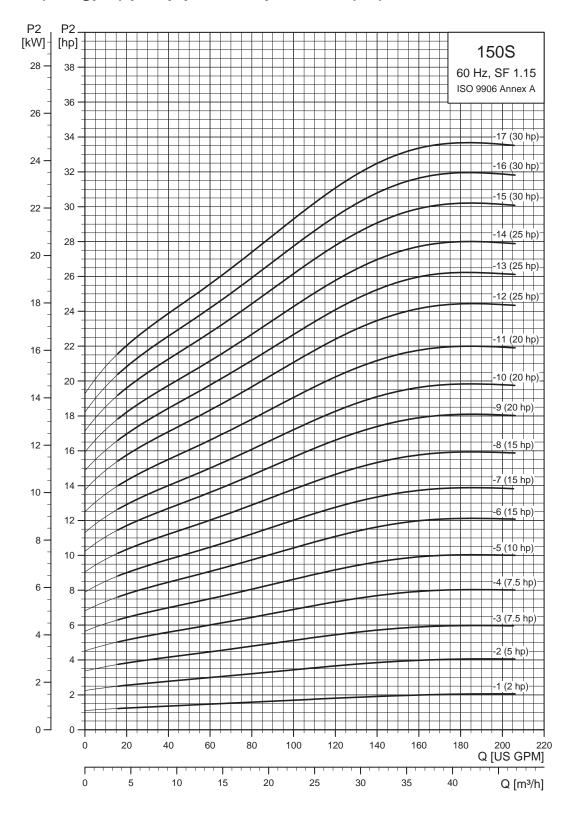


E = Maximum diameter of pump including cable guard and motor.

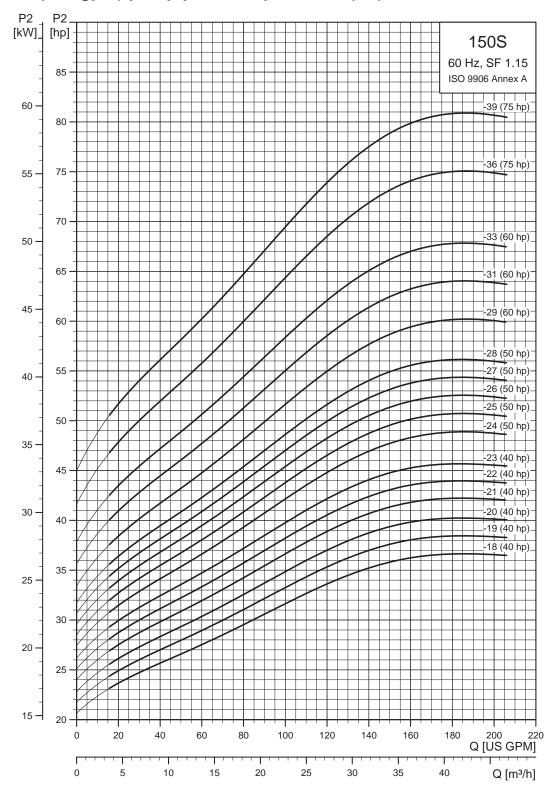
Notes:
Control box is required for 3-wire, single-phase applications. Data does not include control box.
DS designation = Built into sleeve, 3" NPT, 8" minimum well diameter.
Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).


- MS 6000C motor.
- Takes MMS 6 motor; not available as complete.
- Takes MMS 8000 motor; not available as complete.

SP 150S (150 gpm)


6" and larger wells - continued

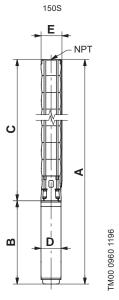
SP 150S (150 gpm)


6" and larger wells - continued

SP 150S (150 gpm) pump power requirement (P2)

6" and larger wells - continued

SP 150S (150 gpm) pump power requirement (P2)

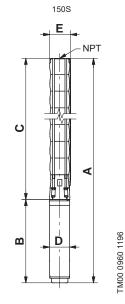


SP 150S (150 gpm) pump with 4" motor

Pump model	Nom. head		Motor				Net weight — (complete)	
	[ft]	Ph Volts [V]		[rpm]	A B C	С	D	E

	39	1	230	2	•	3477	33.67 (855)	19.57 (497)	14.10 (358)	3.75 (95)	5.28 (134)	49.5
150S20-1	39	3	230	2		3474	29.34 (745)	15.24 (387)	14.10 (358)	3.75 (95)	5.28 (134)	45.0
	39	3	460	2	-	3474	29.34 (745)	15.24 (387)	14.10 (358)	3.75 (95)	5.28 (134)	45.0
	78	1	230	5	•	3502	44.53 (1131)	26.66 (677)	17.88 (454)	3.75 (95)	5.28 (134)	67.5
150S50-2	79	3	230	5	•	3517	40.56 (1030)	22.68 (576)	17.88 (454)	3.75 (95)	5.28 (134)	42.3
	79	3	460	5	•	3516	40.56 (1030)	22.68 (576)	17.88 (454)	3.75 (95)	5.28 (134)	42.3
150S75-3	118	3	230	7.5	•	3508	48.27 (1226)	26.62 (676)	21.66 (550)	3.75 (95)	5.28 (134)	51.3
150575-5	118	3	460	7.5	•	3508	48.27 (1226)	26.62 (676)	21.66 (550)	3.75 (95)	5.28 (134)	82.8
150075 /	154	3	230	7.5	•	3473	52.05 (1322)	26.62 (676)	25.44 (646)	3.75 (95)	5.28 (134)	85.5
150S75-4	154	3	460	7.5	•	3473	52.05 (1322)	26.62 (676)	25.44 (646)	3.75 (95)	5.28 (134)	85.5
150S100-5	195	3	460	10	•	3481	59.77 (1518)	30.56 (776)	29.22 (742)	3.75 (95)	5.28 (134)	135.9

150S - Motor diameter 6 inch, 60 Hz, rated flow rate 150 gpm (3" NPT) 208 5 ▲ 3480 - 23.51 (597) - 5.50 (139.5) - 80.0														
		•						, ,		, ,				
-	-	3	230	5	<u> </u>	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0		
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0		
150S75-4	155	3	230	7.5	A	3482	49.69 (1262)	23.51 (597)	26.19 (665)	5.52 (140)	5.52 (140)	99.9		
	156	3	460	7.5	A	3493	49.69 (1262)	23.51 (597)	26.19 (665)	5.52 (140)	5.52 (140)	99.9		
150S100-5	195	3	230	10	A	3482	54.65 (1388)	24.69 (627)	29.97 (761)	5.52 (140)	5.52 (140)	73.8		
10001000	196	3	460	10	A	3493	54.65 (1388)	24.69 (627)	29.97 (761)	5.52 (140)	5.52 (140)	73.8		
150S150-6	238	3	230	15	A	3508	60.79 (1544)	27.05 (687)	33.75 (857)	5.52 (140)	5.52 (140)	119.7		
1300130-0	239	3	460	15	A	3511	60.79 (1544)	27.05 (687)	33.75 (857)	5.52 (140)	5.52 (140)	119.7		
150S150-7	276	3	230	15	A	3492	64.57 (1640)	27.05 (687)	37.52 (953)	5.52 (140)	5.52 (140)	127.8		
	277	3	460	15	A	3496	64.57 (1640)	27.05 (687)	37.52 (953)	5.52 (140)	5.52 (140)	127.8		
150S150-8	313	3	230	15	A	3474	68.35 (1736)	27.05 (687)	41.30 (1049)	5.52 (140)	5.52 (140)	137.7		
	314	3	460	15	A	3480	68.35 (1736)	27.05 (687)	41.30 (1049)	5.52 (140)	5.52 (140)	137.7		
1500000	357	3	230	20	A	3496	74.69 (1897)	29.61 (752)	45.08 (1145)	5.52 (140)	5.52 (140)	141.3		
150S200-9	359	3	460	20	A	3506	74.69 (1897)	29.61 (752)	45.08 (1145)	5.52 (140)	5.52 (140)	141.3		
4500000 40	395	3	230	20	A	3484	78.47 (1993)	29.61 (752)	48.86 (1241)	5.52 (140)	5.52 (140)	151.2		
150S200-10	397	3	460	20	A	3495	78.47 (1993)	29.61 (752)	48.86 (1241)	5.52 (140)	5.52 (140)	151.2		
1500000 11	431	3	230	20	A	3471	82.25 (2089)	29.61 (752)	52.64 (1337)	5.52 (140)	5.52 (140)	166.5		
150S200-11	435	3	460	20	A	3483	82.25 (2089)	29.61 (752)	52.64 (1337)	5.52 (140)	5.52 (140)	166.5		
1500050 40	477	3	230	25	A	3490	88.19 (2240)	31.78 (807)	56.42 (1433)	5.52 (140)	5.52 (140)	188.1		
150S250-12	479	3	460	25	A	3500	88.19 (2240)	31.78 (807)	56.42 (1433)	5.52 (140)	5.52 (140)	188.1		
1500050 10	514	3	230	25	A	3480	91.97 (2336)	31.78 (807)	60.20 (1529)	5.52 (140)	5.52 (140)	201.6		
150S250-13	517	3	460	25	A	3492	91.97 (2336)	31.78 (807)	60.20 (1529)	5.52 (140)	5.52 (140)	201.6		
1500050 1:	550	3	230	25	A	3470	95.75 (2432)	31.78 (807)	63.98 (1625)	5.52 (140)	5.52 (140)	206.1		
150S250-14	554	3	460	25	A	3482	95.75 (2432)	31.78 (807)	63.98 (1625)	5.52 (140)	5.52 (140)	206.1		


E = Maximum diameter of pump including cable guard and motor.

Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

- MS 402 motor.
- MS 4000 motor.
- MS 6000C motor.

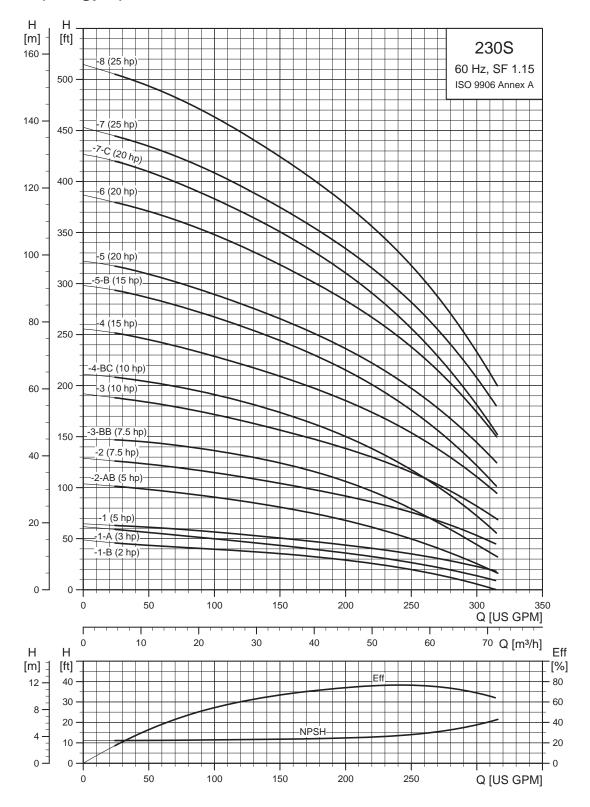
SP 150S (150 gpm) pump with 6", 8" motor

Nom. head		,	Motor				Dimen	sions [in (mm)]		Net weight (complete)
[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	[lb]
		150S	- Mote	or d	iamete	r 6 inch, 60 Hz,	rated flow rat	e 150 gpm (3"	NPT)		
592	3	230	30	A	3476	101.89 (2588)	34.14 (867)	67.76 (1721)	5.52 (140)	5.52 (140)	209.7
596	3	460	30	A	3488	101.89 (2588)	34.14 (867)	67.76 (1721)	5.52 (140)	5.52 (140)	209.7
628	3	230	30	A	3466	105.67 (2684)	34.14 (867)	71.54 (1817)	5.52 (140)	5.52 (140)	211.5
633	3	460	30	A	3479	105.67 (2684)	34.14 (867)	71.54 (1817)	5.52 (140)	5.52 (140)	211.5
664	3	230	30	A	3456	109.45 (2780)	34.14 (867)	75.32 (1913)	5.52 (140)	5.52 (140)	216.0
670	3	460	30	A	3471	109.45 (2780)	34.14 (867)	75.32 (1913)	5.52 (140)	5.52 (140)	246.6
721	3	460	40	A	3501	118.35 (3006)	39.26 (997)	79.10 (2009)	5.52 (140)	5.52 (140)	246.6
759	3	460	40	A	3495	122.13 (3102)	39.26 (997)	82.88 (2105)	5.52 (140)	5.52 (140)	248.4
797	3	460	40	A	3489	125.91 (3198)	39.26 (997)	86.66 (2201)	5.52 (140)	5.52 (140)	291.0
834	3	460	40	A	3483	129.69 (3294)	39.26 (997)	90.44 (2297)	5.52 (140)	5.52 (140)	271.8
871	3	460	40	A	3476	133.47 (3390)	39.26 (997)	94.22 (2393)	5.52 (140)	5.52 (140)	305.9
907	3	460	40	A	3470	137.25 (3486)	39.26 (997)	98.00 (2489)	5.52 (140)	5.52 (140)	277.2
954	3	460	50	₽	3483	157.88 (4010)	56.11 (1425)	101.78 (2585)	5.67 (144)	5.67 (144)	411.8
991	3	460	50	₽	3478	161.66 (4106)	56.11 (1425)	105.56 (2681)	5.67 (144)	5.67 (144)	419.0
1028	3	460	50	₽	3473	165.44 (4202)	56.11 (1425)	109.34 (2777)	5.67 (144)	5.67 (144)	426.2
1064	3	460	50	₽	3467	169.22 (4298)	56.11 (1425)	113.12 (2873)	5.67 (144)	5.67 (144)	433.4
1100	3	460	50	₽	3462	173.00 (4394)	56.11 (1425)	116.89 (2969)	5.67 (144)	5.67 (144)	440.6
1131	3	460	60	₩	3465	190.64 (4842)	56.11 (1425)	134.53 (3417)	5.67 (144)	6.89 (175)	605.0
1209	3	460	60	₩	3455	198.20 (5034)	56.11 (1425)	142.09 (3609)	5.67 (144)	6.89 (175)	617.0
1288	3	460	60	☼	3446	205.76 (5226)	56.11 (1425)	149.65 (3801)	5.67 (144)	6.89 (175)	629.0
	592 596 628 633 664 670 721 759 797 834 871 907 954 991 1028 1064 1100	592 3 596 3 628 3 664 3 670 3 759 3 834 3 871 3 991 3 1028 3 1100 3 1131 3 3 1209 3	Nome Part Nome Part Nome Nome	Test	Nom Nom	Tools	Nom. Ph Volts [V] [Nome Pri Volts [V] [V] [V] [V] [V] A B B S S S S S S S S	Nome Post Post	Nome Ph	Nome Ph Volts Ph Volts Vo

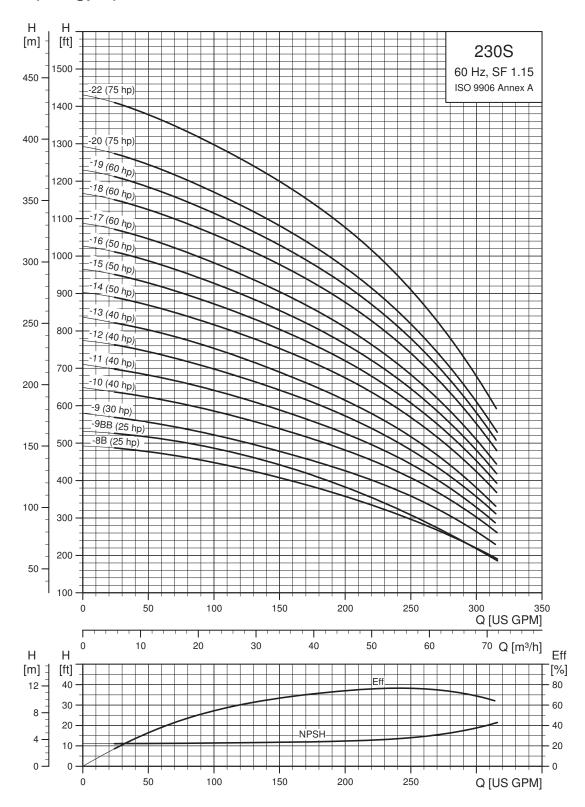
E = Maximum diameter of pump including cable guard and motor.

150S - Motor diameter 8 inch, 60 Hz, rated flow rate 150 gpm (3" NPT)												
150S500-24	966	3	460	50	*	3505	162.45 (4126)	45.67 (1160)	116.78 (2966)	7.56 (192)	7.56 (192)	484.5
150S500-25	1004	3	460	50	*	3501	166.23 (4222)	45.67 (1160)	120.56 (3062)	7.56 (192)	7.56 (192)	491.7
150S500-26	1042	3	460	50	*	3497	170.00 (4318)	45.67 (1160)	124.34 (3158)	7.56 (192)	7.56 (192)	498.9
150S500-27	1080	3	460	50	*	3493	173.78 (4414)	45.67 (1160)	128.12 (3254)	7.56 (192)	7.56 (192)	506.1
150S500-28	1117	3	460	50	*	3489	177.56 (4510)	45.67 (1160)	131.89 (3350)	7.56 (192)	7.56 (192)	513.3
150S600-29DS	1177	3	460	60	*	3519	182.33 (4631)	50.00 (1270)	132.33 (3361)	7.56 (192)	7.56 (192)	612.7
150S600-31DS	1255	3	460	60	*	3513	189.89 (4823)	50.00 (1270)	139.89 (3553)	7.56 (192)	7.56 (192)	623.7
150S600-33DS	1332	3	460	60	*	3508	197.45 (5015)	50.00 (1270)	147.45 (3745)	7.56 (192)	7.56 (192)	639.1
150S750-36DS	1467	3	460	75	*	3524	211.93 (5383)	53.15 (1350)	158.78 (4033)	7.56 (192)	7.56 (192)	689.2
150S750-39DS	1584	3	460	75	*	3518	223.27 (5671)	53.15 (1350)	170.12 (4321)	7.56 (192)	7.56 (192)	704.6

Notes:

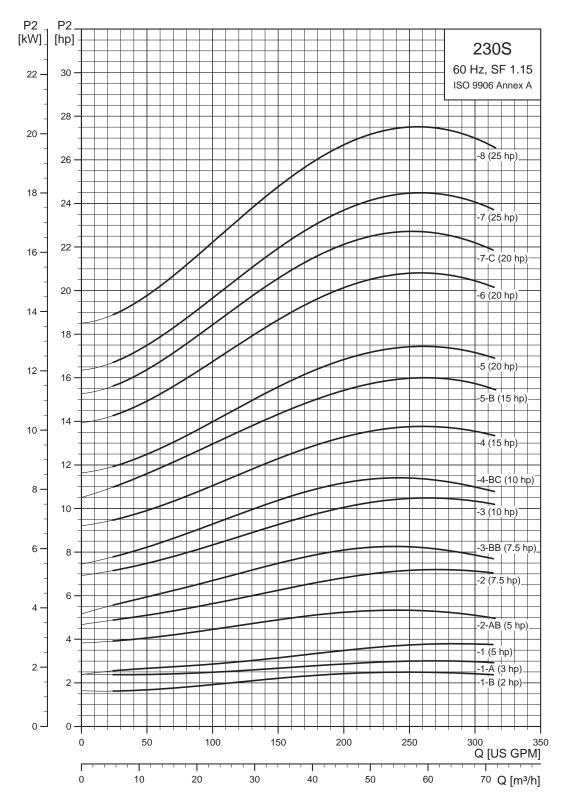

Control box is required for 3-wire, single-phase applications. Data does not include control box. DS designation = Built into sleeve, 3" NPT, 8" minimum well diameter.

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 5 ft (1.5 m).

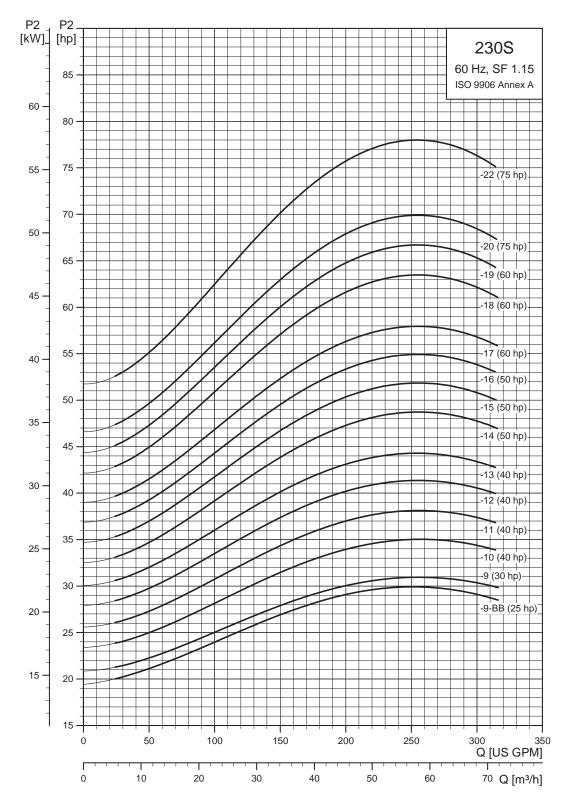

- ▲ MS 6000C motor.
- Takes MMS 6 motor; not available as complete.
- * Takes MMS 8000 motor; not available as complete.

6" and larger wells - continued

SP 230S (230 gpm)



SP 230S (230 gpm)

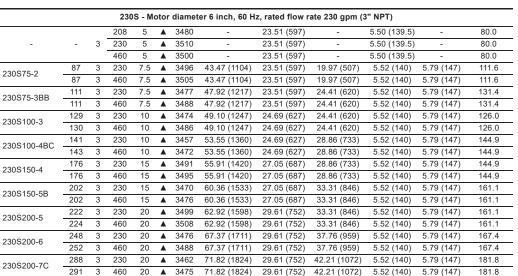

6" and larger wells - continued

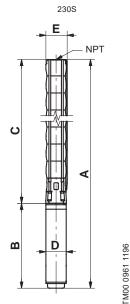
SP 230S (230 gpm) pump power requirement (P2)

6" and larger wells - continued

SP 230S (230 gpm) pump power requirement (P2)

Motor


Nom


SP 230S (230 gpm) pump with 4", 6" motor

Pump model	head								- '	-		weight
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	- (complete) [lb]
		230	S - Mo	tor dia	amete	er 4-ind	ch, 3-wire moto	or, 60 Hz, rated	d flow rate 230	gpm (3" NP	Γ)	
	32	1	230	2	•	3434	34.45 (875)	19.57 (497)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
230S20-1B	32	3	230	2	•	3432	30.12 (765)	15.24 (387)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	32	3	460	2	•	3432	30.12 (765)	15.24 (387)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	38	1	230	3	•	3459	37.60 (955)	22.72 (577)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
230S30-1A	38	3	230	3	•	3460	32.84 (834)	17.96 (456)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	39	3	460	3	•	3489	32.84 (834)	17.96 (456)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	46	1	230	5	•	3516	41.54 (1055)	26.66 (677)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
230S50-1	46	3	230	5	•	3528	37.56 (954)	22.68 (576)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	46	3	460	5	•	3527	37.56 (954)	22.68 (576)	14.89 (378)	3.75 (95)	5.75 (146)	49.5

Dimensions [in (mm)]

		230	S - Mo	tor dia	me	ter 4-ind	ch, 3-wire moto	r, 60 Hz, rated	l flow rate 230	gpm (3" NP	Γ)	
	32	1	230	2	•	3434	34.45 (875)	19.57 (497)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
230S20-1B	32	3	230	2		3432	30.12 (765)	15.24 (387)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	32	3	460	2		3432	30.12 (765)	15.24 (387)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	38	1	230	3	•	3459	37.60 (955)	22.72 (577)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
230S30-1A	38	3	230	3	•	3460	32.84 (834)	17.96 (456)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	39	3	460	3	•	3489	32.84 (834)	17.96 (456)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	46	1	230	5	•	3516	41.54 (1055)	26.66 (677)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
230S50-1	46	3	230	5	•	3528	37.56 (954)	22.68 (576)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
-	46	3	460	5	•	3527	37.56 (954)	22.68 (576)	14.89 (378)	3.75 (95)	5.75 (146)	49.5
	71	1	230	5	•	3459	45.99 (1168)	26.66 (677)	19.34 (491)	3.75 (95)	5.75 (146)	49.5
230S50-2AB	71	3	230	5	•	3487	42.01 (1067)	22.68 (576)	19.34 (491)	3.75 (95)	5.75 (146)	79.2
	71	3	460	5	•	3484	42.01 (1067)	22.68 (576)	19.34 (491)	3.75 (95)	5.75 (146)	79.2
230S75-2	86	3	230	7.5	•	3488	45.95 (1167)	26.62 (676)	19.34 (491)	3.75 (95)	5.75 (146)	79.2
230373-2	86	3	460	7.5	•	3488	45.95 (1167)	26.62 (676)	19.34 (491)	3.75 (95)	5.75 (146)	79.2
230S75-3BB	110	3	230	7.5	•	3468	50.40 (1280)	26.62 (676)	23.78 (604)	3.75 (95)	5.75 (146)	126.0
230313-300	110	3	460	7.5	•	3468	50.40 (1280)	26.62 (676)	23.78 (604)	3.75 (95)	5.75 (146)	126.0
230S100-3	129	3	460	10	•	3472	54.34 (1380)	30.56 (776)	23.78 (604)	3.75 (95)	5.75 (146)	126.0
230S100-4BC	141	3	460	10	•	3456	58.78 (1493)	30.56 (776)	28.23 (717)	3.75 (95)	5.75 (146)	144.9

Net

E = Maximum diameter of pump including cable guard and motor.

Control box is required for 3-wire, single-phase applications. Data does not include control box. Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 8 ft (2.4 m).

- MS 402 motor.
- MS 4000 motor.
- MS 6000C motor.

SP 230S (230 gpm) pump with 6", 8" motor

Pump model	Nom. head	Motor			Dimensions [in (mm)]						
	[ft]	Ph Volts [Hp]	[rpm]	A	В	С	D	E	— (complete) [lb]		

			2305	6 - Mo	tor d	iamete	r 6 inch, 60 Hz,	rated flow rate	e 230 gpm (3"	NPT)	
2200250 7	291	3	230	25	A	3487	73.98 (1879)	31.78 (807)	42.21 (1072)	5.52 (140) 5.79 (147)	149.9
230S250-7	294	3	460	25	A	3497	73.98 (1879)	31.78 (807)	42.21 (1072)	5.52 (140) 5.79 (147)	181.8
230S250-8B	315	3	230	25	A	3476	78.43 (1992)	31.78 (807)	46.66 (1185)	5.52 (140) 5.79 (147)	188.1
2305250-66	316	3	460	25	A	3487	78.43 (1992)	31.78 (807)	46.66 (1185)	5.52 (140) 5.79 (147)	188.1
230S250-8	329	3	230	25	A	3469	78.43 (1992)	31.78 (807)	46.66 (1185)	5.52 (140) 5.79 (147)	188.1
2303230-6	332	3	460	25	A	3482	78.43 (1992)	31.78 (807)	46.66 (1185)	5.52 (140) 5.79 (147)	188.1
230S250-9BB	363	3	230	25	A	3463	82.88 (2105)	31.78 (807)	51.11 (1298)	5.52 (140) 5.79 (147)	205.2
2303230-966	366	3	460	25	A	3476	82.88 (2105)	31.78 (807)	51.11 (1298)	5.52 (140) 5.79 (147)	205.2
230S300-9	368	3	230	30	A	3468	85.24 (2165)	34.14 (867)	51.11 (1298)	5.52 (140) 5.79 (147)	205.2
2305300-9	374	3	460	30	A	3481	85.24 (2165)	34.14 (867)	51.11 (1298)	5.52 (140) 5.79 (147)	205.2
230S400-10	414	3	460	40	A	3476	94.81 (2408)	39.26 (997)	55.56 (1411)	5.52 (140) 5.79 (147)	241.2
230S400-11	457	3	460	40	A	3493	99.26 (2521)	39.26 (997)	60.00 (1524)	5.52 (140) 5.79 (147)	245.7
230S400-12	495	3	460	40	A	3482	103.71 (2634)	39.26 (997)	64.45 (1637)	5.52 (140) 5.79 (147)	251.1
230S400-13	533	3	460	40	A	3472	108.15 (2747)	39.26 (997)	68.90 (1750)	5.52 (140) 5.79 (147)	255.6
230S500-14	577	3	460	50	≎	3481	129.45 (3288)	56.11 (1425)	73.35 (1863)	5.67 (144) 5.79 (147)	356.0
230S500-15	615	3	460	50	⊅	3471	133.90 (3401)	56.11 (1425)	77.80 (1976)	5.67 (144) 5.79 (147)	360.5
230S500-16	653	3	460	50	≎	3462	138.35 (3514)	56.11 (1425)	82.25 (2089)	5.67 (144) 5.79 (147)	365.0
230S600-17	700	3	460	60	₩	3460	142.81 (1447)	56.11 (1425)	86.70 (2202)	5.67 (144) 5.79 (147)	381.0
230S600-18	742	3	460	60	₩	3452	147.26 (3740)	56.11 (1425)	91.15 (2315)	5.67 (144) 5.79 (147)	386.0
230S600-19	783	3	460	60	₩	3444	151.71 (38.53)	56.11 (1425)	95.60 (2428)	5.67 (144) 5.79 (147)	391.0

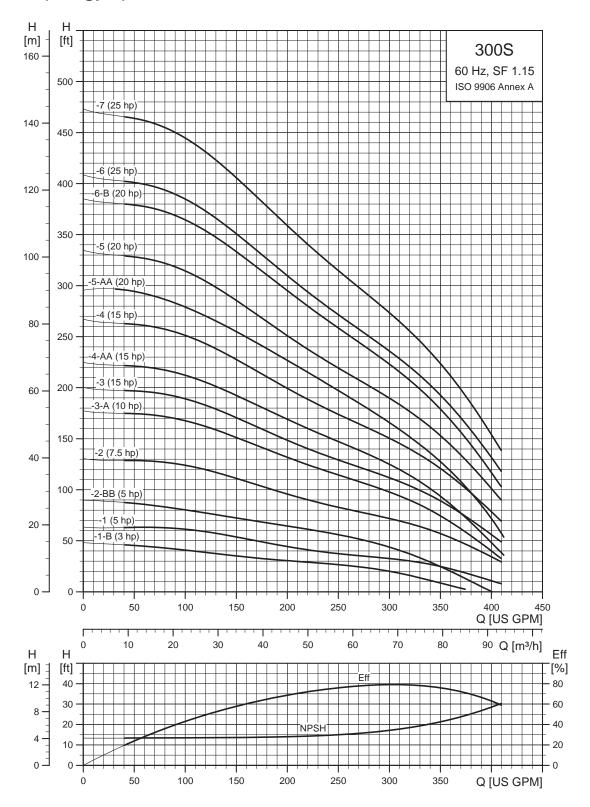
	_	
1	NPT	
S	V	
B	D	TM00 0961 1196

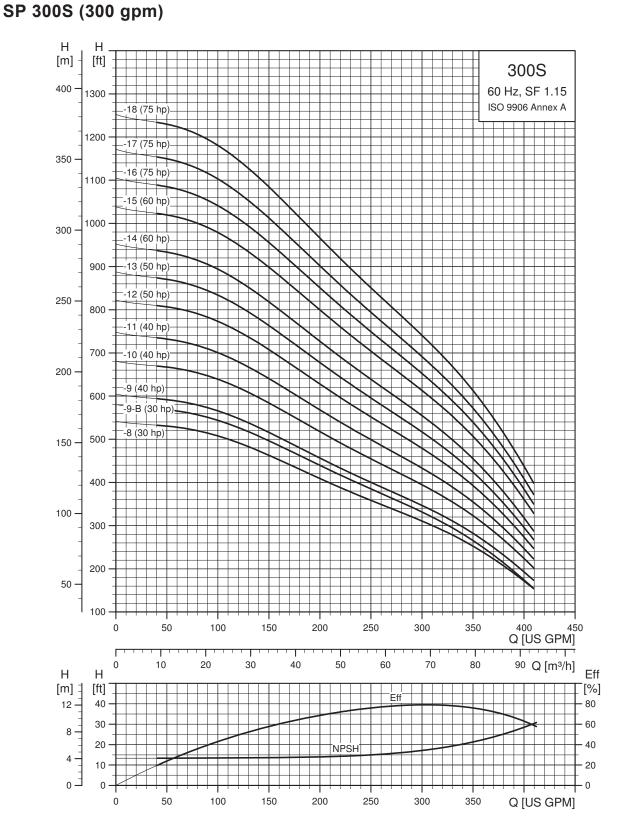
230S

E = Maximum diameter of pump including cable guard and motor.

			2308	- Mot	or d	liamete	r 8 inch, 60 Hz,	rated flow rate	e 230 gpm (3" l	NPT)		
230S600-17	700	3	460	60	*	3460	138.47 (3517)	50.00 (1270)	88.47 (2247)	7.56 (192)	7.56 (192)	546.0
230S600-18	741	3	460	60	*	3452	142.92 (3630)	50.00 (1270)	92.92 (2360)	7.56 (192)	7.56 (192)	568.5
230S600-19	783	3	460	60	*	3444	147.37 (3743)	50.00 (1270)	97.37 (2473)	7.56 (192)	7.56 (192)	591.0
230S750-20DS	850	3	460	75	*	3526	164.69 (4183)	53.15 (1350)	111.54 (2833)	7.56 (192)	7.56 (192)	549.9
230S750-22DS	931	3	460	75	*	3519	173.59 (4409)	53.15 (1350)	120.44 (3059)	7.56 (192)	7.56 (192)	620.4

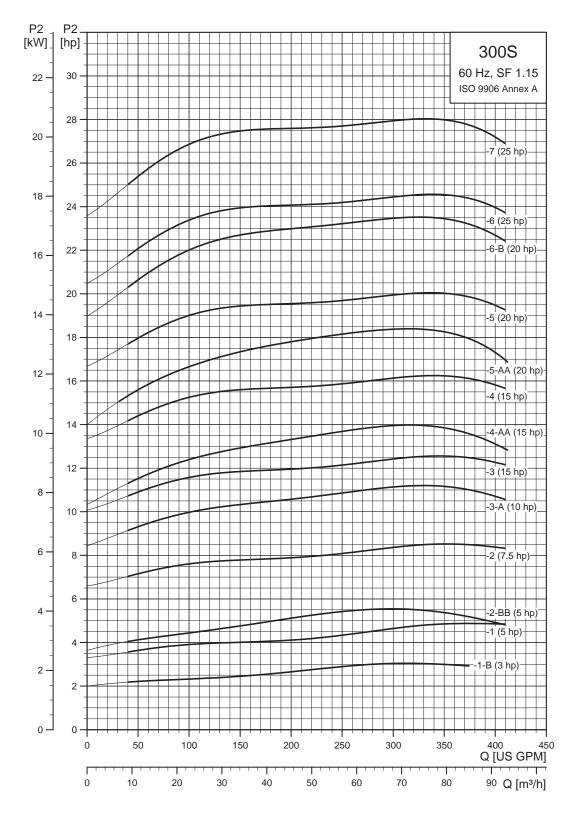
Notes:

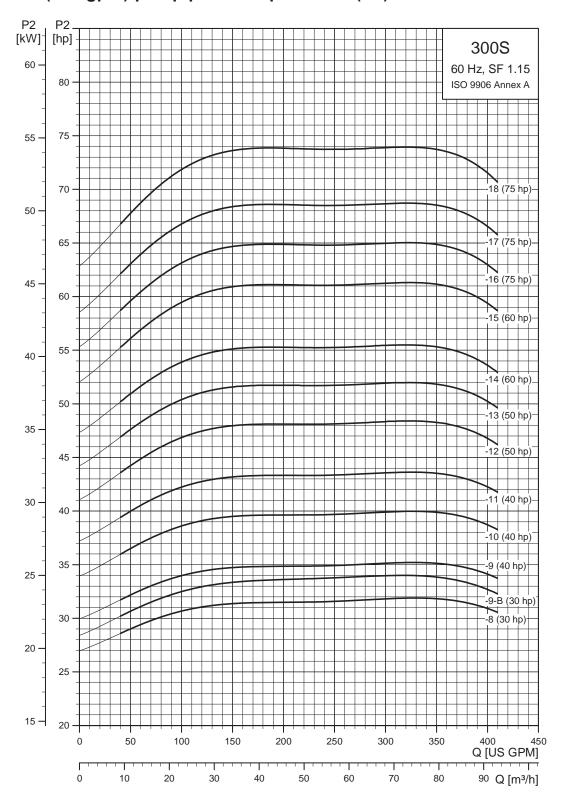

Control box is required for 3-wire, single-phase applications. Data does not include control box. DS designation = Built into sleeve, 3" NPT, 8" minimum well diameter.


Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 8 ft (2.4 m).

- MS 6000C motor
- Takes MMS 6 motor; not available as complete.
- * Takes MMS 8000 motor; not available as complete.

6" and larger wells - continued

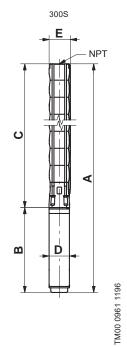

SP 300S (300 gpm)



6" and larger wells - continued

SP 300S (300 gpm) pump power requirement (P2)

6" and larger wells - continued SP 300S (300 gpm) pump power requirement (P2)



SP 300S (300 gpm) pump with 4", 6" motor

Pump model	Nom. head Ph		Motor				Net weight — (complete)			
	[ft]	Volts [V]	[Hp]	[rpm]	Α	В	С	D	E	[lb]

		300	S - Mot	or dia	met	er 4-inc	h, 3-wire moto	r, 60 Hz, rated	I flow rate 300	gpm (3" NP	Γ)	
	29	1	230	3	•	3470	37.60 (955)	22.72 (577)	14.89 (378)	3.75 (95)	5.75 (146)	72.0
300S30-1B	30	3	230	3	•	3466	32.84 (834)	17.96 (456)	14.89 (378)	3.75 (95)	5.75 (146)	72.0
	30	3	460	3	•	3494	32.84 (834)	17.96 (456)	14.89 (378)	3.75 (95)	5.75 (146)	72.0
	38	1	230	5	•	3490	41.54 (1055)	26.66 (677)	14.89 (378)	3.75 (95)	5.75 (146)	74.7
800S50-1	38	3	230	5	•	3508	37.56 (954)	22.68 (576)	14.89 (378)	3.75 (95)	5.75 (146)	74.7
	38	3	460	5	•	3506	37.56 (954)	22.68 (576)	14.89 (378)	3.75 (95)	5.75 (146)	74.7
	57	1	230	5	•	3443	45.99 (1168)	26.66 (677)	19.34 (491)	3.75 (95)	5.75 (146)	135.0
300S50-2BB	57	3	230	5	•	3480	42.01 (1067)	22.68 (576)	19.34 (491)	3.75 (95)	5.75 (146)	135.0
	57	3	460	5	•	3477	42.01 (1067)	22.68 (576)	19.34 (491)	3.75 (95)	5.75 (146)	135.0
300S75-2	77	3	230	7.5	•	3463	45.95 (1167)	26.62 (676)	19.34 (491)	3.75 (95)	5.75 (146)	101.7
300373-2	77	3	460	7.5	•	3463	45.95 (1167)	26.62 (676)	19.34 (491)	3.75 (95)	5.75 (146)	101.7
300S100-3A	107	3	460	10	•	3461	54.34 (1380)	30.56 (776)	23.78 (604)	3.75 (95)	5.75 (146)	145.8

			208	5	A	3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0
_	_	3	230	5	•	3510	_	23.51 (597)	-	5.50 (139.5)	-	80.0
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0
200075.0	77	3	230	7.5	A	3472	43.47 (1104)	23.51 (597)	19.97 (507)	5.52 (140)	5.79 (147)	167.4
300S75-2	78	3	460	7.5	A	3484	43.47 (1104)	23.51 (597)	19.97 (507)	5.52 (140)	5.79 (147)	167.4
2000400 24	107	3	230	10	A	3461	49.10 (1247)	24.69 (627)	24.41 (620)	5.52 (140)	5.79 (147)	216.0
300S100-3A	107	3	460	10	A	3475	49.10 (1247)	24.69 (627)	24.41 (620)	5.52 (140)	5.79 (147)	216.0
300S150-3	119	3	230	15	A	3503	51.46 (1307)	27.05 (687)	24.41 (620)	5.52 (140)	5.79 (147)	216.0
5005150-3	119	3	460	15	A	3506	51.46 (1307)	27.05 (687)	24.41 (620)	5.52 (140)	5.79 (147)	216.0
00S150-4AA -	138	3	230	15	A	3488	55.91 (1420)	27.05 (687)	28.86 (733)	5.52 (140)	5.79 (147)	222.3
	139	3	460	15	A	3492	55.91 (1420)	27.05 (687)	28.86 (733)	5.52 (140)	5.79 (147)	222.3
300S150-4	157	3	230	15	A	3469	55.91 (1420)	27.05 (687)	28.86 (733)	5.52 (140)	5.79 (147)	222.3
5005150-4	158	3	460	15	A	3474	55.91 (1420)	27.05 (687)	28.86 (733)	5.52 (140)	5.79 (147)	222.3
300S200-5AA	179	3	230	20	A	3493	62.92 (1598)	29.61 (752)	33.31 (846)	5.52 (140)	5.79 (147)	194.4
5005200-5AA	180	3	460	20	A	3503	62.92 (1598)	29.61 (752)	33.31 (846)	5.52 (140)	5.79 (147)	194.4
300S200-5	200	3	230	20	A	3479	62.92 (1598)	29.61 (752)	33.31 (846)	5.52 (140)	5.79 (147)	194.4
5003200-5	201	3	460	20	A	3491	62.92 (1598)	29.61 (752)	33.31 (846)	5.52 (140)	5.79 (147)	194.4
300S200-6B	222	3	230	20	A	3462	67.37 (1711)	29.61 (752)	37.76 (959)	5.52 (140)	5.79 (147)	198.0
0003200-06	224	3	460	20	A	3476	67.37 (1711)	29.61 (752)	37.76 (959)	5.52 (140)	5.79 (147)	198.0
800S250-6	243	3	230	25	A	3487	69.53 (1766)	31.78 (807)	37.76 (959)	5.52 (140)	5.79 (147)	198.0
0003200-0	244	3	460	25	A	3497	69.53 (1766)	31.78 (807)	37.76 (959)	5.52 (140)	5.79 (147)	198.0

E = Maximum diameter of pump including cable guard and motor.

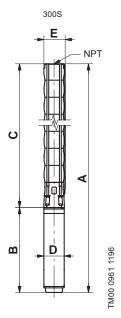
Notes:

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 8 ft (2.4 m).

- MS 4000 motor.
- ▲ MS 6000C motor.

SP 300S (300 gpm) pump with 6", 8" motor

Pump model	Nom. head	Ph		Mo	tor				imensions [in (mm)]			Net weight
	[ft]		Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	- (complete) [lb]
			300S	- Mot	or d	iameter	6 inch, 60 Hz,	rated flow rate	e 300 gpm (4"	NPT)		
300S250-7AA	260	3	230	25	A	3478	73.98 (1879)	31.78 (807)	42.21 (1072)	5.52 (140)	5.79 (147)	217.8
3003230-1AA	262	3	460	25	A	3489	73.98 (1879)	31.78 (807)	42.21 (1072)	5.52 (140)	5.79 (147)	217.8
300S300-7	283	3	230	30	A	3482	76.34 (1939)	34.14 (867)	42.21 (1072)	5.52 (140)	5.79 (147)	217.8
3003300-7	285	3	460	30	A	3493	76.34 (1939)	34.14 (867)	42.21 (1072)	5.52 (140)	5.79 (147)	217.8
300S300-8	321	3	230	30	A	3463	80.79 (2052)	34.14 (867)	46.66 (1185)	5.52 (140)	5.79 (147)	224.1
3003300-6	324	3	460	30	A	3477	80.79 (2052)	34.14 (867)	46.66 (1185)	5.52 (140)	5.79 (147)	224.1
300S300-9B	343	3	230	30	A	3450	85.24 (2165)	34.14 (867)	51.11 (1298)	5.52 (140)	5.79 (147)	261.0
3005300-96	346	3	460	30	A	3466	85.24 (2165)	34.14 (867)	51.11 (1298)	5.52 (140)	5.79 (147)	261.0
300S400-9	370	3	460	40	A	3499	90.36 (2295)	39.26 (997)	51.11 (1298)	5.52 (140)	5.79 (147)	296.0
300S400-10	409	3	460	40	A	3487	94.81 (2408)	39.26 (997)	55.56 (1411)	5.52 (140)	5.79 (147)	300.5
300S400-11	442	3	460	40	₩	3443	99.26 (2521)	39.26 (997)	60.00 (1524)	5.52 (140)	5.79 (147)	352.0
300S500-12	491	3	460	50	₩	3482	120.56 (3062)	56.11 (1425)	64.45 (1637)	5.67 (144)	5.79 (147)	348.8


Dimensions

125.00 (3175) 56.11 (1425) 68.90 (1750) 5.67 (144) 5.79 (147)

129.46 (3288) 56.11 (1425) 73.35 (1863) 5.67 (144) 5.79 (147)

3458 133.91 (3401) 56.11 (1425) 77.80 (1976) 5.67 (144) 5.79 (147)

			SP 300)S - M	otor	diamet	er 8 inch, 60 Hz	, rated flow ra	ite 230 gpm (4	" NPT)		
300S600-14	594	3	460	60	*	3456	125.12 (3178)	50.00 (1270)	75.12 (1908)	7.56 (192)	7.56 (192)	479.4
300S600-15	629	3	460	60	*	3515	129.57 (3291)	50.00 (1270)	79.57 (2021)	7.56 (192)	7.56 (192)	519.4
300S750-16	678	3	460	75	*	3532	137.17 (3484)	53.15 (1350)	84.02 (2134)	7.56 (192)	7.56 (192)	569.1
300S750-17	719	3	460	75	*	3528	141.62 (3597)	53.15 (1350)	88.47 (2247)	7.56 (192)	7.56 (192)	575.4
300S750-18	760	3	460	75	*	3523	146.07 (3710)	53.15 (1350)	92.92 (2360)	7.56 (192)	7.56 (192)	581.7

355.1

371.0

378.0

E = Maximum diameter of pump including cable guard and motor.

300S500-13

300S600-14

300S600-15

Performance conforms to ISO 9906 Annex A. Minimum submergence is 8 ft (2.4 m).

3471

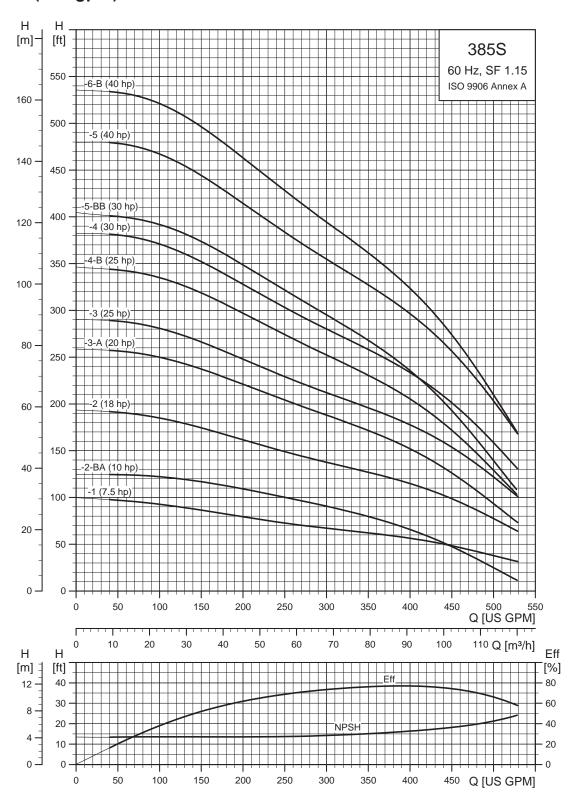
3456

529

594

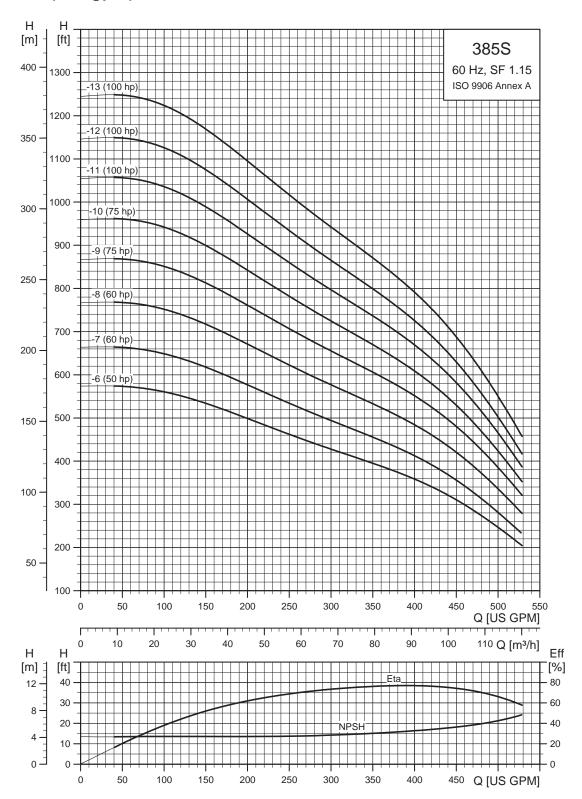
606

- Takes MMS 6 motor; not available as complete.
- Takes MMS 8000 motor; not available as complete.


460 50

460

460 60


8" and larger wells

SP 385S (385 gpm)

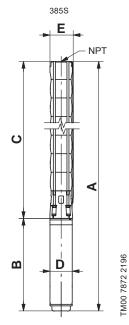
TM05 0251 1812

SP 385S (385 gpm)

8" and larger wells - continued

SP 385S (385 gpm) pump power requirement (P2)

8" and larger wells - continued

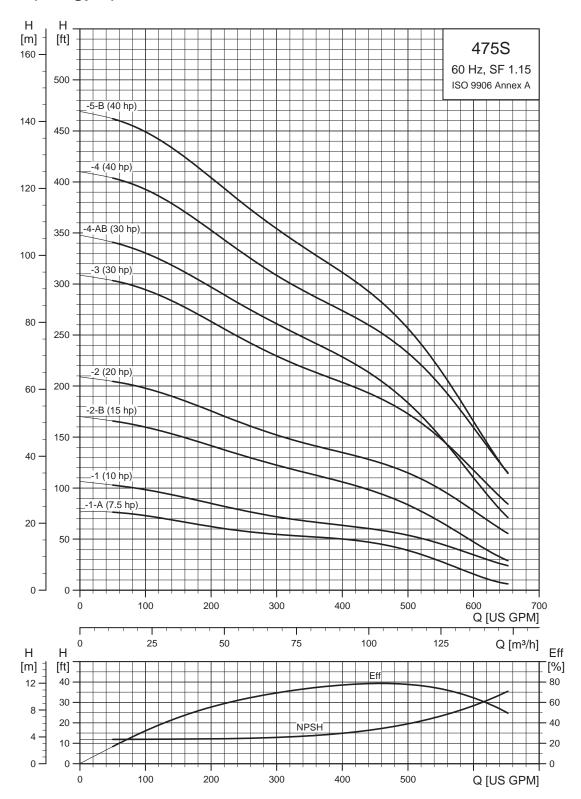

SP 385S (385 gpm) pump power requirement (P2)

SP 385S (385 gpm) pump with 6", 8", 10" motor

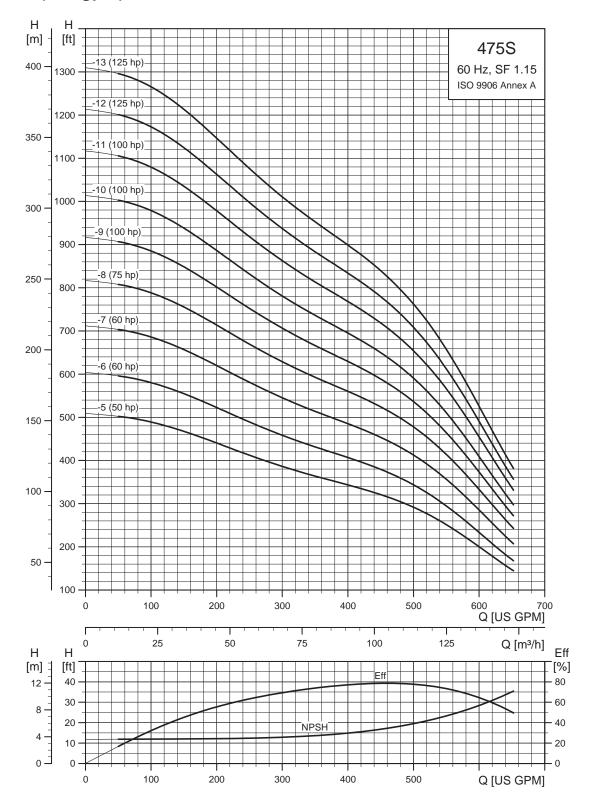
Pump model		Ph	Motor			Dimensions [in (mm)]						
	[ft]	Volts [V]	[Hp]	[rpm]	Α	В	С	D	E	— (complete) [lb]		

			38	5S - N	loto	r diame	eter 6 inch, 60 F	lz, rated flow r	ate 385 gpm (4	4" NPT)		
			208	5	A	3480	-	23.51 (597)	-	5.50 (139.5)	-	80.0
-	-	3	230	5	A	3510	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			460	5	A	3500	-	23.51 (597)	-	5.50 (139.5)	-	80.0
385S75-1	60	3	230	7.5	A	3478	46.58 (1183)	22.25 (565)	24.34 (618)	5.63 (143)	7.01 (178)	135.9
363373-1	61	3	460	7.5	A	3489	46.58 (1183)	22.25 (565)	24.34 (618)	5.63 (143)	7.01 (178)	135.9
385S100-2AB	87	3	230	10	A	3467	52.6 (1336)	23.23 (590)	29.38 (746)	5.63 (143)	7.01 (178)	169.2
3035 IUU-ZAB	87	3	460	10	A	3482	52.6 (1336)	23.23 (590)	29.38 (746)	5.63 (143)	7.01 (178)	169.2
385S150-2	123	3	230	15	A	3472	57.25 (1454)	27.88 (708)	29.38 (746)	5.63 (143)	7.01 (178)	169.2
3035130-2	123	3	460	15	A	3477	57.25 (1454)	27.88 (708)	29.38 (746)	5.63 (143)	7.01 (178)	169.2
2050200 24	163	3	230	20	A	3469	65.24 (1657)	30.83 (783)	34.41 (874)	5.63 (143)	7.01 (178)	188.1
385S200-3A	165	3	460	20	A	3482	65.24 (1657)	30.83 (783)	34.41 (874)	5.63 (143)	7.01 (178)	188.1
385S250-3	187	3	230	25	A	3489	67.41 (1712)	33.00 (838)	34.41 (874)	5.63 (143)	7.01 (178)	188.1
3035230-3	189	3	460	25	A	3499	67.41 (1712)	33.00 (838)	34.41 (874)	5.63 (143)	7.01 (178)	188.1
385S250-4B	220	3	230	25	A	3461	72.45 (1840)	33.00 (838)	39.45 (1002)	5.63 (143)	7.01 (178)	239.4
3035230-46	222	3	460	25	A	3475	72.45 (1840)	33.00 (838)	39.45 (1002)	5.63 (143)	7.01 (178)	239.4
385S300-4	234	3	230	30	A	3463	75.00 (1905)	35.56 (903)	39.45 (1002)	5.63 (143)	7.01 (178)	239.4
3035300-4	249	3	460	30	A	3478	75.00 (1905)	35.56 (903)	39.45 (1002)	5.63 (143)	7.01 (178)	239.4
385S300-5BB	254	3	230	30	A	3452	80.04 (2033)	35.56 (903)	44.49 (1130)	5.63 (143)	7.01 (178)	247.5
3035300-300	257	3	460	30	A	3467	80.04 (2033)	35.56 (903)	44.49 (1130)	5.63 (143)	7.01 (178)	247.5
385S400-5	314	3	460	40	A	3488	84.77 (2153)	40.28 (1023)	44.49 (1130)	5.63 (143)	7.01 (178)	247.5
385S400-6B	347	3	460	40	A	3471	89.81 (2281)	40.28 (1023)	49.53 (1258)	5.63 (143)	7.01 (178)	252.0
385S500-6	375	3	460	50	₩	3447	110.99 (2825)	56.11 (1425)	54.88 (1394)	5.67 (144)	7.88 (200)	376.0
385S500-7A	414	3	460	50	₩	3467	110.99 (2825)	56.11 (1425)	54.88 (1394)	5.67 (144)	7.88 (200)	407.0
385S600-7	449	3	460	60	₩	3414	111.23 (2825)	56.11 (1425)	55.12 (1400)	5.67 (144)	7.88 (200)	385.0
385S600-8	494	3	460	60	₽	3449	111.23 (2825)	56.11 (1425)	55.12 (1400)	5.67 (144)	7.88 (200)	385.0

E = Maximum diameter of pump including cable guard and motor.

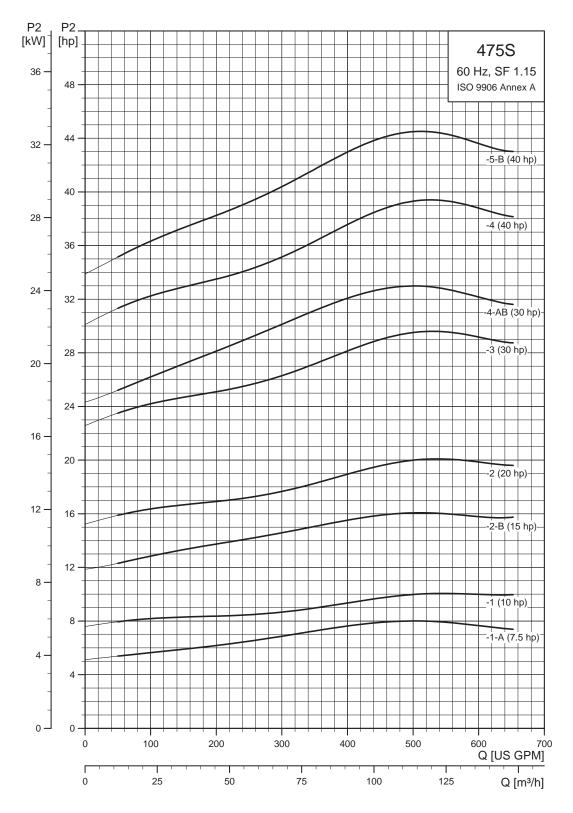

			38	5S - M	oto	r diame	eter 8 inch, 60 H	z, rated flow r	ate 385 gpm (4	" NPT)		
385S400-6B	351	3	460	40	*	3490	93.78 (2382)	43.71 (1110)	50.08 (1272)	7.56 (192)	7.88 (200)	428.3
385S500-6	375	3	460	50	*	3481	95.75 (2432)	45.67 (1160)	50.08 (1272)	7.56 (192)	7.88 (200)	451.2
385S500-7A	420	3	460	50	*	3492	100.79 (2560)	45.67 (1160)	55.12 (1400)	7.56 (192)	7.88 (200)	461.1
385S600-7	449	3	460	60	*	3459	105.12 (2670)	50.00 (1270)	55.12 (1400)	7.56 (192)	7.88 (200)	507.3
385S600-8	511	3	460	60	*	3510	110.16 (2798)	50.00 (1270)	60.16 (1528)	7.56 (192)	7.88 (200)	517.2
385S750-9	582	3	460	75	*	3508	118.35 (3006)	53.15 (1350)	65.2 (1656)	7.56 (192)	7.88 (200)	558.7
385S750-10	643	3	460	75	*	3498	123.39 (3134)	53.15 (1350)	70.24 (1784)	7.56 (192)	7.88 (200)	568.6
385S1000-11	711	3	460	100	*	3512	137.88 (3502)	62.60 (1590)	75.28 (1912)	7.56 (192)	7.88 (200)	677.5
385S1000-12	771	3	460	100	*	3505	142.92 (3630)	62.60 (1590)	80.32 (2040)	7.56 (192)	7.88 (200)	687.4
385S1000-13	831	3	460	100	*	3497	147.96 (3758)	62.60 (1590)	85.36 (2168)	7.56 (192)	7.88 (200)	697.3

Notes:

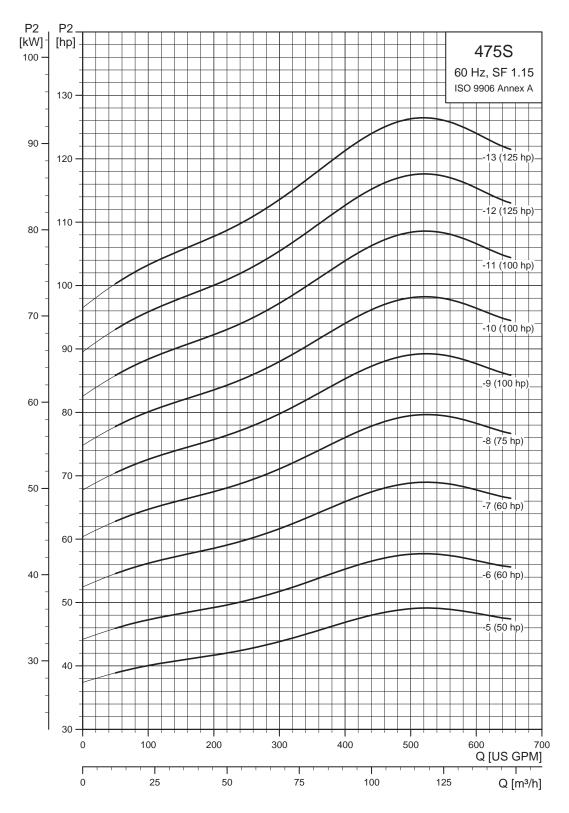

Performance conforms to ISO 9906 Annex A. Minimum submergence is 8 ft (2.4 m).

- ▲ MS 6000C motor.
- Takes MMS 6 motor; not available as complete.
- * Takes MMS 8000 motor; not available as complete.

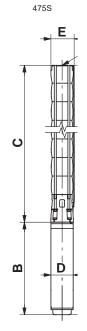
SP 475S (475 gpm)



SP 475S (475 gpm)


8" and larger wells - continued

SP 475S (475 gpm) pump power requirement (P2)


8" and larger wells - continued

SP 475S (475 gpm) pump power requirement (P2)

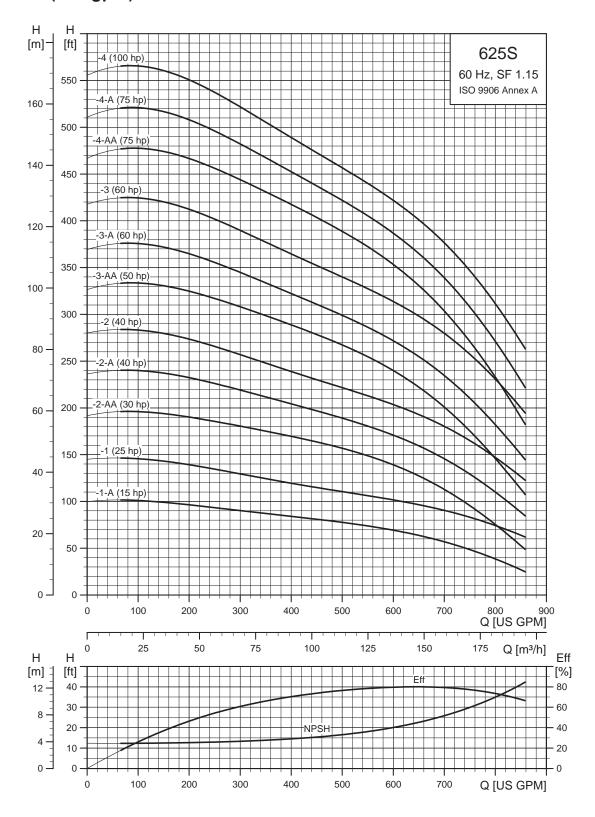
SP 475S (475 gpm) pump with 6", 8" motors

Pump model	Nom. head	Ph		Mot	or			Dimer	ısions [in (mm	1)]		Net weight
	[ft]		Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	(complete) [lb]
			475	S - Mo	tor	diamet	er 6 inch, 60 Hz	, rated flow ra	ite 475 gpm (6	" NPT)		
			208	5	A	-	-	23.51 (597)	-	5.50 (139.5)	-	80.0
-	-	3	230	5	A	-	-	23.51 (597)	-	5.50 (139.5)	-	80.0
			460	5	A	-	-	23.51 (597)	-	5.50 (139.5)	-	80.0
475S75-1A	51	3	230	7.5	A	3484	46.58 (1183)	22.25 (565)	24.34 (618)	5.63 (143)	7.05 (179)	132.3
4/55/5-1A	51	3	460	7.5	A	3495	46.58 (1183)	22.25 (565)	24.34 (618)	5.63 (143)	7.05 (179)	132.3
475S100-1	61	3	230	10	A	3478	47.56 (1208)	23.23 (590)	24.34 (618)	5.63 (143)	7.05 (179)	132.3
4755100-1	61	3	460	10	A	3490	47.56 (1208)	23.23 (590)	24.34 (618)	5.63 (143)	7.05 (179)	132.3
475S150-2B	108	3	230	15	A	3474	57.25 (1454)	27.88 (708)	29.38 (746)	5.63 (143)	7.05 (179)	170.1
4755150-26	108	3	460	15	A	3480	57.25 (1454)	27.88 (708)	29.38 (746)	5.63 (143)	7.05 (179)	170.1
475S200-2	124	3	230	20	A	3484	60.20 (1529)	30.83 (783)	29.38 (746)	5.63 (143)	7.05 (179)	198.7
4753200-2	124	3	460	20	A	3494	60.20 (1529)	30.83 (783)	29.38 (746)	5.63 (143)	7.05 (179)	198.7
475S250-3A	172	3	230	25	A	3471	67.41 (1712)	33.00 (838)	34.41 (874)	5.63 (143)	7.05 (179)	218.2
4755250-5A	173	3	460	25	A	3484	67.41 (1712)	33.00 (838)	34.41 (874)	5.63 (143)	7.05 (179)	218.2
475S300-3	186	3	230	30	A	3477	69.97 (1777)	35.56 (903)	34.41 (874)	5.63 (143)	7.05 (179)	233.6
4755500-5	187	3	460	30	A	3489	69.97 (1777)	35.56 (903)	34.41 (874)	5.63 (143)	7.05 (179)	233.6
475S300-4AB	210	3	230	30	A	3457	75.00 (1905)	35.56 (903)	39.45 (1002)	5.63 (143)	7.05 (179)	239.9
4755500-4AB	212	3	460	30	A	3472	75.00 (1905)	35.56 (903)	39.45 (1002)	5.63 (143)	7.05 (179)	239.9
475S400-4	251	3	460	40	A	3491	79.73 (2025)	40.28 (1023)	39.45 (1002)	5.63 (143)	7.05 (179)	268.5
475S400-5B	284	3	460	40	A	3460	84.77 (2153)	40.28 (1023)	44.49 (1130)	5.63 (143)	7.05 (179)	356.0
475S500-5	313	3	460	50	₩	3460	100.6 (2555)	56.11 (1425)	44.49 (1130)	5.67 (144)	7.05 (179)	384.0
475S500-6A	357	3	460	50	₽	3460	105.63 (2683)	56.11 (1425)	49.53 (1258)	5.67 (144)	7.05 (179)	385.0
475S600-6	375	3	460	60	₽	3456	106.19 (2697)	56.11 (1425)	50.08 (1272)	5.67 (144)	7.05 (179)	436.0
475S600-7	449	3	460	60	☼	3433	111.23 (2825)	56.11 (1425)	55.12 (1400)	5.67 (144)	7.05 (179)	446.0

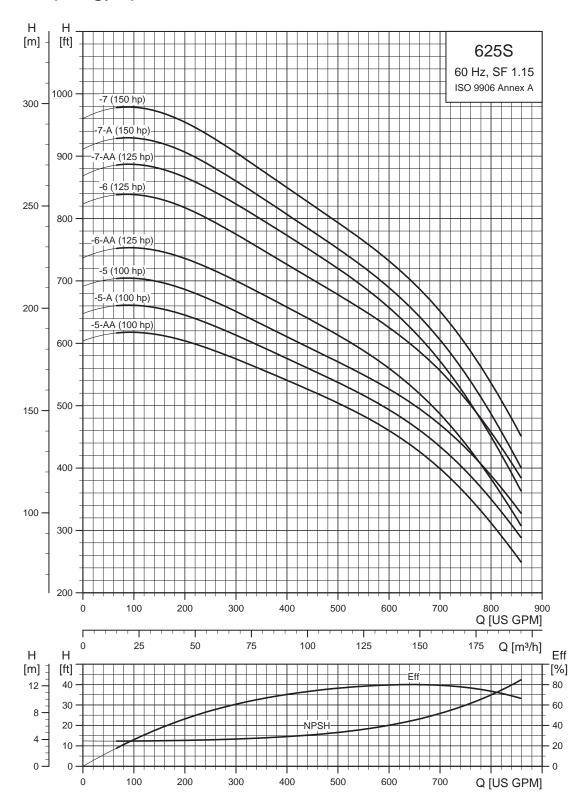
E = Maximum diameter of pump including cable guard and motor.

TM00 7872 2196

			475	S - Mo	tor	diamet	er 8 inch, 60 Hz	, rated flow ra	te 475 gpm (6"	NPT)		
475S400-4	245	3	460	40	*	3462	83.71 (2126)	43.71 (1110)	40.00 (1016)	7.56 (192)	8.08 (205)	406.5
475S400-5B	284	3	460	40	*	3441	88.75 (2254)	43.71 (1110)	45.04 (1144)	7.56 (192)	8.08 (205)	444.0
475S500-5	317	3	460	50	*	3480	90.71 (2304)	45.67 (1160)	45.04 (1144)	7.56 (192)	8.08 (205)	420.4
475S500-6A	363	3	460	50	*	3480	95.75 (2432)	45.67 (1160)	50.08 (1272)	7.56 (192)	8.08 (205)	422.0
475S600-6	375	3	460	60	*	3519	100.08 (2542)	50.00 (1270)	50.08 (1272)	7.56 (192)	8.08 (205)	476.0
475S600-7	449	3	460	60	*	3505	105.12 (2670)	50.00 (1270)	55.12 (1400)	7.56 (192)	8.08 (205)	482.6
475S750-8	513	3	460	75	*	3518	113.31 (2878)	53.15 (1350)	60.16 (1528)	7.56 (192)	8.08 (205)	524.4
475S1000-9	582	3	460	100	*	3529	127.8 (3246)	62.60 (1590)	65.20 (1656)	7.56 (192)	8.08 (205)	631.0
475S1000-10	643	3	460	100	*	3512	132.84 (3374)	62.60 (1590)	70.24 (1784)	7.56 (192)	8.08 (205)	637.6
475S1000-11	711	3	460	100	*	3512	137.88 (3502)	62.60 (1590)	75.28 (1912)	7.56 (192)	8.08 (205)	644.3
475S1250-12	771	3	460	125	*	3505	152.37 (3870)	72.05 (1830)	80.32 (2040)	7.56 (192)	8.08 (205)	754.1
475S1250-13	831	3	460	125	*	3497	157.41 (3998)	72.05 (1830)	85.36 (2168)	7.56 (192)	8.08 (205)	760.7

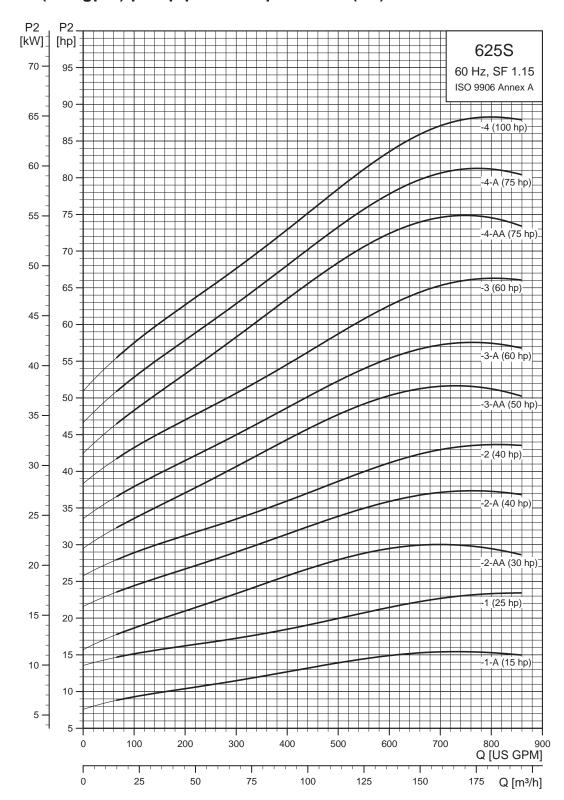

Notes:

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 8 ft (2.4 m).

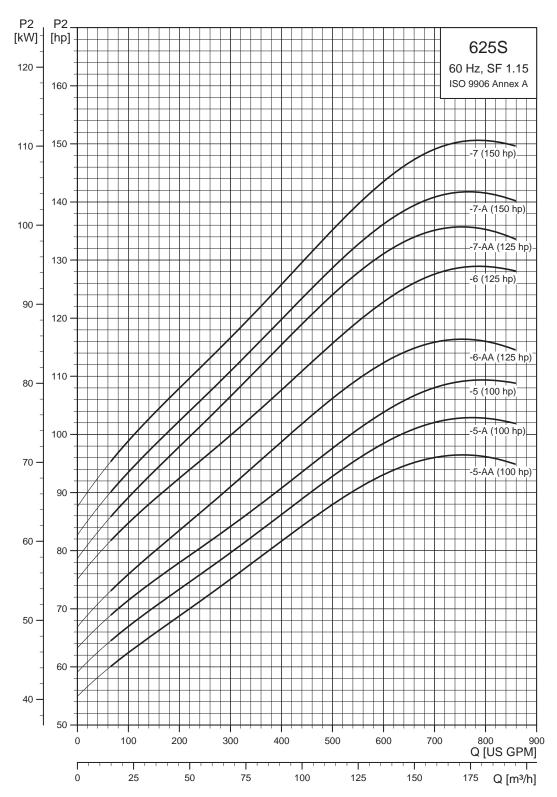

- ▲ MS 6000C motor.
- Takes MMS 6 motor; not available as complete.
- * Takes MMS 8000 motor; not available as complete.

10" and larger wells

SP 625S (625 gpm)



SP 625S (625 gpm)

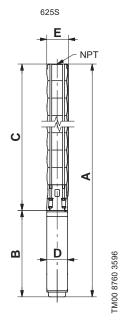

10" and larger wells - continued

SP 625S (625 gpm) pump power requirement (P2)

10" and larger wells - continued

SP 625S (625 gpm) pump power requirement (P2)

Motor


SP 625S (625 gpm) pump with 6", 8" motors

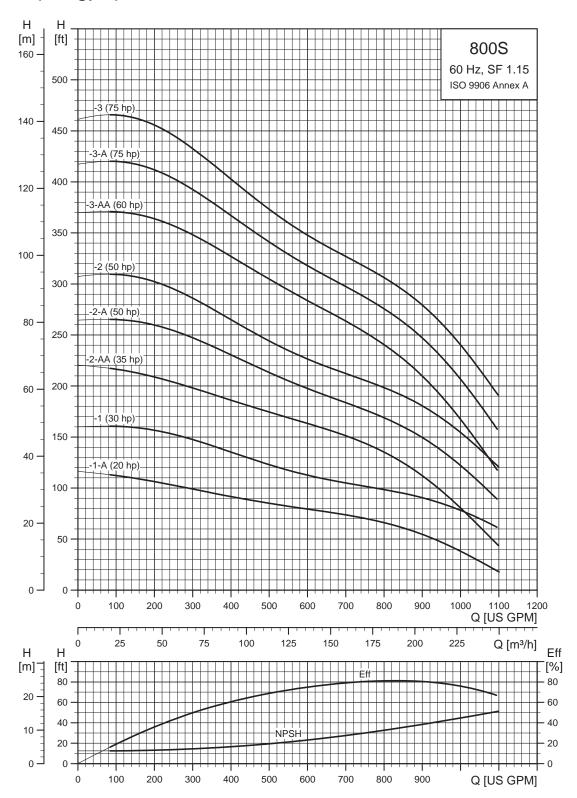
Pump model	Nom. head		Motor			Dimensions [in (mm)]						
	[ft]	Ph	Volts [V]	[Hp]	[rp	m]	Α	В	С	D	E	(complete)
			625S	- Mot	tor dian	neter 6 inc	ch, 60 Hz	, rated flow	rate 625 gpm (6'	' NPT)		
625S150-1A	76	3	230	15	▲ 34	86 53.5	1 (1359)	27.88 (70	08) 25.63 (651)	5.63 (143)	8.31 (211)	193.0
0233130-1A	70	3	460	15	▲ 34	91 53.5	1 (1359)	27.88 (70	08) 25.63 (651)	5.63 (143)	8.31 (211)	193.0
		3	230	25	▲ 35	02 58.6	3 (1489)	33.00 (83	38) 25.63 (651)	5.63 (143)	8.31 (211)	189.9

Dimensions [in (mm)]

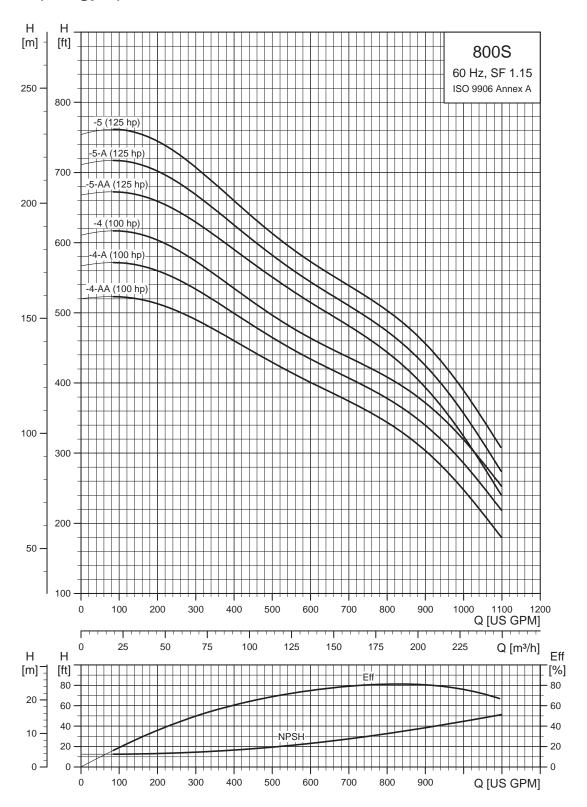
			625S	- Mo	tor o	liamete	r 6 inch, 60 Hz	, rated flow rate	e 625 gpm (6"	NPT)		
625S150-1A	76	3	230	15	A	3486	53.51 (1359)	27.88 (708)	25.63 (651)	5.63 (143)	8.31 (211)	193.0
0205100-1A	76	3	460	15	A	3491	53.51 (1359)	27.88 (708)	25.63 (651)	5.63 (143)	8.31 (211)	193.0
625S250-1	101	3	230	25	A	3502	58.63 (1489)	33.00 (838)	25.63 (651)	5.63 (143)	8.31 (211)	189.9
0203250-1	101	3	460	25	A	3511	58.63 (1489)	33.00 (838)	25.63 (651)	5.63 (143)	8.31 (211)	198.9
625S300-2AA	143	3	230	30	A	3476	67.33 (1710)	35.56 (903)	31.78 (807)	5.63 (143)	8.31 (211)	213.0
0233300-2AA	144	3	460	30	A	3488	67.33 (1710)	35.56 (903)	31.78 (807)	5.63 (143)	8.31 (211)	222.3
625S400-2A	171	3	460	40	A	3499	72.05 (1830)	40.28 (1023)	31.78 (807)	5.63 (143)	8.31 (211)	333.8
625S400-2	203	3	460	40	A	3482	72.05 (1830)	40.28 (1023)	31.78 (807)	5.63 (143)	8.31 (211)	333.8
625S500-3AA	240	3	460	50	₽	3475	94.02 (2388)	56.11 (1425)	37.94 (963)	5.63 (143)	8.31 (211)	376.4
625S600-3A	267	3	460	60	∌	3467	94.03 (2388)	56.11 (1425)	37.92 (963)	5.63 (143)	8.31 (211)	382.0
625S600-3	301	3	460	60	₽	3453	94.03 (2388)	56.11 (1425)	37.92 (963)	5.63 (143)	8.31 (211)	382.0

625S - Motor diameter 8 inch, 60 Hz, rated flow rate 625 gpm (6" NPT)												
625S400-2	205	3	460	40	*	3498	76.03 (1931)	43.71 (1110)	32.33 (821)	7.56 (192)	8.39 (213)	409.4
625S500-3AA	243	3	460	50	*	3498	83.59 (2123)	45.67 (1160)	37.92 (963)	7.56 (192)	8.39 (213)	444.6
625S600-3A	278	3	460	60	*	3520	87.92 (2233)	50.00 (1270)	37.92 (963)	7.56 (192)	8.39 (213)	490.8
625S600-3	299	3	460	60	*	3510	87.92 (2233)	50.00 (1270)	37.92 (963)	7.56 (192)	8.39 (213)	490.8
625S750-4AA	350	3	460	75	*	3524	97.21 (2469)	53.15 (1350)	44.06 (1119)	7.56 (192)	8.39 (213)	534.8
625S750-4A	384	3	460	75	*	3518	97.21 (2469)	53.15 (1350)	44.06 (1119)	7.56 (192)	8.39 (213)	534.8
625S1000-4	402	3	460	100	*	3529	106.66 (2709)	62.60 (1590)	44.06 (1119)	7.56 (192)	8.39 (213)	633.8
625S1000-5AA	460	3	460	100	*	3524	112.76 (2864)	62.60 (1590)	50.16 (1274)	7.56 (192)	8.39 (213)	649.3
625S1000-5A	490	3	460	100	*	3519	112.76 (2864)	62.60 (1590)	50.16 (1274)	7.56 (192)	8.39 (213)	649.3
625S1000-5	500	3	460	100	*	3513	112.76 (2864)	62.60 (1590)	50.16 (1274)	7.56 (192)	8.39 (213)	649.3
625S1250-6AA	557	3	460	125	*	3507	128.31 (3259)	72.05 (1830)	56.26 (1429)	7.56 (192)	8.39 (213)	761.5
625S1250-6	590	3	460	125	*	3495	128.31 (3259)	72.05 (1830)	56.26 (1429)	7.56 (192)	8.39 (213)	761.5
625S1250-7AA	655	3	460	125	*	3490	134.45 (3415)	72.05 (1830)	62.41 (1585)	7.56 (192)	8.39 (213)	774.7
625S1500-7A	696	3	460	150	*	3505	143.51 (3645)	81.11 (2060)	62.41 (1585)	7.56 (192)	8.39 (213)	884.7
625S1500-7	690	3	460	150	*	3499	143.51 (3645)	81.11 (2060)	62.41 (1585)	7.56 (192)	8.39 (213)	884.7

Net

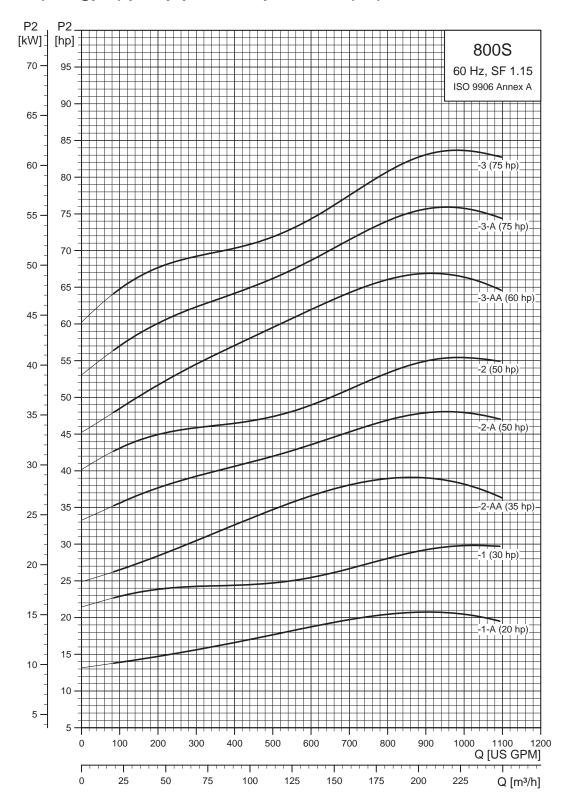

E = Maximum diameter of pump including cable guard and motor.

Notes:

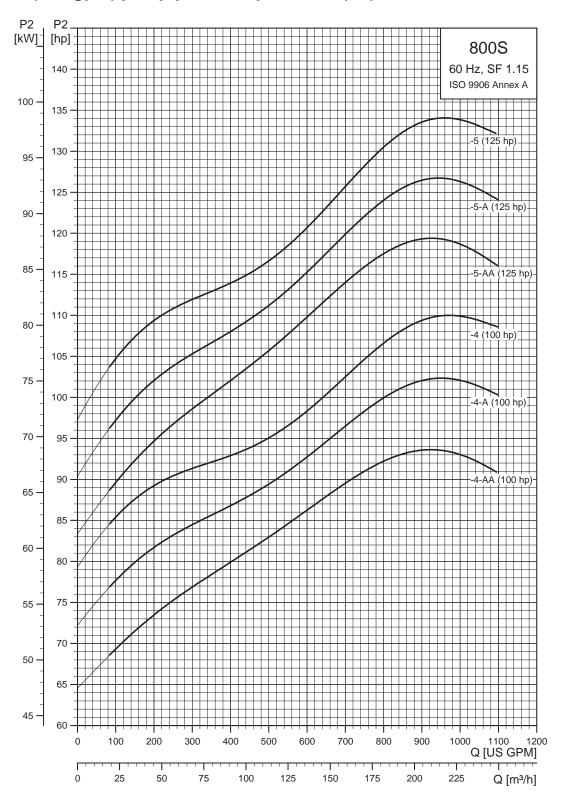

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 10 ft (3 m).

- ▲ MS 6000C motor.
- Takes MMS 6 motor; not available as complete.
- Takes MMS 8000 motor; not available as complete.

SP 800S (800 gpm)


SP 800S (800 gpm)

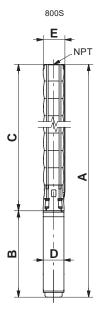
TM05 0264 1812


10" and larger wells - continued

SP 800S (800 gpm) pump power requirement (P2)

10" and larger wells - continued

SP 800S (800 gpm) pump power requirement (P2)


Motor

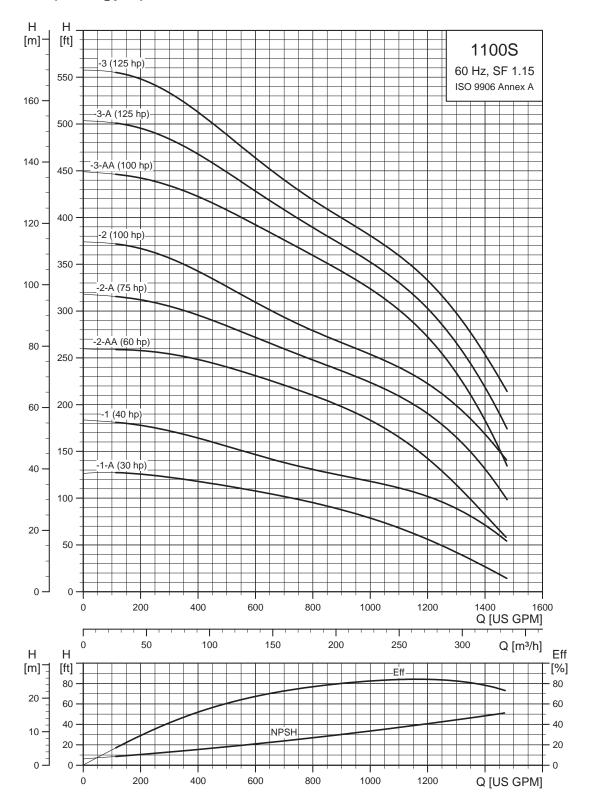
SP 800S (800 gpm) pump with 6", 8" motors

Pump model	Nom. head			MOTOI					weight — (complete)			
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	[lb]
			8008	- Mot	or d	iamete	r 6 inch, 60 Hz,	rated flow rate	e 800 gpm (6"	NPT)		
800S200-1A	72	3	230	20	A	3481	56.50 (1435)	30.83 (783)	25.67 (652)	5.63 (143)	8.31 (211)	180.0
6003200-1A	72	3	460	20	A	3492	56.50 (1435)	30.83 (783)	25.67 (652)	5.63 (143)	8.31 (211)	180.0
800S300-1	95	3	230	30	A	3479	61.23 (1555)	35.56 (903)	25.67 (652)	5.63 (143)	8.31 (211)	202.5
6003300-1	96	3	460	30	A	3491	61.23 (1555)	35.56 (903)	25.67 (652)	5.63 (143)	8.31 (211)	202.5
800S400-2AA	143	3	460	40	A	3490	72.05 (1830)	40.28 (1023)	31.78 (807)	5.63 (143)	8.31 (211)	257.4
800S500-2A	172	3	460	50	₽	3486	88.00 (2235)	56.11 (1425)	31.87 (810)	5.63 (143)	8.39 (213)	363.2
800S500-2	189	3	460	50	₽	3463	88.00 (2235)	56.11 (1425)	31.87 (810)	5.63 (143)	8.39 (213)	363.2
800S600-3AA	239	3	460	60	₿	3446	94.03 (2388)	56.11 (1425)	37.92 (963)	5.63 (143)	8.39 (213)	381.4

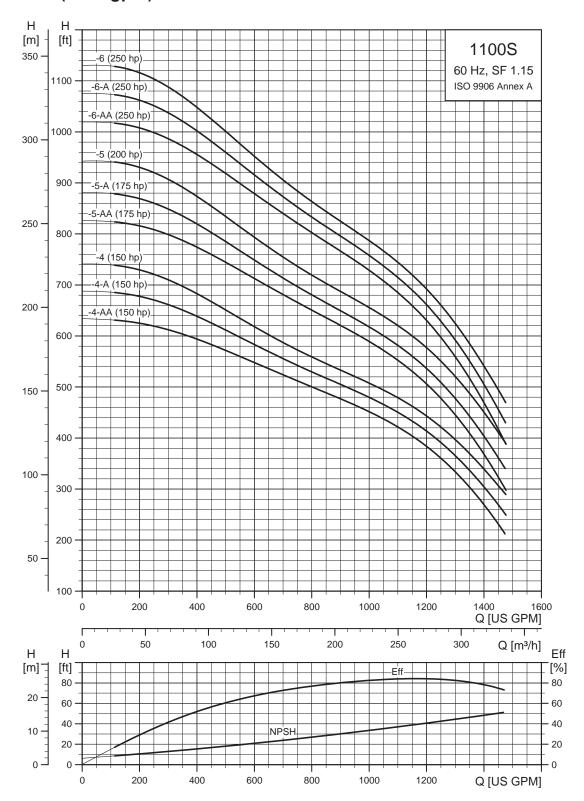
Dimensions [in (mm)]

			8008	- Mot	or d	liamete	r 8 inch, 60 Hz,	rated flow rate	800 gpm (6"	NPT)		
800S400-2AA	141	3	460	40	*	3462	75.48 (1917)	43.71 (1110)	31.78 (807)	7.56 (192)	8.39 (213)	409.4
800S500-2A	174	3	460	50	*	3507	77.45 (1967)	45.67 (1160)	31.78 (807)	7.56 (192)	8.39 (213)	431.4
800S500-2	192	3	460	50	*	3489	77.45 (1967)	45.67 (1160)	31.78 (807)	7.56 (192)	8.39 (213)	438.0
800S600-3AA	247	3	460	60	*	3508	87.92 (2233)	50.00 (1270)	37.92 (963)	7.56 (192)	8.39 (213)	490.8
800S750-3A	281	3	460	75	*	3523	91.07 (2313)	53.15 (1350)	37.92 (963)	7.56 (192)	8.39 (213)	523.8
800S750-3	293	3	460	75	*	3514	91.07 (2313)	53.15 (1350)	37.92 (963)	7.56 (192)	8.39 (213)	523.8
800S1000-4AA	354	3	460	100	*	3524	106.62 (2708)	62.60 (1590)	44.02 (1118)	7.56 (192)	8.39 (213)	633.8
800S1000-4A	385	3	460	100	*	3519	106.62 (2708)	62.60 (1590)	44.02 (1118)	7.56 (192)	8.39 (213)	633.8
800S1000-4	390	3	460	100	*	3511	106.62 (2708)	62.60 (1590)	44.02 (1118)	7.56 (192)	8.39 (213)	633.8
800S1250-5AA	454	3	460	125	*	3503	122.21 (3104)	72.05 (1830)	50.16 (1274)	7.56 (192)	8.39 (213)	748.3
800S1250-5A	457	3	460	125	*	3496	122.21 (3104)	72.05 (1830)	50.16 (1274)	7.56 (192)	8.39 (213)	748.3
800S1250-5	479	3	460	125	*	3489	122.21 (3104)	72.05 (1830)	50.16 (1274)	7.56 (192)	8.39 (213)	746.6

Net

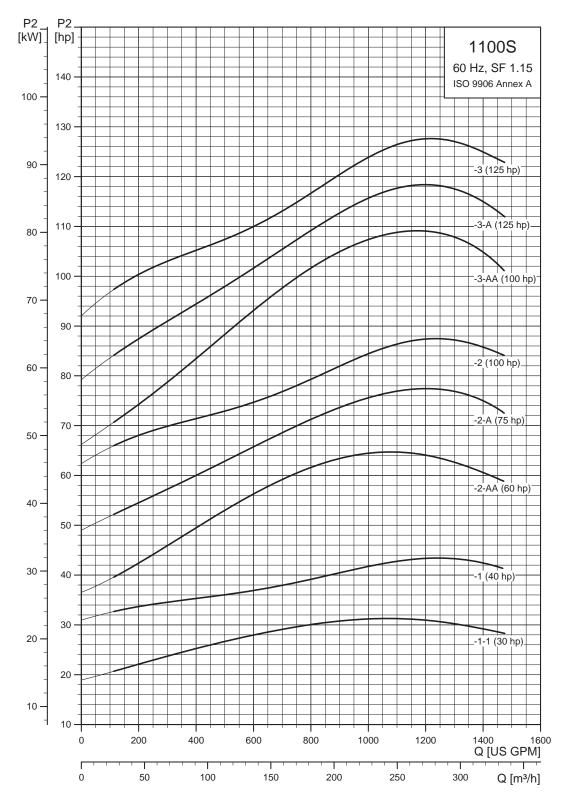

E = Maximum diameter of pump including cable guard and motor.

TM00 8760 3596

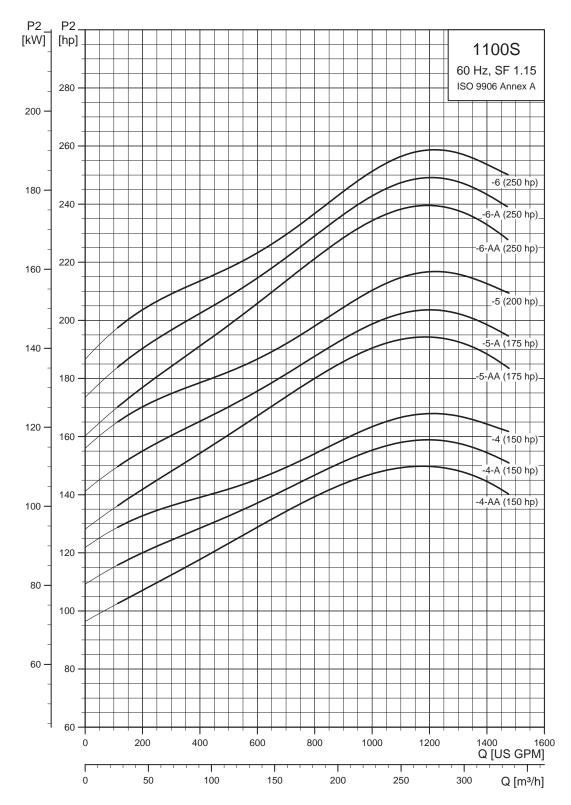

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 25 ft (7.6 m).

- ▲ MS 6000C motor.
- Takes MMS 6 motor; not available as complete.
- Takes MMS 8000 motor; not available as complete.

SP 1100S (1100 gpm)

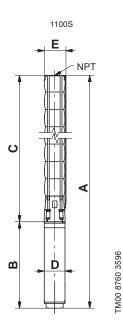


SP 1100S (1100 gpm)


10" and larger wells - continued

SP 1100S (1100 gpm) pump power requirement (P2)

10" and larger wells - continued


SP 1100S (1100 gpm) pump power requirement (P2)

SP 1100S (1100 gpm) pump with 6", 8", 10" motors

Pump model	Nom. head			Motor				Dimen	sions [in (mm)	1		Net weight (complete)
	[ft]	Ph	Volts [V]	[Hp]		[rpm]	Α	В	С	D	E	[lb]
			11008	- Mot	or	diamete	r 6 inch, 60 Hz,	rated flow rate	e 1100 gpm (6'	" NPT)		
11000000 11	77	3	230	30	A	3449	66.66 (1693)	35.56 (903)	31.11 (790)	5.63 (143)	9.30 (236)	261.0
1100S300-1A	89	3	460	30	•	3481	66.66 (1693)	35.56 (903)	31.11 (790)	5.63 (143)	9.30 (236)	261.0
1100S400-1	109	3	460	40	A	3476	71.38 (1813)	40.28 (1023)	31.11 (790)	5.63 (143)	9.30 (236)	290.6
1100S600-2AA	178	3	460	60	₩	3455	94.15 (2391)	56.11 (1425)	38.04 (966)	5.63 (143)	9.30 (236)	389.8
			11005	- Mot	or o	diamete	r 8 inch, 60 Hz,	rated flow rate	e 1100 gpm (6	" NPT)		
1100S400-1	110	3	460	40	*	3493	74.81 (1900)	43.71 (1110)	31.11 (790)	7.56 (192)	9.41 (239)	407.2
1100S600-2AA	180	3	460	60	*	3510	88.04 (2236)	50.00 (1270)	38.04 (966)	7.56 (192)	9.41 (239)	501.8
1100S750-2A	217	3	460	75	*	3521	91.19 (2316)	53.15 (1350)	38.04 (966)	7.56 (192)	9.41 (239)	534.8
1100S1000-2	230	3	460	100	*	3529	100.63 (2556)	62.60 (1590)	38.04 (966)	7.56 (192)	9.41 (239)	633.8
1100S1000-3AA	314	3	460	100	*	3511	107.56 (2732)	62.60 (1590)	44.97 (1142)	7.56 (192)	9.41 (239)	655.9
1100S1250-3A	319	3	460	125	*	3503	117.01 (2972)	72.05 (1830)	44.97 (1142)	7.56 (192)	9.41 (239)	757.1
1100S1250-3	340	3	460	125	*	3495	117.01 (2972)	72.05 (1830)	44.97 (1142)	7.56 (192)	9.41 (239)	757.1
1100S1500-4AA	411	3	460	150	*	3498	133.00 (3378)	81.11 (2060)	51.89 (1318)	7.56 (192)	9.41 (239)	889.1
1100S1500-4A	431	3	460	150	*	3485	133.00 (3378)	81.11 (2060)	51.89 (1318)	7.56 (192)	9.41 (239)	889.1
1100S1500-4	450	3	460	150	*	3491	133.00 (3378)	81.11 (2060)	51.89 (1318)	7.56 (192)	9.41 (239)	889.1
			1100S	- Moto	or d	liameter	10 inch, 60 Hz	, rated flow rat	e 1100 gpm (6	" NPT)		
1100S1750-5AA	524	3	460	175	†	3510	132.45 (3364)	73.63 (1870)	58.82 (1494)	9.34 (237)	9.85 (250)	1142.2
1100S1750-5A	559	3	460	175	†	3446	132.45 (3364)	73.63 (1870)	58.82 (1494)	9.34 (237)	9.85 (250)	1137.0
1100S2000-5	577	3	460	200	†	3522	140.32 (3564)	81.5 (2070)	58.82 (1494)	9.34 (237)	9.85 (250)	1285.2
1100S2600-6AA	658	3	460	250	†	3520	160.24 (4070)	94.49 (2400)	65.75 (1670)	9.34 (237)	9.85 (250)	1478.0
1100S2600-6A	673	3	460	250	+	3520	160.24 (4070)	94.49 (2400)	65.75 (1670)	9.34 (237)	9.85 (250)	1483.2

3 460 250 † 3520 160.24 (4070) 94.49 (2400) 65.75 (1670) 9.34 (237) 9.85 (250)

E = Maximum diameter of pump including cable guard and motor.

1483.2

Notes:

1100S2600-6

Performance conforms to ISO 9906. 1999 (E) Annex A. Minimum submergence is 30 ft (9.1 m).

- ▲ MS 6000C motor.
- * Takes MMS 8000 motor; not available as complete.
- † Takes MMS 10000 motor; not available as complete.

7. Electrical data

Motor	Нр	F/W1	Volt	Service			Full load		Ser	rvice facto	r (max. loa	d)	Locked rotor	KVA	Max.	RPM
type	пр	kW	[V]	factor	[A]	[W]*	Power factor	Eff. [%]	[A]	[W]*	Power factor	Eff. [%]	[A]**	code	thrust	KFWI
4" 2-wire sing	gle phase m	notors - c	ontrol bo	ox not requ	ired											
	.5	0.37	115	1.60	9.5	675	0.67	55.0	12.0	1076	0.78	62	82.8	R	900	3450
	.5	0.37	230	1.60	4.5	646	0.63	57.7	6.0	1049	0.76	62	37.2	R	900	3450
MS402	.75	0.55	230	1.50	6.9	994	0.63	56.3	8.4	1449	0.75	62	51.2	N	900	3450
	1	0.75	230	1.40	8.8	1260	0.67	59.7	9.8	1848	0.82	63	55.9	М	900	3450
	1.5	1.10	230	1.30	11.6	1760	0.70	62.7	13.1	2561	0.85	64	81.2	L	900	3450
4" 3-wire sing	gle phase m	notors - c	ontrol bo	ox required												
	.5	0.37	115	1.60	10.0	992	0.74	37.6	12.0	1049	0.73	61	44.4	L	900	3450
	.5	0.37	230	1.60	5.6	968	0.75	38.2	6.0	1049	0.76	62	24.6	L	900	3450
MS402	.75	0.55	230	1.50	8.4	1410	0.76	39.7	8.4	1449	0.75	62	34.4	L	900	3450
	1	0.75	230	1.40	9.0	1662	0.81	44.9	9.8	1848	0.82	63	42.1	K	900	3450
	1.5	1.10	230	1.30	10.7	2169	0.89	51.6	11.6	2375	0.89	69	58.0	Н	900	3450
	2	1.50	230	1.25	13.1	2582	0.86	57.8	13.2	2611	0.86	72	55.4	G	1500	3450
MS4000	3	2.20	230	1.15	16.8	3601	0.93	62.1	17.0	3636	0.93	74	103.7	F	1500	3450
	5	3.70	230	1.15	25.7	5645	0.96	66.0	27.5	5819	0.92	77	110.0	F	1500	3450
4" three phas	e 60 Hz mo	tors														
			208	1.60	3.3	623	0.53	59.4	3.5	908	0.72	67	16.1	N	900	3450
	.5	0.37	230	1.60	3.0	625	0.53	59.2	3.2	904	0.72	67	14.5	N	900	3450
	.0	0.07	460	1.60	1.5	625	0.53	59.2	1.6	918	0.72	67	7.4	N	900	3450
			575	1.60	1.2	618	0.53	59.5	1.3	896	0.72	67	5.8	N	900	3450
			208	1.50	4.6	878	0.53	62.7	5.1	1286	0.70	69	23.5	N	900	3450
	.75	0.55	230	1.50	4.2	883	0.53	62.3	4.6	1283	0.70	69	21.2	N	900	3450
			460	1.50	2.1	878	0.53	62.6	2.3	1283	0.70	69	10.6	N	900	3450
			575	1.50	1.7	881	0.53	62.4	1.9	1290	0.70	69	8.5	N	900	3450
			208	1.40	4.9	1105	0.63	67.4	6.0	1578	0.73	70	28.8	М	900	3450
MS402	1	0.75	230	1.40	4.6	1129	0.62	66.3	5.4	1570	0.73	70	25.9	M	900	3450
			460	1.40	2.3	1131	0.62	66.3	2.7	1570	0.73	70	13.0	M	900	3450
			575	1.40	1.8	1130	0.62	66.3	2.2	1563	0.73	70	10.3	M	900	3450
			208	1.30	6.6 5.8	1581 1571	0.67	70.1	7.3	2101	0.72	75 75	40.5 37.2	M	900	3450 3450
	1.5	1.10	460	1.30	2.9	1571	0.67	71.0	3.7	2094	0.72	75	18.6	M	900	3450
			575	1.30	2.3	1560	0.67	70.7	2.9	2080	0.72	75	14.5	M	900	3450
			208	1.25	8.1	2043	0.09	73.2	9.6	2594	0.72	76	51.8	L	900	3450
			230	1.25	7.5	2043	0.69	72.8	8.7	2599	0.75	76	47.0	L	900	3450
	2	1.50	460	1.25	3.7	2056	0.69	72.7	4.4	2599	0.75	76	23.5	L	900	3450
			575	1.25	3.1	2071	0.68	72.7	3.5	2614	0.75	76	19.3	L	900	3450
			208	1.15	9.9	2996	0.84	72.6	11.9	3644	0.85	73	61.9	J	1500	3415
			230	1.15	10.4	3054	0.74	71.6	11.6	3466	0.75	73	60.3	J	1500	3460
	3	2.20	440	1.15	5.0	3010	0.79	73.6	5.7	3531	0.82	73	28.8	J	1500	3440
			460	1.15	5.2	3042	0.74	72.7	5.8	3604	0.78	73	30.7	J	1500	3460
			575	1.15	3.9	3014	0.77	73.5	4.7	3520	0.76	73	24.2	J	1500	3470
			208	1.15	15.7	4864	0.86	76.0	18.6	5830	0.87	77	106.0	K	1500	3425
			230	1.15	15.0	4840	0.81	76.7	17.4	5407	0.78	77	102.7	K	1500	3470
	5	3.70	440	1.15	7.5	4820	0.84	76.5	8.7	5472	0.83	77	47.6	J	1500	3460
MS4000			460	1.15	7.5	4814	0.81	76.6	8.7	5513	0.80	77	51.0	J	1500	3470
MS4000			575	1.15	6.1	4617	0.76	80.5	6.9	5498	0.80	77	40.7	J	1500	3470
			208	1.15	22.8	7146	0.87	76.8	27.0	8657	0.89	81	137.7	I	1500	3415
			230	1.15	21.5	7023	0.82	78.0	25.0	8167	0.82	81	155.0	I	1500	3460
	7.5	5.50	440	1.15	10.8	6996	0.85	78.0	12.8	8487	0.87	81	73.0	I	1500	3440
			460	1.15	10.6	6925	0.82	78.3	12.6	8232	0.82	81	78.1	I	1500	3460
			575	1.15	8.7	6876	0.79	81.4	10.0	8167	0.82	81	62.0	I	1500	3460
			440	1.15	15.1	9667	0.84	78.0	18.0	11386	0.83	81	108.0	J	1500	3420
	10	7.50	460	1.15	15.0	9561	0.80	78.0	18.6	11856	0.80	81	119.0	J	1500	3460
			575	1.15	12.5	9212	0.74	81.0	14.4	11330	0.79	81	90.7	J	1500	3440

Motor	11	1,141	Volt	Service		F	ull load			Service (max. l			Locked rotor	KVA	Max.	RPM
type	Нр	kW	[V]		[A]	[W]*	Power factor	Eff. [%]	[A]	[W]*	Power factor	Eff. [%]	[A]**	code	thrust	
6" three phase	60 Hz mo	tors			ı											
			208	1.15	16.9	4932	0.81	79.3	19.0	5681	0.83	79.3	95.0	Н	6070	3480
	5	3.70	230 460	1.15 1.15	16.2 8.0	4969 4908	0.77	79.2 79.4	17.8 8.8	5673 5609	0.80	79.9 80.2	105.0 51.3	H	6070 6070	3510 3500
			208	1.15	24.2	7149	0.77	80.2	27.5	8223	0.83	79.4	114.0	H	6070	3450
			230	1.15	23.4	7178	0.77	80.6	26.0	8286	0.80	80.8	130.0	Н	6070	3480
	7.5	5.50	440	1.15	11.6	7161	0.81	80.6	13.2	8249	0.82	80.4	61.0	J	6070	3470
	7.5	5.50	460	1.15	11.6	7117	0.77	80.6	13.0	8286	0.80	80.8	64.5	J	6070	3480
			480	1.15	12.0	7283	0.73	80.2	13.0	8322	0.77	80.7	68.0	J	6070	3490
			575 208	1.15 1.15	9.3	7186 9684	0.78 0.84	80.6 80.5	10.2 37.5	8228 11483	0.81	80.8 79.2	51.0 126.0	H G	6070 6070	3480 3420
			230	1.15	30.0	9680	0.81	81.7	33.5	11077	0.83	81.5	142.0	G	6070	3470
	40	7.50	440	1.15	15.2	9615	0.83	81.5	17.4	11139	0.84	0.81	67.5	G	6070	3450
	10	7.50	460	1.15	15.0	9680	0.81	81.8	16.8	11110	0.83	81.7	71.0	G	6070	3470
			480	1.15	15.0	9602	0.77	81.8	16.6	11041	0.80	82.0	75.0	G	6070	3480
			575	1.15	12.0	9680	0.81	81.4	13.4	11077	0.83	81.2	56.5	G	6070	3470
			208	1.15 1.15	46.5 44.5	14072 14005	0.84	82.1 83.0	53.5 49.5	16383 16170	0.85	81.1 82.9	198.0 224.0	G G	6070 6070	3430 3470
			440	1.15	22.0	13916	0.79	82.8	25.0	16004	0.84	82.1	100.0	H	6070	3470
	15	11.00	460	1.15	21.6	13940	0.81	83.1	24.4	16136	0.83	82.8	106.0	Н	6070	3470
			480	1.15	21.6	13828	0.77	83.1	24.0	15963	0.80	83.2	112.0	Н	6070	3480
			575	1.15	17.2	13875	0.81	83.0	19.4	16036	0.83	82.7	84.0	G	6070	3460
MS 6000C			208	1.15	61.5	19054	0.86	82.7	71.5	22153	0.86	81.5	310.0	Н	6070	3430
			230	1.15	57.5	18783	0.82	84.0	65.0	21751	0.84	83.7	350.0	H	6070	3470
	20	15.00	440	1.15	29.0 29.0	18565 18947	0.84	83.7	33.5 32.5	21701 21751	0.85	82.9 83.7	166.0 176.0	J	6070	3450 3470
			480	1.15	29.0	18806	0.78	83.9	32.0	21549	0.81	83.9	186.0	J	6070	3480
			575	1.15	23.4	18877	0.81	83.8	26.0	21492	0.83	83.5	144.0	J	6070	3480
	-		208	1.15	75.0	23237	0.86	83.4	87.0	26955	0.86	82.3	395.0	J	6070	3430
			230	1.15	71.0	22910	0.81	84.6	80.0	26452	0.83	84.3	445.0	J	6070	3480
	25	18.50	440	1.15	36.0	23046	0.84	84.3	41.0	26559	0.85	83.6	212.0	J	6070	3460
			460	1.15	35.5 36.0	22910 23046	0.81	84.6 84.3	40.0 39.5	26452 26272	0.83	84.3 84.4	224.0 236.0	J	6070 6070	3480 3490
			575	1.15	28.5	23275	0.77	84.0	32.0	26452	0.83	83.7	180.0	J	6070	3480
			208	1.15	88.0	27582	0.87	83.3	104.0	32597	0.87	81.8	445.0	Н	6070	3420
			230	1.15	81.0	27105	0.84	85.1	92.0	31153	0.85	84.4	500.0	Н	6070	3470
	30	22.00	440	1.15	41.5	27199	0.86	84.5	48.0	31825	0.87	83.5	238.0	J	6070	3450
	30	22.00	460	1.15	40.5	27105	0.84	85.1	46.0	31153	0.85	84.4	250.0	J	6070	3470
			480	1.15	40.0	26937	0.81	85.2	45.0	31052	0.83	85.0	265.0	J	6070	3480
	-		575 440	1.15 1.15	32.0 56.0	27089 37130	0.85	84.8	37.0 65.0	31690 43592	0.86	84.0	194.0 290.0	H	6070	3460 3440
			460	1.15	54.5	36909	0.85	85.2	62.0	42482	0.86	84.7	310.0	Н	6070	3460
	40	30.00	480	1.15	54.5	37155	0.82	85.3	61.0	42600	0.84	85.1	330.0	H	6070	3480
			575	1.15	43.5	36824	0.85	85.2	49.5	42890	0.87	84.7	250.0	G	6070	3470
6" three phase	60 Hz mo	tors														
MMS 6	50	37.00	460	1.15	73.0	47111	0.81	83.2	82.0	54226	0.83	82.6	405	Н	6000	3450
MMS 6	60	45.00	460	1.15	86.3	57070	0.83	85.0	97.0	66464	0.86	86.0	525	G	6000	3455
8" three phase	60 Hz mo	tors														
	40	30.00	460	1.15	53.3	36096	0.85	82.5	64.0	43853	0.86	83.0	371	K	13000	3490
	50	37.00	460	1.15	65.6	44426	0.85	83.7	78.0	53446	0.86	84.0	429	J	13000	3480
	60	45.00	460	1.15	77.5	52485	0.85	85.4	92.5	64118	0.87	86.0	592	K	13000	3500
	75 100	55.00 75.00	460 460	1.15 1.15	101.0 126.0	65182 86335	0.81	85.8 86.6	112.0 150.0	77635 105170	0.87	86.0 87.0	650 855	J	13000	3500 3500
	125	92.00	460	1.15	155.5	107787	0.87	86.9	184.0	129009	0.88	87.0	1104	J	13000	3480
	150	110.00	460	1.15	186.2	129068	0.87	86.6	220.0	154250	0.88	86.0	1276	J	13000	3480
MMS 8000																
	40	30.0	575	1.15	43.3	37086	0.86	81.0	49.0	42456	0.87	85.0	202	J	13000	3500
	50	37.0	575	1.15	55.5	46983	0.85	79.0	62.2	53274	0.86	84.0	257	G	13000	3500
	60 75	45.0 55.0	575 575	1.15 1.15	62.0 79.1	53720 67749	0.87	84.0 81.0	71.0 89.4	62226 78352	0.88	85.0 85.0	465 586	J L	13000	3500 3485
	100	75.0	575	1.15	104.0	91147	0.88	82.0	118.0	104592	0.88	86.0	786	N N	13000	3485
	125	92.0	575	1.15	118.4	104947	0.89	88.0	144.0	127638	0.89	86.0	1007	R	13000	3470
	150	110.0	575	1.15	156.0	127399	0.82	86.0	176.0	147238	0.84	89.0	1230	Н	13000	3470
10" three phas	se 60 Hz m	otors														
•	175	132.00	460	1.15	226.2	151388	0.84	86.5	265.0	181578	0.86	88.0	1511	J	13000	3510
		147.00	460	1.15	266.4	171924	0.81	86.6	305.0	204126	0.84	87.0	1891	K	13000	3520
MMS 10000	200	147.00					0.0.				0.0.	01.0			10000	

^{*} Calculated value (voltage x current x Cos F)

** Calculated value (full load current x locked rotor current %)

8. Approvals

Product		Approval	
SP 4"		c ⊕° US	(UL)
SP 4" pump end (5S - 77S)		WATER QUALITY Drinking Water System Component NSF/ANSI 61 MH26400 NSF/ANSI 372	
MS 6000C motor		Submersible Motor NSF/ANSI 372 MH26400	
MS 4000 motor	(1) °	IAPMO File 6591 0.25 % lead	
MS 402 motor	(1) °	, SL	IAPMO File 6591 0.25 % lead

Grundfos SP pumps are certified when driven by a certified motor provided with suitable overheating protection.

9. Accessories

Grundfos RSI (Renewable Solar Inverter)

Grundfos RSI is an off-grid solar inverter that converts the DC power output from a solar panel to AC power supply for pump operation.

RSI is designed for continuous as well as intermittent operation. The system is suitable for various water supply systems including irrigation.

The RSI can be used in existing systems with submersible pumps or dry-installed pumps, thus providing a very wide range of applications allowing you to leverage renewable energy sources with the ability to back up the system with grid or generator power.

RSI features:

- · Weatherproof (enclosure class IP66).
- · Setup wizard.
- Can operate without the detachable, magnetic control panel.
- AC/DC* compatibility for connecting to the grid or use as a generator as back-up power during solar panel disruptions.
- Maximum power point tracking (MPPT) optimizes available solar irradiation and environmental conditions.
- · Overvoltage and undervoltage protection.
- · Overload protection.
- · Overcurrent protection.
- · Overtemperature protection**.
- · No-load protection.
- · Operating history memory.

Fig. 19 Grundfos RSI

System components

An RSI system consists of a three-phase Grundfos motor, an RSI solar inverter, and other components such as:

- · circuit breaker, AC (optional)
- circuit breaker, DC
- surge protection, DC
- · solar panel
- dry-running switch
- level switch (optional)
- · sine-wave filter (optional)
- combiner box (junction box).

Pump requirements:

- 50 or 60 Hz
- 3 x 380-440 VAC or 3 x 220 VAC.

As standard, Grundfos three-phase pumps can only be operated via an AC voltage supply. Therefore, the solar panels must not be connected directly to the pump but must be connected via an RSI.

Technical data

Voltage			3 x 208-240 V	3 x 380-440 V
	Minimum ambient temperature	[°F (°C)]	14 (-10)	14 (-10)
Installation environment	Maximum ambient temperature	[°F (°C)]	140 (60)	140 (60)
	Maximum relative humidity	[%]	100	100
	DC minimum MPP voltage	[VDC]	230	400
	DC recommended MPP voltage	[VDC]	290-336	530-615
	DC maximum input voltage	[VDC]	380	800
	AC input voltage	[VAC]	208-240	380-460
Electrical data	AC rated output voltage	[VAC]	220	380-440
	Minimum frequency	[Hz]	5	5
	Maximum frequency	[Hz]	60	60
	Phases		3	3
	Enclosure class		IP66	IP66

^{*} Solar power (DC) and AC power must never under any circumstances be connected at the same time.

^{**} The inverter does not detect motor temperature or protect the motor against overtemperature.

Low voltage range (3 x 208-240 V)

D			Electrical data		
Power [kW]	Product number	Max. P2 [Hp]	Max. P2 [kW]	Rated output current [Amps]	Frame size
1.5	99090622	2	1.5	8	Α
2.2	99090633	3	2.2	11	Α
3	99090634	4	3.0	12.5	Α
4	99090635	5	4.0	18	В
5.5	99090636	7.5	5.5	24.2	В
7.5	99090637	10	7.5	31	В
11	99090638	15	11	48	С
15	99090639	20	15	62	С

High voltage range (3 x 380-440 V)

		Electrical data						
Power [kW]	Product number	Max. P2 [Hp]	Max. P2 [kW]	Rated output current [Amps]	Frame size			
2.2	99044348	3	2.2	5.6	Α			
3.0	99044349	4	3.0	8	А			
4.0	99044350	5	4.0	9.6	Α			
5.5	99044351	7.5	5.5	12	Α			
7.5	99044352	10	7.5	16	В			
11	99044363	15	11	23	В			
15	99044364	20	15	31	В			
18.5	99044365	25	18.5	38	С			
22	99044366	30	22	46	С			
30	99044367	40	30	61	С			
37	99044368	50	37	72	С			

Optional

CU331SP variable frequency drive

Description	Product number
Combiner box (junction box) components kit, DC	98298572
Circuit breaker, DC	98341686
Surge protection, DC	98341687

		CU331SP	constant pressu	re drive kits (with sens	or)	
Enclosure type	NEMA	Нр	Input Ph	Input volts	Product number	Approximate ship wt. [lb]
		2	1	200 - 240	98370277	60
Indoor	Type 12	3	1	200 - 240	98370280	60
		5	1	200 - 240	98370304	60
		2	1	200 - 240	98370279	60
Outdoor	Type 4X	3	1	200 - 240	98370301	60
		5	1	200 - 240	98370305	60

FM05 5801 4012

Fig. 20 CU331SP variable frequency drive and sensor

Features

User interface

The user interface offers these possibilities:

- Local operation via a operating panel with graphic display where the menu structure is based on the well-known system from Grundfos E-pumps.
- Monitoring of operating status via indicator lights and signal relays.
- Display of alarm or warning and logging of the last five alarms and warnings.

Functions

Control mode: Constant pressure

CU331SP has only one control mode, Constant pressure. The pressure is kept constant, independently of the flow rate.

Startup guide

CU331SP has a startup guide, which is launched at the first power up. Parameters are set manually on the basis of the installation. The startup guide can be repeated, if necessary.

Thanks to the startup guide, the installer can quickly set a few parameters and put CU331SP into operation.

Direction of rotation test

During startup, CU331SP automatically tests and sets the correct direction of rotation without changing the cable connections. The direction of rotation test can be performed manually if it fails for any reason.

Dry-running protection

To protect the pump, CU331SP will automatically set up dry-running protection so that water shortage can be detected. The dry-running alarm will automatically reset 30 minutes after the alarm is declared.

Low-flow stop function

The low-flow stop function is used for changing between on/off operation at low flow rate and continuous operation at high flow rate.

The low-flow stop function protects the pump and saves energy.

Applications

For 4" or larger wells. Main applications:

- · Domestic and light commercial water supply
- irrigation
- · livestock watering
- · water transfer.

System components

- Compact, efficient, and reliable variable frequency drive
- rugged stainless steel pump end and proven, reliable, three-phase motor
- · pressure sensor
- diaphragm tank (sold separately).

CU331SP identification

Nameplate

CU331SP can be identified by means of the nameplate. An example is shown below.

Fig. 21 Example of nameplate

	Key
Text	Description
T/C:	CU-331 (product name)
Prod. no:	Product number (98370280)
S/N:	Serial number (000201H462) The last four digits indicate the production date. In this case, 46 is the week, and 2 is the year 2012.
3.0 hp	Typical shaft power on the motor
IN:	Supply voltage, frequency and maximum input current.
OUT:	Motor voltage, frequency and maximum output current. The maximum output frequency usually depends on the pump type.
Type 12 / IP55	Enclosure class
Tamb.	Maximum ambient temperature

CU331SP sizing

Step 1

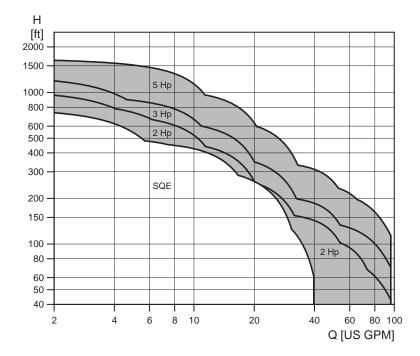
Calculate maximum head requirements at rated flow rate conditions:

H_{max}=dynamic head + system psi (in feet) + friction loss + above grade elevation.

Step 2

Select pump from performance curves as follows:

Select a model in which the calculated value of H_{max} is within the maximum performance curve of the pump. Refer to section *CU331SP curve charts* on page 126.


Step 3

Select the CU331SP that corresponds to the correct motor Hp and enclosure type.

CU331SP product range

Enclosure type	NEMA	Нр	Input Ph	Input volts
		2	1	200 - 240
Indoor	Type 12	3	1	200 - 240
		5	1	200 - 240
		2	1	200 - 240
Outdoor	Type 4X	3	1	200 - 240
		5	1	200 - 240

CU331SP performance range

CU331SP operation

Menu structure

CU331SP has a startup guide, which is launched at the first power up. After the startup guide, CU331SP has a menu structure divided into four main menus:

- **0. GENERAL** gives access to the startup guide for the general setting of CU331SP.
- **1. OPERATION** enables the setting of setpoint and resetting of alarms. It is also possible to see the latest five warnings and alarms.
- **2. STATUS** shows the status of CU331SP and the pump. It is not possible to change or set values.
- **3. INSTALLATION** gives access to available parameters.

CU331SP menu overview

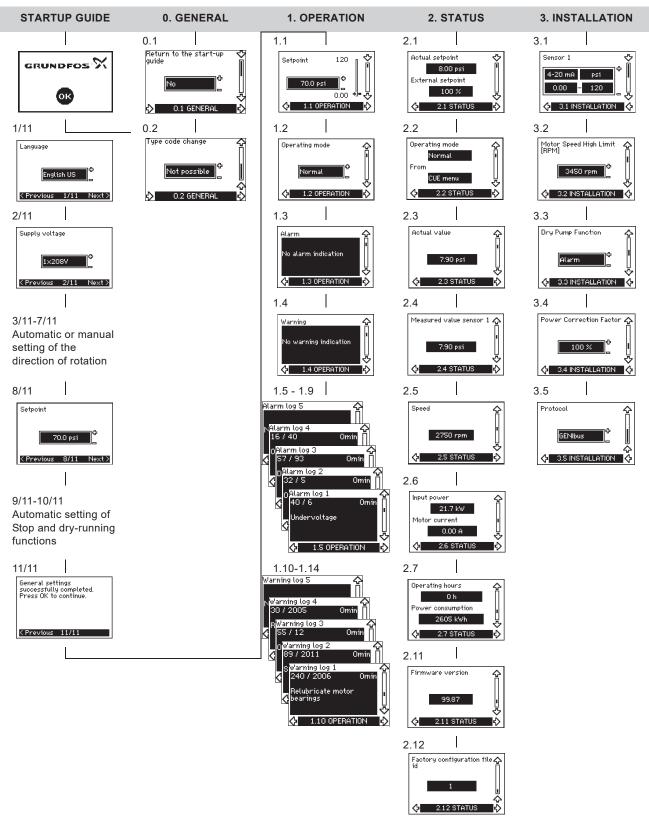


Fig. 22 Menu overview

Operating modes

These operating modes can be selected with CU331SP:

- Normal
- Stop
- Minimum
- Maximum

You can set the operating modes without changing the setpoint setting.

Normal

The pump operates in constant pressure mode.

Stop

The pump has been stopped by user.

Minimum curve

The pump is running at a set minimum speed value. See fig. 23.

For instance, this operating mode can be used during periods with a very small flow requirement.

Maximum curve

The pump is running at a set maximum speed value.

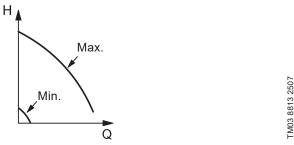


Fig. 23 Minimum and maximum curves

Control mode

CU331SP has been developed specifically to operate submersible pumps in constant pressure mode. This closed-loop control mode uses an analog pressure transducer to provide pressure feedback to the drive.

Constant pressure with stop function

The outlet pressure is kept constant at high flow rate (Q > Qmin). On/off operation at low flow rate. See fig. 24.

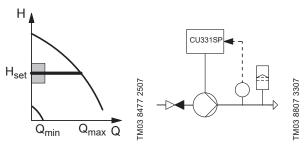


Fig. 24 Constant pressure with stop function

The pump is controlled according to a constant pressure measured after the pump. This means that the pump offers a constant pressure in the Q-range of Q_{min} to Q_{max} , represented by the horizontal line in the QH diagram.

Setting the setpoint by means of the "OPERATION" menu

The setpoint can be set or changed during operation using the setpoint display in the "OPERATION" menu shown below. It is not necessary to run the startup guide to change the setpoint.

Low flow and stop functions

The pump will check the flow regularly by reducing the speed for a short time. If there is no or only a small change in pressure, this means that there is low flow.

The speed will be increased until the stop pressure (actual setpoint + 0.5 x Δ H) is reached and the pump will stop after a few moments. The pump will restart at the latest when the pressure has fallen to the start pressure (actual setpoint - 0.5 x Δ H).

Operating conditions for the stop function

It is only possible to use the stop function if the system incorporates a pressure sensor, a check valve and a diaphragm tank.

The check valve must always be installed before the pressure sensor.

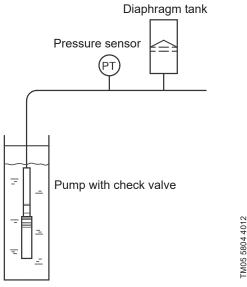


Fig. 25 Position of the pressure sensor and diaphragm tank

Diaphragm tank

The stop function requires a diaphragm tank of a certain minimum size. The tank must be installed as close as possible after the pump and the precharge pressure must be 0.7 x actual setpoint.

Recommended diaphragm tank size:

Rated flow rate of pump [gpm (m³/h)]	Minimum diaphragm tank size [gal (l)]
0-26 (0-6)	2 (8)
27-105 (7-24)	4.4 (18)
106-176 (25-40)	14 (50)
177-308 (41-70)	34 (120)
309-440 (71-100)	62 (180)

If a diaphragm tank of the above size is installed in the system, the factory setting of ΔH is the correct setting. If the tank installed is too small, the pump will start and stop too often.

Setting the direction of rotation

The startup guide is started the first time CU331SP is connected to supply voltage. Then while going through the startup guide, CU331SP tests and sets the correct direction of rotation without changing the cable connections to the motor.

The correct direction of rotation can be set in these ways:

- · automatic setting.
- manual setting when the direction of rotation is not visible.

Automatic setting

CU331SP automatically tests and sets the correct direction of rotation without changing the cable connections.

Automatic setting requires a sensor.

This test is not suitable for all pump types and will in certain cases not be able to determine for certainty the correct direction of rotation. In these cases, CU331SP changes over to manual setting where the direction of rotation is determined on the basis of the installer's observations.

Manual setting when the direction of rotation is not visible

The correct direction of rotation is set manually without changing the cable connections. This requires that it is possible to observe the head or flow rate.

Status functions

CU331SP shows the following data:

- · power consumption
- · operating hours
- · measured value
- speed
- · input power
- · motor current.

The status information can be shown in the display.

Power consumption

The value of the power consumption is an accumulated value calculated from the pump's startup date and cannot be reset. No additional sensor is required.

Operating hours

The value of operating hours is an accumulated value calculated from the pump's startup date and cannot be reset. No additional sensor is required.

Measured value

The sensor display will show the actual pressure as received from the pressure transducer.

Speed

The display will show the motor speed in RPM's (calculated).

Input power

The display will show the power consumption in kW.

Motor current

The display will show the actual motor current being used.

Logging functions

Alarm and warning log

The latest five alarms and five warnings are logged with a timestamp corresponding to the power-on time after the fault has occurred. The alarm and warning log can be shown directly on the display.

See section Warning and alarm list.

Signal relays

The table shows the function of the signal relays.

Туре	Function
Relay 1	Pump running
Relay 2	Alarm

See also fig. 26.

Fig. 26 Terminals for signal relays (normal state, not activated)

Tern	ninal	Function	
C1	C2	Common	
NO 1	NO 2	Normally open contact	
NC1	NC2	Normally closed contact	

CU331SP installation

Mechanical installation

The individual CU331SP cabinet sizes are characterized by their enclosures. The table in section *CU331SP technical data* shows the relationship of enclosure class and enclosure type.

Reception and storage

Check on receipt that the packaging is intact, and the unit is complete. In case of damage during transport, contact the transport company to file a claim.

Note that CU331SP is delivered in a packaging which is not suitable for outdoor storage.

Transportation and unpacking

CU331SP must only be unpacked at the installation site to prevent damage during the transport to the site. The packaging contains accessory bag(s), documentation and the unit itself. See fig. 27.

Fig. 27 CU331SP packaging

TM05 5990 4012

Space requirements and air circulation

CU331SP units can be mounted side by side, but as a sufficient air circulation is required for cooling these requirements must be met:

- Sufficient free space above and below CU331SP
- Ambient temperature up to 122°F (50 °C)
- Hang CU331SP directly on the wall, or fit it with a back plate. See fig. 28.

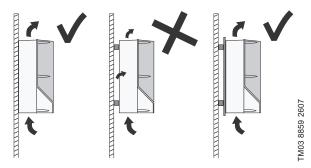


Fig. 28 CU331SP hung directly on the wall or fitted with a back plate

Required free space above and below CU331SP:

Enclosure	Space [in (mm)]
B1	7.9 (200)

For information about enclosure, see section *Enclosure*.

Mounting

CU331SP must be mounted securely on a firm surface. Ensure that screws are sized appropriately for the weight of CU331SP (approximately 60 lbs) and anchored securely to the mounting surface.

- 1. Mark and drill holes. See fig. 29; also see section Main dimensions and weight.
- 2. Fit the screws, but leave loose. Mount CU331SP, and tighten the four screws.

Fig. 29 Drilling holes for mounting

CU331SP electrical connection

Ensure the correct grounding and protection procedures are used for the installation. Before the electrical installation, ensure that the power supply and other voltage inputs are switched off.

Electrical protection

Protection against electric shock, indirect contact

The leakage current to ground exceeds 3.5 mA, and a reinforced ground connection is required.

Protective conductors must always have a yellow and green (PE) or yellow and green and blue (PEN) color marking.

Instructions according to EN IEC 61800-5-1:

- CU331SP must be stationary, installed permanently and connected permanently to the mains supply.
- The ground connection must be carried out with duplicate protective conductors or with a single reinforced protective conductor with a cross-section of minimum AWG 7 (10 mm²).

Protection against short-circuit, fuses

CU331SP and the supply system must be protected against short-circuit.

Grundfos requires that the backup fuses are used for protection against short-circuit.

CU331SP offers complete short-circuit protection in case of a short-circuit on the motor output.

Additional protection

The leakage current to ground exceeds 3.5 mA.

We recommend to connect CU331SP to an electrical installation where a Ground Fault Circuit Interrupter (GFCI) type B is used as additional protection. The total leakage current of all the electrical equipment in the installation must be taken into account.

During startup and in asymmetrical supply systems, the leakage current can be higher than normal and may cause the GFCI to trip.

Motor protection

TM03 8860 2607

The motor requires no external motor protection. CU331SP protects the motor against thermal overloading and blocking.

Protection against overcurrent

CU331SP has an internal overcurrent protection for overload protection on the motor output.

Protection against mains voltage transients

CU331SP is protected against mains voltage transients.

Mains and motor connection

The supply voltage and frequency are marked on the CU331SP nameplate. Make sure that CU331SP is suitable for the power supply of the installation site.

The maximum output voltage of CU331SP is equal to the input.

Example: if the supply voltage is rated at 208V choose a 208V motor for operation.

Main switch

A main switch can be installed before CU331SP according to local regulations. See fig. 30.

Wiring diagram

The wires in the terminal box must be as short as possible. Excepted from this is the ground wire, which must be so long that it is the last one to be disconnected in case the cable is inadvertently pulled out of the cable entry.

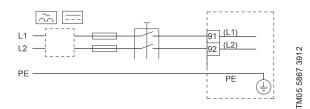


Fig. 30 CU331SP wiring diagram

Term	inal	Function	
91	(L1)	Cingle phase cumply	
92	(L2)	— Single-phase supply	
95/99	(PE)	Ground connection	

For single-phase connection, use L1 and L2.

Mains connection

Check that mains voltage and frequency correspond to the values on the nameplate of CU331SP and the motor.

- 1. Connect the ground wire to terminal 95 (PE). See fig. 31.
- 2. Connect the power leads to the terminals 91 (L1), 92 (L2).
- 3. Fix the mains cable with a cable clamp.

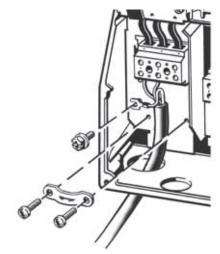


Fig. 31 Mains connection

CU331SP drive is usable with three-phase input power by connecting leads to 91 (L1), 92 (L2), and 93 (L3).

Motor connection

The motor cable must be screened for CU331SP to meet EMC requirements.

- 1. Connect the ground wire to terminal 99 (PE). See fig. 32.
- Connect the motor leads to the terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

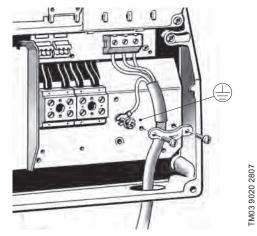


Fig. 32 Motor connection

The cable screen must be exposed and in physical contact with the mounting plate and clamp

TM05 6776 5112

9.1 Connecting the signal terminals

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

If no external on/off switch is connected, short-circuit terminals 18 and 20 using a short wire.

Connect the signal cables according to the guidelines for good practice to ensure EMC-correct installation. See section EMC-correct installation.

- Use screened signal cables with a conductor cross-section of minimum AWG 20 (0.5 mm²) and maximum AWG 16 (1.5 mm²).
- · Use a 3-conductor screened bus cable in new systems.

Minimum connection, signal terminal

Operation is only possible when the terminals 18 and 20 are connected, for instance by means of an external on/off switch or a short wire.

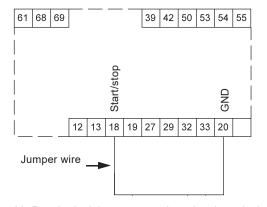


Fig. 33 Required minimum connection, signal terminal

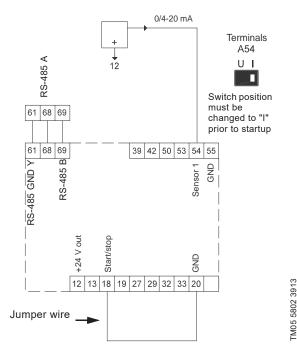


Fig. 34 Wiring diagram for CU331SP

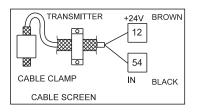


Fig. 35 Sensor wiring diagram

Setting the analog input 54

The contact A54 is positioned behind the control panel and is used for setting the signal type of the analog input.

The factory setting of the inputs is voltage signal "U". This setting must be changed to "I" prior to starting CU331SP. Be sure the power supply is switched off.

Remove the control panel to set the contact. See fig. 36.

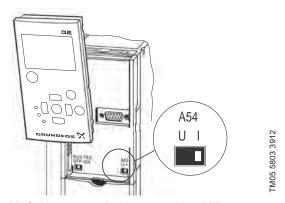


Fig. 36 Setting contact A54 to current signal "I"

Terminal kev

TM03 9057 3207

	,	
Terminal	Туре	Function
12	+24 V out	Supply to sensor
18	DI 1	Digital input, start/stop
20	GND	Common frame for digital inputs
55	GND	Common frame for analog inputs
54	Al 2	Sensor input, sensor 1, 0/4-20 mA
61	RS-485 GND Y	GENIbus, frame
68	RS-485 A	GENIbus, signal A (+)
69	RS-485 B	GENIbus, signal B (-)

The RS-485 screen must be connected to frame.

Access to signal terminals

All signal terminals are behind the terminal cover of CU331SP front. Remove the terminal cover as shown in fig. 37.

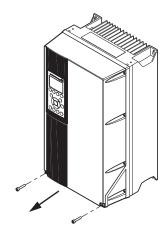


Fig. 37 Access to signal terminals

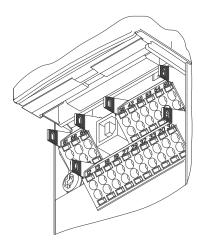


Fig. 38 Signal terminals

Fitting the conductor

- 1. Remove the insulation at a length of 0.35 to 0.40 inches (9 to 10 mm).
- 2. Insert a screwdriver with a tip of maximum 0.015 X 0.1 in (0.4 X 2.5 mm) into the square hole.
- 3. Insert the conductor into the corresponding round hole. Remove the screwdriver. The conductor is now fixed in the terminal.

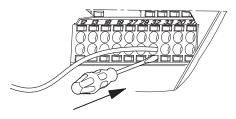


Fig. 39 Fitting the conductor into the signal terminal

Connecting the signal relays

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

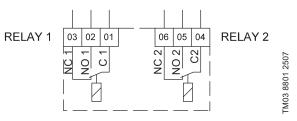


Fig. 40 Terminals for signal relays (normal state, not activated)

Te	rminal	Function
C 1	C 2	Common
NO 1	NO 2	Normally open contact
NC 1	NC 2	Normally closed contact

Signal relay

TM03 9004 2807

TM03 9025 2807

TM03 9026 2807

The signal relays on CU331SP are predefined as follows:

Relay 1: Pump running

Relay 2: Alarm

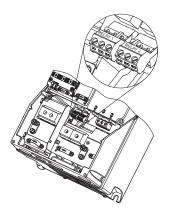


Fig. 41 Terminals for relay connection

FM03 8719 2507

EMC-correct installation

This section gives guidelines for good practice when installing CU331SP. Follow these guidelines to meet EN 61800-3, first environment.

- · Use only motor and signal cables with a braided metal screen in applications without output filter.
- There are no special requirements to supply cables, apart from local requirements.
- Leave the screen as close to the connecting terminals as possible. See fig. 42.
- Avoid terminating the screen by twisting the ends. See fig. 43. Use cable clamps or EMC screwed cable entries instead.
- · Connect the screen to frame at both ends for both motor and signal cables. If the controller has no cable clamps, connect only the screen to CU331SP.
- Avoid unscreened motor and signal cables in electrical cabinets with variable frequency drives.
- Make the motor cable as short as possible in applications without output filter to limit the noise level and minimize leakage currents.
- Screws for frame connections must always be tightened whether a cable is connected or not.
- Keep main cables, motor cables and signal cables separated in the installation, if possible.

Other installation methods may give similar EMC results if the above guidelines for good practice are followed.

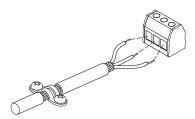


Fig. 42 Example of stripped cable with screen

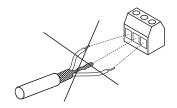


Fig. 43 Do not twist the screen ends

Line disturbance and transient protection

To protect itself from AC line voltage disturbances. CU331SP monitors the input power supply and interrupts drive operation in the event of phase loss or imbalance. Transients on the AC line are suppressed by MOVs as well as zener diodes for extreme transients, CU331SP meets VDE 0160 (European standard - 2.3 x line voltage for 1.3 msec) for transient protection.

RFI filters

To meet the EMC requirements, CU331SP comes with the following types of built-in radio frequency interference filter (RFI).

Voltage	Typical shaft power P2	RFI filter type	
1 x 200-240 V *	1.5 - 10 hp	C1	

^{*} Single-phase input - three-phase output.

Description of RFI filter types

C1: For use in domestic areas.

RFI filter types are according to EN61800-3.

Control panel

The on/off button on the control panel does not disconnect CU331SP from the power supply and must therefore not be used as a safety switch.

FM02 1325 0901

TM03 8812 2507

The On/Off button has the highest priority. In "Off" condition, pump operation is not possible.

The control panel is used for local setting of CU331SP. The functions available are preset in CU331SP.

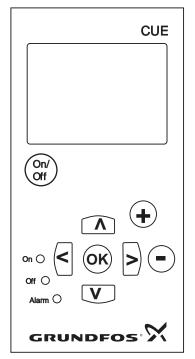


Fig. 44 Control panel of CU331SP

Editing buttons

Button	Function
On/ Off	With this button you can start and stop the pump and ake it ready for operation.
OK	With this button you can save changed values, resets alarms and expands the value field.
• •	These buttons change values in the value field.

Navigating buttons

Button	Function
< >	With these buttons you can navigate from one menu to another. When the menu is changed, the display shown will always be the top display of the new menu.
ΛV	With these buttons you can navigate up and down in the individual menu.

Adjusting the display contrast

Press OK and + for darker display.

Press OK and - for brighter display.

Button lock

To lock the buttons on the panel press and hold the up and down arrows simultaneously.

Indicator lights

The operating condition of the pump is indicated by the indicator lights on the front of the control panel. See fig. 44.

The table shows the function of the indicator lights.

Indicator light	Function	
On (green)	The pump is running or has been stopped by a stop function.	
	If flashing, the pump has been stopped by the user (CU331SP menu), external start/stop or bus.	
Off (orange)	The pump has been stopped with the on/off button.	
Alarm (red) Indicates an alarm or a warning.		

Displays, general terms

Figures 45 and 46 show the general terms of the display.

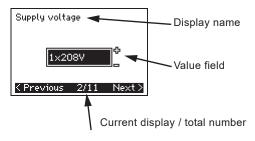


Fig. 45 Example of display in the startup guide

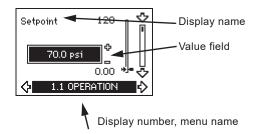


Fig. 46 Example of display in the user menu

Warning and alarm list

	Status					
C	ode and display text	Warning	Alarm	Locked alarm	Operating mode	Resetting
1	Too high leakage current			•	Stop	Man.
2	Mains phase failure		•		Stop	Aut.
3	External fault		•		Stop	Man.
16	Other fault		•		Stop	Aut.
10	Other lault			•	Stop	Man.
32	Overvoltage	•			-	Aut.
32	Overvoitage		•		Stop	Aut.
40	Undervoltage	•			-	Aut.
40	Officervoltage		•		Stop	Aut.
48	Overload		•		Stop	Aut.
40	Overload			•	Stop	Man.
49	Overload		•		Stop	Aut.
55	Overload	•			-	Aut.
55	Overload		•		Stop	Aut.
57	Dry running		•		Stop	Aut.
64	Too high CU331SP temperature		•		Stop	Aut.
89	Sensor 1 outside range		•		1)	Aut.
96	Setpoint signal outside range		•		1)	Aut.
155	Inrush fault		•		Stop	Aut.
241	Motor phono foilure	•			-	Aut.
4 1	Motor phase failure		•		Stop	Aut.

¹⁾ In case of an alarm, CU331SP will change the operating mode depending on the pump type. Warning is reset in display 3.20.

CU331SP technical data

Enclosure

All CU331SP enclosures are size B1.

The enclosure rating can be either IP 55 / TYPE 12 or IP 66 / TYPE 4X.

Main dimensions and weight

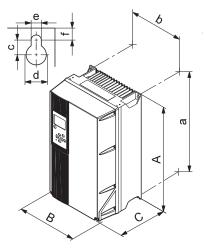


Fig. 47 Enclosure B1

Note: The dimensions shown for CU331SP enclosures are maximum height, width and depth.

Enclosure	Height [in]			Width [in]	
,	Α	а	В	b	С
•	18.9	17.9	9.5	8.3	10.2
B1		Screw h	oles [in]		Weight
	С	d	е	f	[lbs]
•	0.47	0.75	0.35	0.35	50.7

Surroundings

Relative humidity	5-95 % RH
Ambient temperature	Max. 122 °F (50 °C)
Average ambient temperature over 24 hours	Max. 113 °F (45 °C)
Minimum ambient temperature at full operation	32 °F (0 °C)
Minimum ambient temperature at reduced operation	14 °F (-10 °C)
Temperature during storage and transportation	-13 to 150 °F (-25 to 65 °C)
Storage duration	Max. 6 months
Maximum altitude above sea level without performance reduction	3280 ft (1000 m)
Maximum altitude above sea level with performance reduction	9840 ft (3000 m)

CU331SP comes in a packaging which is not suitable for outdoor storage.

Terminal tightening torques

Enclosure -	7	ightening torq	μe [ft-lb]	
Eliciosure -	Mains	Motor	Earth	Relay
B1	1.3	1.3	2.2	0.4

Cable length

Maximum length, screened motor cable	500 ft (152 m)
Maximum length, unscreened motor cable	1000 ft (305 m)
Maximum length, signal cable	1000 ft (305 m)

Fuses and cable cross-section

Always comply with national and local regulations as to cable cross-sections.

Cable cross-section to signal terminals

Maximum cable cross-section to signal terminals, rigid conductor	AWG 14
Maximum cable cross-section to signal terminals, flexible conductor	AWG 18
Minimum cable cross-section to signal terminals	AWG 20

Non-UL fuses and conductor cross-section to mains and motor

Typical shaft power P2	Maximum fuse size	Fuse type -	Maximum conductor cross section ¹	
[Hp]	[A]	type =	[AWG]	[mm ²]
2	40	gG	7	10
3	40	gG	7	10
5	80	gG	7	10

¹⁾ Screened motor cable, unscreened supply cable.

UL fuses and conductor cross-section to mains and motor

Typical shaft power P2 [Hp]	Maximum fuse size [A]	Bussmann RK1	Maximum conductor cross section ¹ [AWG}
2	40	KTN-R40	7
3	40	KTN-R40	7
5	80	KTN-R80	7

¹⁾ Screened motor cable, unscreened supply cable.

Inputs and outputs

Mains supply (L1, L2)

Supply voltage	200-240 V ± 10 %
Supply frequency	60 Hz
Maximum temporary imbalance between phases	3 % of rated value
Leakage current to earth	> 3.5 mA
Number of cut-ins	Max. 1 time/min.

Do not use the power supply for switching CU331SP on and off.

Motor output (U, V, W)

Output voltage	0-100 % ¹⁾
Output frequency	0-60 Hz
Switching on output	Not recommended

¹⁾ Output voltage in % of supply voltage.

RS-485 GENIbus connection

Terminal number	68 (A), 69 (B), 61 GND (Y)

The RS-485 circuit is functionally separated from other central circuits and galvanically separated from the supply voltage (PELV).

Digital inputs

Terminal number	18
Voltage level	0-24 VDC
Voltage level, open contact	> 19 VDC
Voltage level, closed contact	< 14 VDC
Maximum voltage on input	28 VDC
Input resistance, R _i	Approx. 4 kΩ

All digital inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

Signal relays

Relay 01, terminal number	1 (C), 2 (NO), 3 (NC)
Relay 02, terminal number	4 (C), 5 (NO), 6 (NC)
Maximum terminal load (AC-1) 1)	240 VAC, 2 A
Maximum terminal load (AC-15) 1)	240 VAC, 0.2 A
Maximum terminal load (DC-1) 1)	50 VDC, 1 A
Minimum terminal load	24 V DC 10 mA 24 V AC 20 mA

¹⁾ IEC 60947, parts 4 and 5.

C Common

NO Normally open

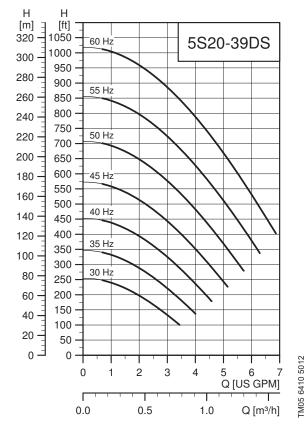
NC Normally closed

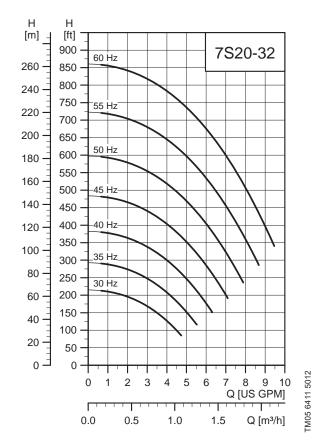
The relay contacts are galvanically separated from other circuits by reinforced insulation (PELV).

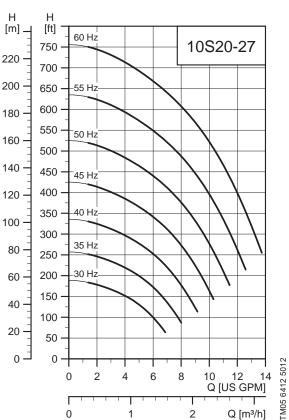
Analog input

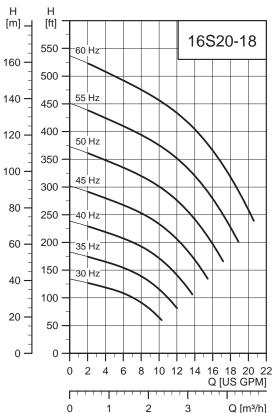
Terminal number	54
Current signal	A54 = "I" ¹⁾
Current range	0-20, 4-20 mA
Input resistance, R _i	Approx. 200 Ω
Maximum current	30 mA
Maximum fault, terminals 53, 54	0.5 % of full scale

¹⁾ The factory setting is voltage signal "U".

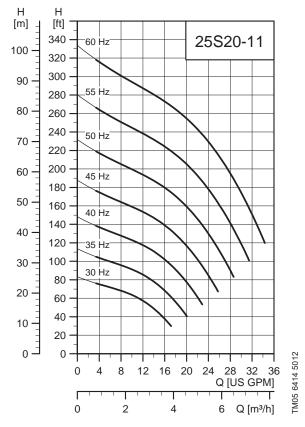

All analog inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

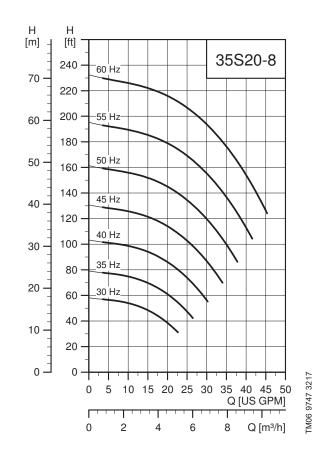

Sound pressure level

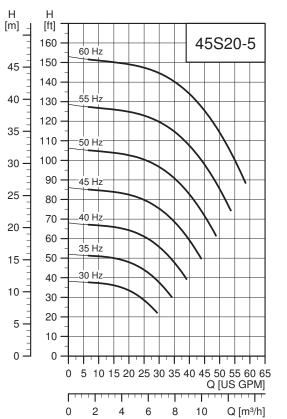

The sound pressure of CU331SP is maximum 70 dB(A).

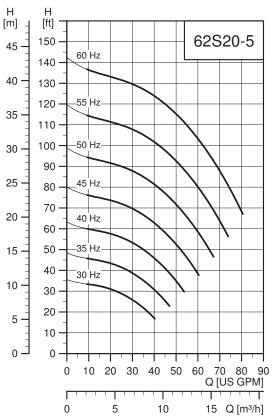

The sound pressure level of a motor controlled by a variable frequency drive may be higher than that of a corresponding motor which is not controlled by a variable frequency drive.

CU331SP curve charts CU331SP, 2 Hp

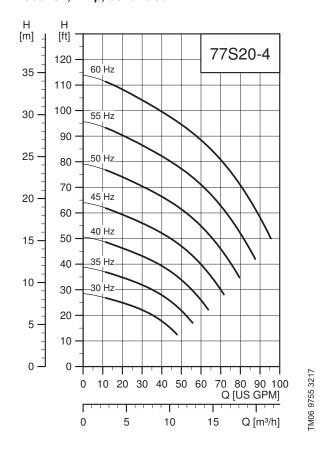


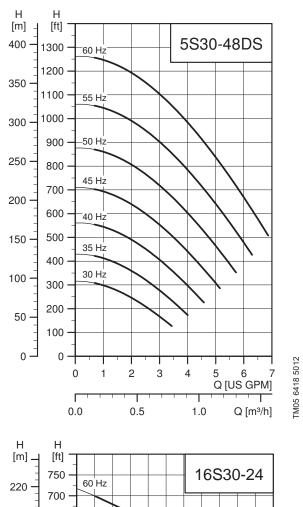


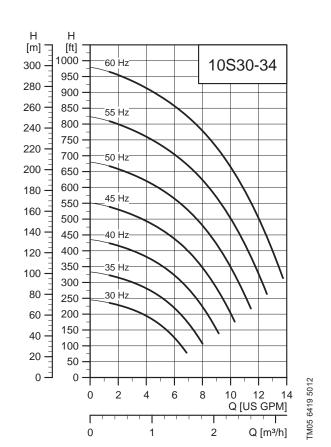


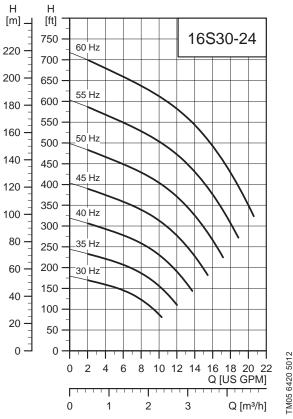

TM05 6413 5012

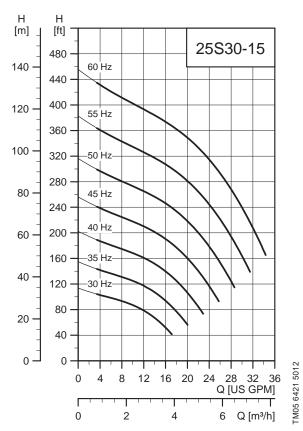
CU331SP, 2 Hp, continued



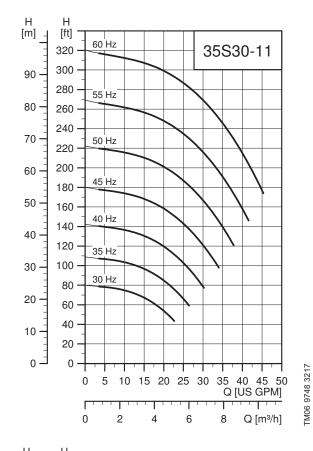


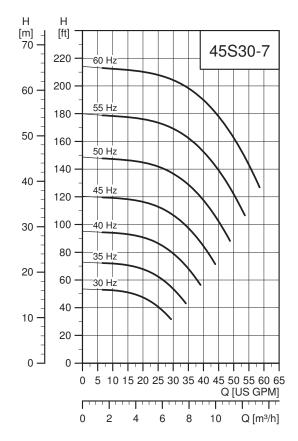


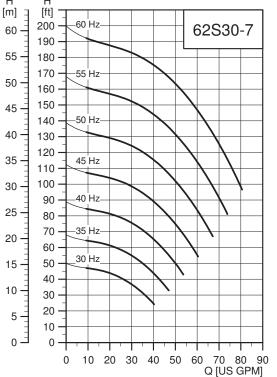

CU331SP, 2 Hp, continued



CU331SP, 3 Hp

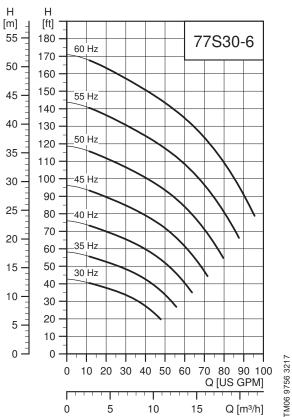


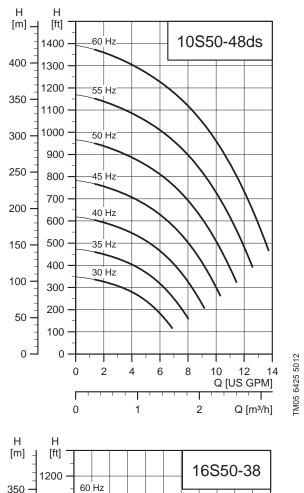


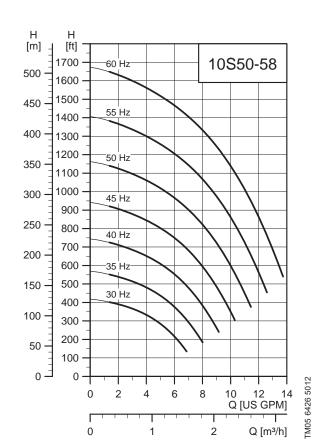


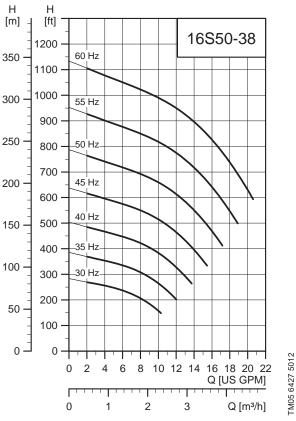
TM06 9752 3217

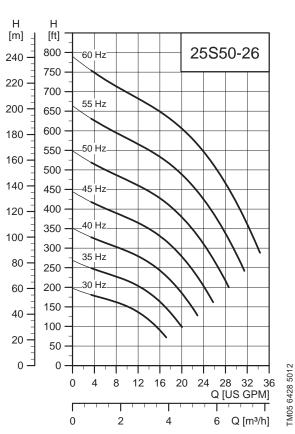
CU331SP, 3 Hp, continued



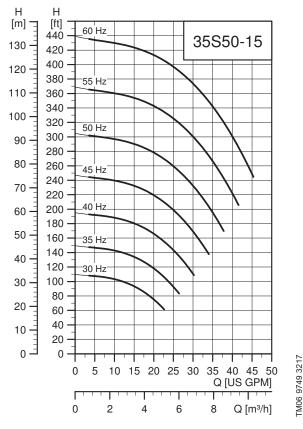

5

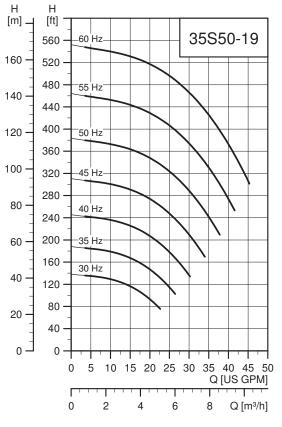

10

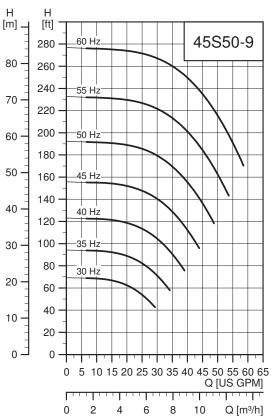

15 Q [m³/h]

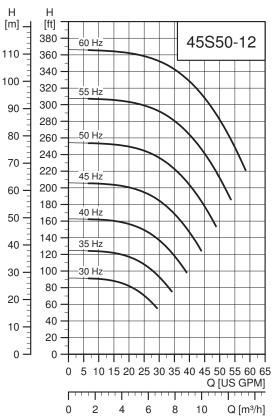


CU331SP, 5 Hp

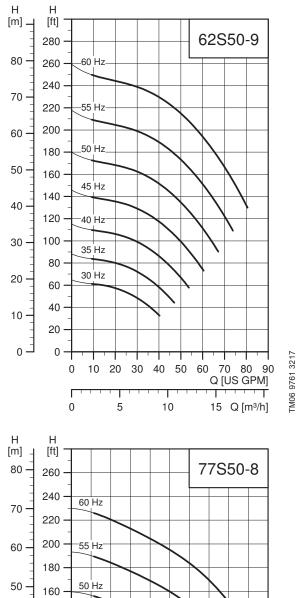


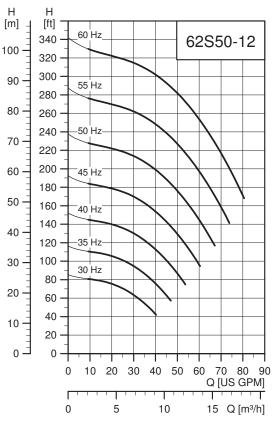


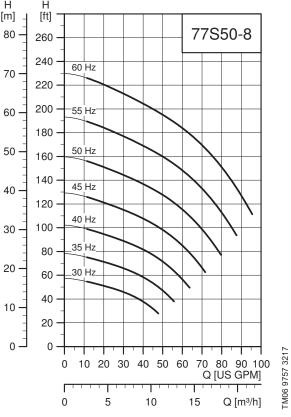


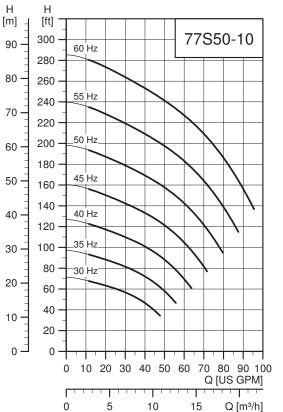


CU331SP, 5 Hp, continued






TM06 9750 3217


TM06 9762 3217

CU331SP, 5 Hp, continued

CUE variable frequency drive

Fig. 48 The CUE range

Grundfos CUE is a series of external variable frequency drive designed for speed control of a wide range of Grundfos pumps.

CUE offers quick and easy setup and commissioning compared to a standard variable frequency drive because of the startup guide. Simply key in application-specific variables such as motor data, pump family, control function (for example constant pressure), sensor type and setpoint, and CUE will automatically set all necessary parameters.

CUE enables gentle pumping and thereby protects the water reservoir and the rest of the distribution system, as water hammer can be avoided by adjusting ramp times up and down.

When a CUE is installed, the motor requires no further overload protection. Pt100/1000 together with the MCB 114 provides overheat protection of the motor windings, if needed.

Note: If the motor has a built-in Tempcon sensor, this sensor will be disconnected when it is exposed to the variable frequency drive. An internal fuse in the motor blows and it cannot be replaced. The motor will work without the sensor, but it is not possible to restore the functionality of the Tempcon sensor.

CUE is available in two enclosure classes:

- Nema 1 (IP20/21)
- Nema 12 (IP54/55).

RFI filters

To meet the EMC requirements, CUE comes with the following types of built-in radio frequency interference filter (RFI).

Functions

CUE has a wide range of pump-specific functions, such as:

- · constant pressure
- · constant level
- · constant flow rate
- · constant temperature
- · constant curve.

Features

3rSS 316404 3407

· Startup guide

CUE incorporates an innovative startup guide for the general setting of CUE including the setting of the correct direction of rotation.

The startup guide is started the first time CUE is connected to the power supply.

- · Check of direction of rotation.
- · Duty/standby operation.
- · Dry-running protection.
- · Low-flow stop function.

Accessories

Grundfos offers various accessories for CUE.

MCB 114 sensor input module

MCB 114 offers additional analog inputs for CUE:

- 1 analog input, 0/4-20 mA
- 2 inputs for Pt100/Pt1000 temperature sensors.

Output filters

Output filters are used primarily to protect the motor against overvoltage and increased operating temperature. However, output filters can also be used to reduce acoustic noise from the motor.

Grundfos offers sine-wave filters as an CUE accessory.

Sensors

The following sensors can be used in connection with CUE. All sensors are with 4-20 mA output signal.

- pressure sensors, up to 362 psi (25 bar)
- · temperature sensors
- · differential-pressure sensors
- · differential-temperature sensors
- · flowmeters
- potentiometer box for external setpoint setting.

Installation

Use of output filters

The table below shows in which cases an output filter is required and which type to use.

The selection depends on these factors:

- · pump type
- · motor cable length
- the required reduction of acoustic noise from the motor.

Pump type	Typical shaft power, P2	Sine-wave filter
SP with 380 V motor and up	All sizes	0-984 ft (0-300 m)

The lengths stated apply to the motor cable.

Cables used in CUE installations

Note: When CUE is installed in connection with SP pumps, we distinguish between two types of installation:

- installation in EMC-insensitive sites. See fig. 49.
- installation in EMC-sensitive sites. See fig. 50.

The two types of installation are different when it comes to the use of screened cable.

Note: Drop cables are always unscreened.

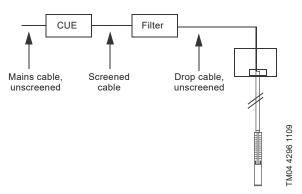


Fig. 49 Example of installation in EMC-insensitive sites

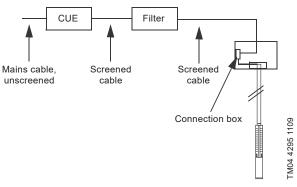


Fig. 50 Example of installation in EMC-sensitive sites

Screened cables are required in those parts of the installation where the surroundings must be protected against EMC.

CUE is the right choice of variable frequency drive in SP installations as it meets all basic issues.

CUE has a pre-installed startup guide which takes the installer through all the necessary settings.

For more information about the CUE variable frequency drive, see the CUE Data booklet, part number 9886424 or visit Grundfos Product Center at www.grundfos.us.

MP 204

MP 204 is an electronic motor protector, designed for the protection of an asynchronous motor or a pump.

The motor protector consists of:

- · a cabinet incorporating transformers and electronics
- a control panel with operating buttons and display for reading of data.

MP 204 operates with two sets of limits:

- · a set of warning limits and
- · a set of trip limits.

If one or more of the warning limits are exceeded, the motor continues to run, but the warnings will appear in the MP 204 display.

Some values only have a warning limit.

The warning can also be read out by means of Grundfos GO.

If one of the trip limits is exceeded, the trip relay will stop the motor. At the same time, the signal relay is operating to indicate that the limit has been exceeded.

Applications

MP 204 can be used as a stand-alone motor protector. MP 204 can be monitored via a Grundfos GENIbus.

The power supply to MP 204 is in parallel with the supply to the motor. Motor currents up to 120 A are passed directly through MP 204. MP 204 protects the motor primarily by measuring the motor current by means of a true RMS measurement. MP 204 disconnects the contactor if, for example, the current exceeds the preset value.

Secondarily, the motor is protected via temperature measuring by a Tempcon sensor, a Pt100/Pt1000 sensor and a PTC sensor/thermal switch.

MP 204 is designed for single- and three-phase motors. In single-phase motors, the starting and run capacitors are also measured. Cos φ is measured in both single- and three-phase systems.

Benefits

MP 204 offers these benefits:

- · Suitable for both single- and three-phase motors
- Dry-running protection
- Overload protection
- Very high accuracy
- Made for submersible pumps.

Many monitoring options

MP 204 monitors the following parameters:

- Insulation resistance before startup
- Temperature (Tempcon, Pt sensor and PTC/thermal switch)
- Overload and underload
- Overvoltage and undervoltage
- Phase sequence
- Phase failure
- Power factor
- Power consumption
- Harmonic distortion
- Operating hours and number of starts.

TM03 1471 2205

Fig. 51 MP 204

Five sizes of single-turn transformers, 120-999 A.

Note: Monitoring of motor temperature with Tempcon sensor is not possible when single-turn transformers are used.

TM03 2033 3505

Fig. 52 Single-turn transformers

Product numbers

Product	Product number
MP 204	96079927
Single-turn transformers	_
Current transformer ratio: 200:5, I _{max.} = 120 A	96095274
Current transformer ratio: 300:5, I _{max.} = 300 A	96095275
Current transformer ratio: 500:5, I _{max.} = 500 A	96095276
Current transformer ratio: 750:5, I _{max.} = 750 A	96095277
Current transformer ratio: 1000:5, I _{max.} = 1000 A	96095278

Functions

- · Phase-sequence monitoring
- Indication of current or temperature (user selection)
- Indication of temperature in °F or °C (user selection)
- · 4-digit, 7-segment display
- · Setting and status reading with Grundfos GO.
- · Setting and status reading via GENIbus.

Tripping conditions

- Overload
- Underload (dry running)
- Temperature (Tempcon sensor, PTC/thermal switch and Pt sensor)
- · Phase failure
- Phase sequence
- Overvoltage
- Undervoltage
- Power factor (cos φ)
- · Current unbalance.

Warnings

- Overload
- Underload
- · Temperature (Tempcon and Pt sensor)
- Overvoltage
- Undervoltage
- Power factor (cos φ)

Note: In connection with single- and three-phase connection.

- Run capacitor (single-phase operation)
- Starting capacitor (single-phase operation)
- · Loss of communication in network
- · Harmonic distortion.

Learning function

- Phase sequence (three-phase operation)
- Run capacitor (single-phase operation)
- Starting capacitor (single-phase operation)
- Identification and measurement of Pt100/Pt1000 sensor circuit.

External current transformers

When fitted with external current transformers, the MP 204 unit can handle currents from 120 to 999 A. Grundfos can supply approved current transformers from stock (200/5A, 300/5A, 500/5A, 750/5A, 1000/5A).

Grundfos GO

Grundfos GO allows for wireless infrared remote control of your MP 204 unit.

With Grundfos GO, you get access to a full range of options such as factory setting adjustment, service and fault finding.

Ready for bus communication

MP 204 allows for monitoring and communication via GENIbus, a Grundfos-designed bus for exchange of pump data, alarms, status information, and setpoints. This enables users to connect MP 204 to, for instance, SCADA systems.

Technical data - MP 204

Enclosure class	IP20
Ambient temperature	-4 °F to +140 °F (-20 °C to +60 °C)
Relative humidity	99 %
Voltage range	100-480 VAC
Current range	3-999 A
Frequency	50 to 60 Hz
IEC trip class	1-45
Special Grundfos trip class	0.1 to 30 s
Voltage variation	- 25 %/+ 15 % of nominal voltage
Approvals	EN 60947, EN 60335, UL/CSA 508
Marking	CE, cUL, C-tick
Consumption	Maximum 5 W
Plastic type	Black PC / ABS

Measuring range	Accuracy	Resolution
3-120 A	± 1 %	0.1 A
120-999 A	± 1 %	1 A
80-610 VAC	± 1 %	1 V
47-63 Hz	± 1 %	0.5 Hz
0-1 MW	± 2 %	1 W
0 - 0.99	± 2 %	0.01
0-4 x 10 ⁹ kWh	± 5 %	1 kWh
	3-120 A 120-999 A 80-610 VAC 47-63 Hz 0-1 MW 0 - 0.99	3-120 A ± 1 % 120-999 A ± 1 % 80-610 VAC ± 1 % 47-63 Hz ± 1 % 0-1 MW ± 2 % 0 - 0.99 ± 2 %

This table describes the protection provided by MP 204.

Control parameters	Function	Problem	Advantages
Temperature	The motor temperature is measured by means of the built-in Tempcon temperature transmitter and a signal is sent to MP 204 via the phase leads. In MP 204 the measured temperature is compared with the factory-set value of 167 °F (75 °C). MMS The motor temperature is measured by means of Pt100/Pt1000. The signal is sent to MP 204 where the measured temperature is compared with the factory-set value. Temperature protection requires a submersible motor with a Pt100/Pt1000. The motor temperature must be monitored during variable frequency drive operation.	Overload, frequent starts/stops, operation against blocked outlet pipe, insufficient flow velocity past the motor.	Longer motor life, safe operating conditions, service indication.
Overvoltage/undervoltage	If the set trip value is exceeded, the motor will stop.	The installation is close to a transformer. The mains do not absorb load variations.	Important installation parameter, possibility of improving operating conditions.
Overload	The motor power input is measured on each of the three phases. The registered power input is an average of these three values. If the factory-set value is exceeded, the motor will stop.	Incorrect sizing of pump/motor, voltage supply failure, defective cable, blocking, wear or corrosion.	Longer pump life, safe operating conditions, service indication.
Underload (dry running)	The motor power input is measured on each of the three phases. The registered power input is an average of these three values. If the average value is lower than the factory-set value, the motor will stop.	Pump exposed to dry running or underload, for example caused by wear.	Traditional dry-running protection is no longer necessary, no extra cables.
Current unbalance	The power input of the motor is measured on each of the three phases.	Mains load is uneven, incipient motor defect, phase voltages diverging.	Motor protection against overload, service indication.
Phase sequence	MP 204 and motor are installed so that the phase sequence sequence corresponds to correct direction of rotation. MP 204 monitors changes in the phase sequence. Two phases are connected.		Ensures correct pump performance.
Phase failure	MP 204 checks the phases connected, phase failure will cause an alarm.	Phase failure.	Indication of phase failure, and alarm.

Grundfos GO remote app and Grundfos GO CAPS

Grundfos GO is the mobile tool box for professional users on the go. The Grundfos GO app can be used to establish wireless connection to Grundfos products. Grundfos GO gives you intuitive handheld pump control, and full access to all the Grundfos Online tools on the go. Grundfos GO consists of two Apps: GO Remote and GO CAPS. It is available from Apple App Store and Google Play.

The Grundfos GO app must be used in conjunction with one of the following mobile interface devices:

Product	Description	Product number
MI 202	Dongle for iPhone 4/4s, iPad, or iPod touch (30 pin connector compatible)	98046376
MI 204	Dongle for iPhone, iPad, or iPod touch with Lightning connector	98424092
MI 301	Universal Bluetooth dongle for Android, iPhone or other iOS device	98046408
MI 204	MI204 Kit with MI204 dongle, Apple iPod, sleeve and cover	98612711

The mobile interfaces are modules with built-in IR and radio communication.

The Grundfos product must support either IR communication or radio communication.

Grundfos GO Remote

Grundfos GO Remote works with all our E-pumps and communicates both using both radio and infrared technology. It provides easy-to-follow tips and guidance as well as live pump data feeds.

To communicate with the pumps, special hardware (Mobile Interfaces) from Grundfos is required. The Grundfos GO Remote app can be downloaded for free for both Apple iOS and Android devices.

While connected to a Grundfos product, the following features are available:

- Product dashboard which gives the user a quick overview of the connected product
- Status data which monitor status data from the Grundfos product
- Alarms and warnings where you can see detailed alarm information with timestamps
- · Configuration and commissioning
- Create installation report in pdf format
- Read and write profiles,and copy configuration from one product to another
- Available in 28 languages.

Grundfos GO CAPS

GO CAPS works online and supports all the basic CAPS functionalities. It is available for Apple iOS devices only, and is free to download. Features:

- Search product by: Number, Name or QR code
- Size a product (Heating, Air-conditioning, Pressure boosting & Wastewater)
- Catalog
- · Replace product
- Compare products
- Product view
- Projects
- Favorites
- · Supports 11 languages

MI 202 and MI 204

MI 202 and MI 204 are add-on modules for Apple devices. For Apple iPod touch 4 and iPhone 4 and 4S, use MI 202. For Apple products with Lightning connector, use MI 204.

Note: "Made for iPod, iPhone" means that an electronic accessory has been designed to connect specifically to iPod or iPhone and has been certified by the developer to meet Apple performance standards. Apple is not responsible for the operation of this device or its compliance with safety and regulatory standards. Please note that the use of this accessory with iPod may affect wireless performance.

Fig. 53 MI 202 and MI 204

MI 301

MI 301 is a module that connects to an Android or iOS-based smart device via Bluetooth. MI 301 has a rechargeable Li-ion battery and must be charged separately.

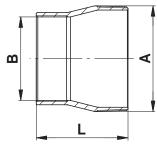
TM05 3890 1612

Fig. **54** MI 301

Supported devices

The smart devices listed below have been tested and are supported by Grundfos GO.

Make	Model	MI 202	MI 204	MI 301
	iPod touch 4G	•		•
Apple	iPod touch 5G		•	•
	iPhone 4, 4S	•		•
	iPhone with Lightning connector		•	•
	iPad, iPad Mini		•	•
Asus	Nexus 7			•
	Transformer TF101, TF300			•
Google	Galaxy Nexus, Nexus 4, Nexus 10			•
HTC	Desire S, One S, Sensation			•
Motorola	Xoom2, Moto X (XT1053)			•
Samsung	Galaxy S II, Galaxy S III	•		•
	Galaxy tab 2 7.0			•
Sony	Xperia Arc, Arc S, Xperia Tipo, Xperia V			•


Note: Similar Android and iOS-based devices may work as well, but have not been tested by Grundfos.

For further details, features and screens, see Grundfos GO instructions part number 98133717 that are included with GO Remote product.

Connecting pieces

The tables below show the range of connecting pieces for connection of thread-to-flange and thread-to-thread.

Thread-to-thread

TM01 2397 1698 - GrA2555

Fig. 55 Dimensional sketch and photo of connecting piece thread-to-thread

Type Connecting piece		Dimensions			Due doest accords as	
	Connecting piece	Thread-to-thread		L	— Product number	
		Α	В	[in (mm)]	304 stainless steel	316 stainless stee
385S	NPT 5→ NPT 4	NPT 5	NPT 4	4.76 (121)	190064	190586
475S	NPT 5→ NPT 6	NPT 5	NPT 6	5.91 (150)	190070	190592
625S 800S 1100S	NPT 6→ NPT 5	NPT 6	NPT 5	5.91 (150)	200135	200645

Zinc anodes

Application

Cathodic protection by means of zinc can be used for corrosion protection of SP pumps in chloridecontaining liquids such as brackish water and seawater.

Sacrificial anodes are placed on the outside of the pump and motor as protection against corrosion.

The number of anodes required depends on the pump and motor in question.

Please contact Grundfos for further details.

Liquid temperatures

- · Seawater: Up to 95 °F (35 °C).
- Brackish water (minimum 1500 ppm (g/m³) chloride): Up to 95 °F (35 °C).

Anode life

The zinc anodes have a life of one to four years, depending on operating conditions (temperature, flow rate and chloride content).

Product numbers of zinc anodes

		Z	inc a	nodes	for p	umps	;						
				Use	d for p	oump	type						
Product number	SP 5S to 77S	858	150S	2308	3008	385S	4758	6258	8008	11008			
99326959	•	-	-	-	-	-	-	-	-	-			
97645875	-	•	•	•	•	-	-	-	-	-			
97645914	-	-	-	-	-	•	•	-	-	-			
97646116	-	-	-	-	-	-	-	•	•	-			
97646118	-	-	-	-	-	-	-	-	-	•			
	Zir	nc and	odes	for me	otors								
4" motors	6"	moto	rs	8" mc	otors	10"	moto	rs 1	2" mc	otors			
96856060	97	6459	c anodes for motors motors 8" motors 10" motors 12" motors 645910 97646116 97646118 97646138										

SA-SPM 6 control boxes

Application

SA-SPM 6 control boxes are used as starting units for single-phase, 3-wire motors ranging from 0.5 Hp to 5 Hp (.37 kW to 3.7 kW).

SA-SPM 6 from 1.5 Hp to 5 Hp (1.1 kW to 3.7 kW) is available in two versions, Standard (STD) and Deluxe (DLX).

The standard version incorporates a motor-protective circuit breaker and thus protects the motor against

The deluxe version is identical to the standard version with the addition of a motor contactor for connection and disconnection of the power supply.

Technical data

Enclosure class: IP42.

Ambient temperature: -4 °F to +140 °F

(-20 °C to +60 °C).

Maximum 95 %, normal Relative humidity:

non-aggressive atmosphere.

TM03 8150 0607

Fig. 56 SA-SPM 6 control box

SA-SPM 6 control box part numbers

		Control	box for 4-inch, 3-wire,	single phase motors		
			Approximate ship wt	Product number	Product number	Reference product
Туре	Нр	Volts	(lb)	(Order in multiples of 1)	(Order in multiples of 10)	number only**
STD	1/2*	115	2	-	98821580	98315240
STD	1/2*	230	2	-	98821631	98315251
STD	3/4*	230	2	-	98821632	98315252
STD	1*	230	2	-	98821633	98315253
STD	1-1/2	230	2	98315254	-	-
DLX	1-1/2	230	3	98315255	-	-
STD	2	230	6	98315256	-	-
DLX	2	230	6	98315257	-	-
STD	3	230	6	98315258	-	-
DLX	3	230	7	98315259	-	-
STD	5	230	7	98315260	-	-
DLX	5	230	8	98315261	-	-

The 1/2 hp, 3/4 hp and 1 hp control boxes are now sold by Grundfos in multiple quantities (10-pack) only.

Old control box material numbers that Grundfos sold in single units.

DLX (Deluxe Control Box,): Includes magnetic starter in addition to Standard Control Box (STD).

Pt100/Pt1000

The Pt100/Pt1000 sensor offers these features:

- · Continuous monitoring of the motor temperature
- Protection against too high motor temperature.

Protecting the motor against too high motor temperature is the simplest and cheapest way of avoiding that motor lifetime is reduced. Pt100/Pt1000 ensures that the operating conditions are not exceeded and indicates when it is time for service of the motor.

Monitoring and protection by means of Pt100/Pt1000 require the following parts:

- Pt100/Pt1000 sensor
- Relay, type PR 5714
- · Cable.

The PR 5714 relay is fitted with a Pt100/Pt1000 module. For both relays the following temperature limits are preset on delivery:

- 140 °F (60 °C) warning limit
- 167 °F (75 °C) stop limit.

Technical data

	Relay type
	PR 5714
Enclosure class	IP65 (mounted in a control panel)
Ambient temperature	-4 °F to +140 °F (-20 °C to +60 °C)
Relative humidity	95 % (condensating)
Voltage variation	 1 x 24-230 VAC ± 10 %, 50-60 Hz. 24-250 VDC ± 20 %.
Approvals	UL, DNV
Mark	CE

PR 5714 relay	Voltage	Product number
	24-230 VAC, 50/60 Hz / 24-250 VDC	96621274
PR 5714 relay	Voltage	Product number
	24-230 VAC, 50/60 Hz / 24-250 VDC	96913234
Pt100 sensor, including cable for standard-, N- and R-versions	Cable length [ft (m])	
	65.6 (20)	
	131.2 (40)	
	5 196.9 (60)	For product number, see Grundfos Price
	8 <u>262.5 (80)</u>	Book or call Grundfos.
	196.9 (60) 262.5 (80) 275 262.5 (80)	 -
Staybolt kits for Pt100 in MS 6000	Description	
	Staybolt kit for Pt100/Pt1000. Material: AISI 316 (EN 1.4401). Staybolt kit for Pt100. Material: AISI 904L (EN 1.4539).	For product number, see Grundfos Price Book or call Grundfos.
Insertion probe for MMS 10000	Description	
	Insertion probe for Pt100/Pt1000 in MMS 10000. Material: 316 (EN 1.4401) (N-version). Insertion probe for Pt100/Pt1000 in MMS 10000. Material: AISI 904L (EN 1.4539) (R-version).	For product number, see Grundfos Price Book or call Grundfos.
Pt1000 sensor, including cable	Cable length [ft (m)]	
	65.6 (20)	
	131.2 (40)	For product number,
	196.9 (60) 95 262.5 (80) 100 (328.1)	see Grundfos Price Book or call Grundfos.
	95 87 4	
	100 (328.1)	
Staybolt kits for Pt1000 in MS 402 and MS 4000	Description	
The second	Staybolt kit for Pt1000. Material: AISI 316 (EN 1.4401). Staybolt kit for Pt1000. Material: AISI 904 (EN 1.4539).	For product number, see Grundfos Price Book or call Grundfos.

10. Energy consumption

Energy consumption of submersible pumps

The percentage distribution of service life costs of a submersible pump for water supply is:

- 5 % initial costs (pump)
- 85 % operating energy costs
- 10 % maintenance costs.

It is obvious that the highest savings can be achieved within energy consumption!

The annual energy consumption, E, of a submersible pump can be calculated as follows:

 $E = c x h x P_1 (USD)$

c = specific energy price (USD/kWh)

h = operating hours/year (hours)

 P_1 = power input of the submersible pump (Hp).

Example: Calculation of the annual energy consumption of the submersible pump, type 625S-3. 625S-3 with MMS 8000, 60 Hp, 3 x 460 V, 60 Hz.

Duty point:

Flow rate: Q = 528 gpmTotal head: H = 335 ft

Specific energy price: c = USD 0.15/kWh (consisting

of day and night rate)

Operating hours/year: h = 3200.

$$P_1 = \frac{Q \times H \times \rho}{367 \times \eta_{pump} \times \eta_{motor}} \text{ in kW}$$

Q = gpmH = ft

Density $\rho = \text{lb/ft}^3 \text{ (assumed 1)}$ 367 = conversion factor

 η_{motor} = (example 84.5 %, in equation 0.845) η_{pump} = (not to be confused with the stage

efficiency curve).

By showing the P_2/Q curve we make it easier for you to calculate the energy consumption.

$$P_1 = \frac{P_2}{\eta_{motor}}$$

 $P_2 = 35$ Hp (power requirement of 625S-3 pump at 88 gpm, from curve P_2/Q).

Calculation of motor efficiency at duty point

As standard the SP 625S-3 is equipped with a 60 Hp (45 kW for P1) MS 6000C motor.

At duty point (Q = 528 gpm) the pump requires 59 Hp (44 kW for P1), thus:

a motor load of 87 % (44 kw / 45 kw) and a power reserve of 2 % .

From the table on page 94 the motor efficiency can be read as:

84.6 % at a load of 75 %. $(\eta_{75\%})$

85.6 % at a load of 100 %. $(\eta_{100\%})$

The interpolated value in this example is

 $\eta_{\text{motor}} = 85.1 \%, \, \eta_{\text{motor}} = 0.851.$

$$P_1 = \frac{44}{0.851} = 51.7 \text{ kW}$$

E = 0.15 USD/kWh x 3200 h x 51.7 kW.

The annual energy costs amount to USD 24816.

The pay-off time, A, (months) is calculated as follows:

$$A = \frac{Purchase price of energy - efficiency pump}{Energy savings / year} \times 12$$

Cable sizing

In order to obtain an economical duty of the pump the voltage drop must be low.

Today large water works already size cables for a maximum voltage drop of 1 %.

The hydraulic resistance in the outlet pipe must be as low as possible.

11. Cables

Cable sizing charts

115 V and 230 V, 1 ph 60 Hz

			Max	imum s	ubmer	sible pov	ver cable	e length (maximur	n cable le	ength in	feet - sta	rter to m	otor)			
Motor rating	[Hp]						AW	/G coppe [ft (ı		ze					МСМ с	opper wi	re size
		14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350
115 V 1 ph	0.33	130 (40)	210 (64)	340 (104)	540 (165)	840 (256)	1300 (396)	1610 (491)	1960 (597)	2390 (728)	2910 (887)	3540 (1079)	4210 (1283)	5060 (1542)	5680 (1731)	6390 (1948)	7110 (2167)
60 Hz	0.5	100 (30)	160 (49)	250 (76)	390 (119)	620 (189)	960 (293)	1190 (363)	1460 (445)	1780 (543)	2160 (658)	2630 (802)	3140 (957)	3770 (1149)	4240 (1292)	4770 (1454)	5320 (1622)
	0.33	550 (168)	880 (268)	1390 (424)	2190 (668)	3400 (1036)	5250 (1600)	6520 (1987)	7960 (2426)	9690 (2954)	11770 (3587)	14320 (4365)	17050 (5197)	20460 (6236)	22980 (7004)	25850 (7879)	28750 (8763)
	0.5	400 (122)	650 (198)	1020 (311)	1610 (491)	2510 (765)	3880 (1183)	4810 (1466)	5880 (1792)	7170 (2185)	8720 (2658)	10620 3237)	12660 (3859)	15210 (4636)	17100 (5212)	19260 (5870)	21440 (6535)
	0.75	300 (91)	480 (146)	760 (232)	1200 (366)	1870 (570)	2890 (881)	3580 (1091)	4370 (1332)	5330 (1625)	6470 (1972)	7870 (2399)	9380 (2859)	11250 (3429)	12640 (3853)	14220 (4334)	15810 (4819)
	1	250 (76)	400 (122)	630 (192)	990 (302)	1540 (469)	2380 (725)	2960 (902)	3610 (1100)	4410 (1344)	5360 (1634)	6520 (1987)	7780 (2371)	9350 (2850)	10510 (3203)	11840 (3609)	13180 (4017)
	1.5	190 (58)	310 (94)	480 (146)	770 (235)	1200 (366)	1870 (570)	2320 (707)	2850 (869)	3500 (1067)	4280 (1305)	5240 (1597)	6300 (1920)	7620 (2323)	8630 (2630)	9810 (2990)	10980 (3347)
230 V 1 ph 60 Hz	2	150 (46)	250 (76)	390 (119)	620 (189)	970 (296)	1530 (466)	1910 (582)	2360 (719)	2930 (893)	3620 (1103)	4480 (1366)	5470 (1667)	6700 (2042)	770 (235)	8890 (2710)	10080 (3072)
00112	3	120 (37)	190 (58)	300 (91)	470 (143)	750 (229)	1190 (363)	1490 (454)	1850 (564)	2320 (707)	2890 (881)	3610 (1100)	4470 (1362)	5550 (1692)	6450 (1966)	7580 (2310)	8690 (2649)
•	5	-	110* (34*)	180 (55)	280 (85)	450 (137)	710 (216)	890 (271)	1110 (338)	1390 (424)	1740 (530)	2170 (661)	2680 (817)	3330 (1015)	3870 (1180)	4550 (1387)	5210 (1588)
•	7.5	-	-	120* (37*)	200 (61)	310 (94)	490 (149)	610 (186)	750 (229)	930 (283)	1140 (347)	1410 (430)	1720 (524)	2100 (640)	2400 (732)	2790 (850)	3120 (951)
•	10	-	-	-	160* (49*)	250 (76)	390 (119)	490 (149)	600 (183)	750 (229)	930 (283)	1160 (354)	1430 (436)	1760 (536)	2030 (619)	2370 (723)	2700 (823)
•	15	-	-	-	-	170* (52*)	270 (82)	340 (104)	430 (131)	530 (162)	660 (201)	820 (250)	1020 (311)	1260 (384)	1460 (445)	1700 (518)	1940 (591)

NOTE:

No asterisk indicates both jacketed cable and single conductor cables.

- 1. The table is based on copper wire. If aluminum wire is used, multiply lengths by 0.5.
- The maximum permissible length of aluminum is considerably shorter than copper wire of same size.
- 2. Make sure that the portion of the total cable which is between the service entrance and a motor starter/controller does not exceed 25 % of the total maximum length to ensure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.
- 3. The table is based on a maintaining motor terminal voltage at 95 % of service entrance voltage, running at maximum nameplate amperes. In general, a voltage drop must be maintained at 3 V / 100 ft or less.
- 4. 1 foot = 0.305 meter (1 meter = 3.28 feet).

^{*} Indicates single conductor only (not jacketed).

200-208 V, 3 Ph 60 Hz

			Max	imum s	ubmer	sible pov	wer cable	length (maximur	n cable le	ength in f	eet - sta	rter to m	otor)			
Motor rating	[Hp]						AW	/G coppe [ft (ı	r wire siz n)]	ze					мсм с	opper w	ire size
		14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350
	.5	710 (216)	1140 (347)	1800 (549)	2840 (866)	4420 (1347)	-	-	-	-	-	-	-	-	-	-	-
	.75	510 (155)	810 (245)	1280 (390)	2030 (619)	3160 (963)	-	-	-	-	-	-	-	-	-	-	-
	1	430 (131)	690 (210)	1080 (329)	1710 (521)	2670 (814)	4140 (1262)	5140 (1567)	-	-	-	-	-	-	-	-	-
	1.5	310 (94)	500 (152)	790 (241)	1260 (384)	1960 (597)	3050 (930)	3780 (1152)	-	-	-	-	-	-	-	-	-
	2	240 (73)	390 (119)	610 (186)	970 (296)	1520 (463)	2360 (719)	2940 (896)	3610 (1100)	4430 (1350)	5420 (1652)	-	-	-	-	-	-
200 200 1/	3	180 (55)	290 (88)	470 (143)	740 (226)	1160 (354)	1810 (552)	2250 (686)	2760 (841)	3390 (1033)	4130 (1259)	-	-	-	-	-	-
200-208 V 3 ph 60 Hz	5	110* (34*)	170 (52)	280 (85)	440 (134)	690 (210)	1080 (329)	1350 (411)	1660 (506)	2040 (622)	2490 (759)	3050 (930)	3670 (1119)	4440 (1353)	5030 (1533)	-	-
00 112	7.5	-	-	200 (61)	310 (94)	490 (149)	770 (235)	960 (293)	1180 (360)	1450 (442)	1770 (539)	2170 (661)	2600 (792)	3150 (960)	3560 (1085)	-	-
	10	-	-	-	230* (70*)	370 (113)	570 (174)	720 (219)	880 (268)	1090 (332)	1330 (405)	1640 (500)	1970 (600)	2390 (728)	2720 (829)	3100 (945)	3480 (1061)
	15	-	-	-	160* (49*)	250* (76*)	390 (119)	490 (149)	600 (183)	740 (226)	910 (277)	1110 (338)	1340 (408)	1630 (497)	1850 (564)	2100 (640)	2350 (716)
	20	-	-	-	-	190* (58*)	300* (91*)	380 (116)	460 (140)	570 (174)	700 (213)	860 (262)	1050 (320)	1270 (387)	1440 (439)	1650 (503)	1850 (564)
	25	-	-	-	-	-	240* (73*)	300* (91*)	370* (113*)	460 (140)	570 (174)	700 (213)	840 (256)	1030 (314)	1170 (357)	1330 (405)	1500 (457)
	30	-	-	-	-	-	-	250* (76*)	310* (94*)	380* (116*)	470 (143)	580 (177)	700 (213)	850 (259)	970 (296)	1110 (338)	1250 (381)

- NOTE:

 * Indicates single conductor only (not jacketed).

 No asterisk indicates both jacketed cable and single conductor cables.

 1. The table is based on copper wire. If aluminum wire is used, multiply lengths by 0.5.

 The maximum permissible length of aluminum is considerably shorter than copper wire of same size.

 2. Make sure that the portion of the total cable which is between the service entrance and a motor starter/controller does not exceed 25 % of the total maximum length to ensure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.

 3. The table is based on a maintaining motor terminal voltage at 95 % of service entrance voltage, running at maximum nameplate amperes. In general, a voltage drop must be maintained at 3 V / 100 ft or less.

 4. 1 foot = 0.305 meter (1 meter = 3.28 feet).

230 V, three-phase, 60 Hz

Motor	[Hp]						AWG c	opper w [ft (m)]	ire size						МС	М сорр	er wire s	size
rating	1	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400
	.5	930 (283)	1490 (454)	2350 (716)	3700 (1128)	5760 (1756)	8910 (2716)	-	-	-	-	-	-	-				
	.75	670 (204)	1080 (329)	1700 (518)	2580 (786)	4190 (1277)	6490 (1978)	8060 (2457)	9860 (3005)	-	-	-	-	-				
	1	560 (171)	910 (277)	1430 (436)	2260 (689)	3520 (1073)	5460 (1664)	6780 (2067)	8290 (2527)	-	-	-	-	-				
	1.5	420 (128)	670 (204)	1060 (323)	1670 (509)	2610 (796)	4050 (1234)	5030 (1533)	6160 (1878)	7530 (2295)	9170 (2795)	-	-	-				
	2	320 (98)	510 (155)	810 (247)	1280 (390)	2010 (613)	3130 (954)	3890 (1186)	4770 (1454)	5860 (1786)	7170 (2185)	8780 (2676)	-	-				
	3	240 (73)	390 (119)	620 (189)	990 (302)	1540 (469)	2400 (732)	2980 (908)	3660 (1116)	4480 (1366)	5470 (1667)	6690 (2039)	8020 (2444)	9680 (2950)				
230 V 3-ph 60 Hz	5	140* (43*)	230 (70)	370 (113)	590 (180)	920 (280)	1430 (436)	1790 (546)	2190 (668)	2690 (820)	3290 (1003)	4030 (1228)	4850 (1478)	5870 (1789)	6650 (2027)	7560 (2304)	8460 2579)	9220 (2810)
00 112	7.5	-	160* (49*)	260 (79)	420 (128)	650 (198)	1020 (311)	1270 (387)	1560 (475)	1920 (585)	2340 (713)	2870 (875)	3440 (1049)	4160 (1268)	4710 (1436)	5340 (1628)	5970 (1820)	6500 (1981)
	10	-	-	190* (58*)	310 (94)	490 (149)	760 (232)	950 (290)	1170 (357)	1440 (439)	1760 (536)	2160 (658)	2610 (796)	3160 (963)	3590 (1094)	4100 (1250)	4600 (1402)	5020 (1530)
	15	-	-	-	210* (64*)	330 (101)	520 (158)	650 (198)	800 (244)	980 (299)	1200 (366)	1470 (448)	1780 (543)	2150 (655)	2440 (744)	2780 (847)	3110 (948)	3400 (1036)
	20	-	-	-	-	250* (76*)	400 (122)	500 (152)	610 (186)	760 (232)	930 (283)	1140 (347)	1380 (421)	1680 (512)	1910 (582)	2180 (664)	2450 (747)	2680 (817)
	25	-	-	-	-	-	320* (98*)	400 (122)	500 (152)	610 (186)	750 (229)	920 (280)	1120 (341)	1360 (415)	1540 (469)	1760 (536)	1980 (604)	2160 (658)
	30	-	-	-	-	-	260* (79*)	330* (101*)	410* (125*)	510 (155)	620 (189)	760 (232)	930 (283)	1130 (344)	1280 (390)	1470 (448)	1650 (503)	1800 (549)

Note:

* Indicates single conductor only (not jacketed).

No asterisk indicates both jacketed cable and single-conductor cables.

- 1. The table is based on copper wire. If aluminum wire is used, multiply lengths by 0.5.
- The maximum permissible length of aluminum is considerably shorter than copper wire of same size.
- 2. Make sure that the portion of the total cable which is between the service entrance and a motor starter/controller does not exceed 25 % of the total
- maximum length to ensure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.

 The table is based on maintaining motor terminal voltage at 95 % of service entrance voltage, running at maximum nameplate amperes. In general, a voltage drop must be maintained at 3 V / 100 ft or less.
 4. 1 foot = 0.305 meter (1 meter = 3.28 feet).

Motor rating	[Hp]						AW	G coppei [ft (n		е					МСМ	opper w	ire size
		14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350
	.5	3770 (1149)	6020 (1835)	9460 (2883)	-	-	-	-	-	-	-	-	-	-	-	-	-
	.75	2730 (832)	4350 (1326)	6850 (2088)	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	2300 (701)	3670 (1119)	5770 (1759)	9070 (2765)	-	-	-	-	-	-	-	-	-	-	-	-
	1.5	1700 (518)	2710 (826)	4270 (1301)	6730 (2051)	-	-	-	-	-	-	-	-	-	-	-	-
	2	1300 (396)	2070 (631)	3270 (997)	5150 (1570)	8050 (2454)	-	-	-	-	-	-	-	-	-	-	-
	3	1000 (305)	1600 (488)	2520 (768)	3970 (1210)	6200 (1890)	-	-	-	-	-	-	-	-	-	-	-
	5	590 (180)	950 (290)	1500 (457)	2360 (719)	3700 (1128)	5750 (1753)	-	-	-	-	-	-	-	-	-	-
	7.5	420 (128)	680 (207)	1070 (326)	1690 (515)	2640 (805)	4100 (1250)	5100 (1554)	6260 (1908)	7680 (2341)	-	-	-	-	-	-	-
	10	310 (94)	500 (152)	790 (241)	1250 (381)	1960 (597)	3050 (930)	3800 (1158)	4680 (1426)	5750 (1753)	7050 (2149)	-	-	-	-	-	-
	15	-	340* (104*)	540 (165)	850 (259)	1340 (408)	2090 (637)	2600 (792)	3200 (975)	3930 (1198)	4810 (1466)	5900 (1798)	7110 (2167)	-	-	-	-
460 V	20	-	-	410 (125)	650 (198)	1030 (314)	1610 (491)	2000 (610)	2470 (753)	3040 (927)	3730 (1137)	4580 (1396)	5530 (1686)	-	-	-	-
3 ph 60 Hz	25	-	-	330* (101*)	530 (162)	830 (253)	1300 (396)	1620 (494)	1990 (607)	2450 (747)	3010 (917)	3700 (1128)	4470 (1362)	5430 (1655)	-	-	-
	30	-	-	270* (82*)	430 (131)	680 (207)	1070 (326)	1330 (405)	1640 (500)	2030 (619)	2490 (759)	3060 (933)	3700 (1128)	4500 (1372)	5130 (1564)	5860 (1786)	-
	40	-	-	-	320* (98*)	500* (152*)	790 (241)	980 (299)	1210 (369)	1490 (454)	1830 (558)	2250 (686)	2710 (826)	3290 (1003)	3730 (1137)	4250 (1295)	-
	50	-	-	-	-	410* (125*)	640 (195)	800 (244)	980 (299)	1210 (369)	1480 (451)	1810 (552)	2190 (668)	2650 (808)	3010 (917)	3420 (1042)	3830 (1167)
	60	-	-	-	-	-	540* (165*)	670* (204*)	830 (253)	1020 (311)	1250 (381)	1540 (469)	1850 (564)	2240 (683)	2540 (774)	2890 (881)	3240 (988)
	75	-	-	-	-	-	440* (134*)	550* (168*)	680* (207*)	840 (256)	1030 (314)	1260 (384)	1520 (463)	1850 (564)	2100 (640)	2400 (732)	2700 (823)
	100	-	-	-	-	-	-	-	500* (152*)	620 (189*)	760* (232*)	940 (287)	1130 (344)	1380 (421)	1560 (475)	1790 (546)	2010 (613)
	125	-	-	-	-	-	-	-	-	-	600* (183*)	740* (226*)	890* (271*)	1000 (305)	1220 (372)	1390 (424)	1560 (475)
	150	-	-	-	-	-	-	-	-	-	-	630* (192*)	760* (232*)	920* (280*)	1050 (320)	1190 (363)	1340 (408)
	175	-	-	-	-	-	-	-	-	-	-	-	670* (204*)	810* (247*)	930* (283*)	1060 (323)	1190 (363)
	200	-	-	-	-	-	-	-	-	-	-	-	590* (180*)	710* (216*)	810* (247*)	920* (280*)	1030

- NOTE:

 * Indicates single conductor only (not jacketed).

 No asterisk indicates both jacketed cable and single-conductor cables.

 1. The table is based on copper wire. If aluminum wire is used, multiply lengths by 0.5.

 The maximum permissible length of aluminum is considerably shorter than copper wire of same size.

 2. Make sure that the portion of the total cable which is between the service entrance and a motor starter/controller does not exceed 25 % of the total maximum length to ensure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.

 3. The table is based on a maintaining motor terminal voltage at 95 % of service entrance voltage, running at maximum nameplate amperes. In general, a voltage drop must be maintained at 3 V / 100 ft or less.

 4. 1 foot = 0.305 meter (1 meter = 3.28 feet).

575 V, 3 ph 60 Hz

Motor rating	[Hp]						AWG (opper w [ft (m)]							МСМ с	opper w	ire size
	11-1	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350
	5	5900 (1798)	9410 (2868)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	.75	4270 (1301)	6810 (2076)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	3630 (1106)	5800 (1768)	9120 (2780)	-	-	-	-	-	-	-	-	-	-	-	-	-
	1.5	2620 (799)	4180 (1274)	6580 (2006)	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	2030 (619)	3250 (991)	5110 (1558)	8060 (2457)	-	-	-	-	-	-	-	-	-	-	-	-
	3	1580 (482)	2530 (771)	3980 (1213)	6270 (1911)	-	-	-	-	-	-	-	-	-	-	-	-
	5	920 (280)	1480 (451)	2330 (710)	3680 (1122)	5750 (1753)	-	-	-	-	-	-	-	-	-	-	-
	7.5	660 (201)	1060 (323)	1680 (512)	2650 (808)	4150 (1265)	-	-	-	-	-	-	-	-	-	-	-
	10	490 (149)	780 (238)	1240 (378)	1950 (594)	3060 (933)	4770 (1454)	5940 (1811)	-	-	-	-	-	-	-	-	-
	15	330* (101*)	530 (162)	850 (259)	1340 (408)	2090 (637)	3260 (994)	4060 (1237)	-	-	-	-	-	-	-	-	-
575 V 3 ph	20	-	410* (125*)	650 (198)	1030 (314)	1610 (491)	2520 (768)	3140 (957)	3860 (1177)	4760 (1451)	5830 (1777)	-	-	-	-	-	-
60 Hz	25	-	-	520 (158)	830 (253)	1300 (396)	2030 (619)	2530 (771)	3110 (948)	3840 (1170)	4710 (1436)	-	-	-	-	-	-
	30	-	-	430* (131*)	680 (207)	1070 (326)	1670 (509)	2080 (634)	2560 (780)	3160 (963)	3880 (1183)	4770 (1454)	5780 (1762)	7030 (2143)	8000 (2438)	-	-
	40	-	-	-	500* (152*)	790 (241)	1240 (378)	1540 (469)	1900 (579)	2330 (710)	2860 (872)	3510 (1070)	4230 (1289)	5140 (1567)	5830 (1777)	-	-
	50	-	-	-	410* (125*)	640* (195*)	1000 (305)	1250 (381)	1540 (469)	1890 (576)	2310 (704)	2840 (866)	3420 (1042)	4140 (1262)	4700 (1433)	5340 (1628)	5990 (1826)
	60	-	-	-	-	540* (165*)	850 (259)	1060 (323)	1300 (396)	1600 (488)	1960 (597)	2400 (732)	2890 (881)	3500 (1067)	3970 (1210)	4520 (1378)	5070 (1545)
	75	-	-	-	-	-	690* (210*)	860 (262)	1060 (323)	1310 (399)	1600 (488)	1970 (600)	2380 (725)	2890 (881)	3290 (1003)	3750 (1143)	4220 (1286)
	100	-	-	-	-	-	-	640* (195*)	790* (241*)	970 (296)	1190 (363)	1460 (445)	1770 (539)	2150 (655)	2440 (744)	2790 (850)	3140 (957)
	125	-	-	-	-	-	-	-	630* (192*)	770* (235*)	950 (290)	1160 (354)	1400 (427)	1690 (515)	1920 (585)	2180 (664)	2440 (744)
	150	-	-	-	-	-	-	-		660* (202*)	800* (244*)	990* (302*)	1190 (363)	1440 (439)	1630 (497)	1860 (567)	2080 (634)
	175	-	-	-	-	-	-	-	-	-	700* (214*)	870* (265*)	1050* (320*)	1270 (387)	1450 (442)	1650 (503)	1860 (567)
	200	-	-	-	-	-	-	-	-	-	-	760* (232*)	920* (280*)	1110* (338*)	1260 (384)	1440 (439)	1620 (494)

- NOTE:

 * Indicates single conductor only (not jacketed).

 No asterisk indicates both jacketed cable and single conductor cables.

 1. The table is based on copper wire. If aluminum wire is used, multiply lengths by 0.5.

 The maximum permissible length of aluminum is considerably shorter than copper wire of same size.

 2. Make sure that the portion of the total cable which is between the service entrance and a motor starter/controller does not exceed 25 % of the total maximum length to ensure reliable starter operation. Single-phase control boxes may be connected at any point of the total cable length.

 3. The table is based on a maintaining motor terminal voltage at 95 % of service entrance voltage, running at maximum nameplate amperes. In general, a voltage drop must be maintained at 3 V / 100 ft or less.

 4. 1 foot = 0.305 meter (1 meter = 3.28 feet).

12. Friction loss tables

				Friction los	s table - SCH	40 steel pipe	9			
		.5"	.75"	1"	1.25"	1.5"	2"	2.5"	3"	4"
[US gpm]	[US gph]	ID 0.622"	ID 0.824"	ID 1.049"	ID 1.380"	ID 1.610"	ID 2.067"	ID 2.469"	ID 3.068"	ID 4.026"
				Fric	tion loss in fe	et of head po	er 100 feet of	pipe		
2	120	4.8								
3	180	10.0	2.5							
4	240	17.1	4.2							
5	300	25.8	6.3	1.9						
6	360	36.5	8.9	2.7						
7	420	48.7	11.8	3.6						
8	480	62.7	15.0	4.5						
9	540	78.3	18.8	5.7						
10	600	95.9	23.0	6.9						
12	720		32.6	9.6	2.5	1.2				
14	840		43.5	12.8	3.3	1.5				
16	960		56.3	16.5	4.2	2.0				
20	1,200		86.1	25.1	6.3	2.9				
25	1,500			38.7	9.6	4.5	1.3			
30	1,800			54.6	13.6	6.3	1.8			
35	2,100			73.3	18.2	8.4	2.4			
40	2,400			95.0	23.5	10.8	3.1	1.3		
45	2,700				29.4	13.5	3.9	1.6		
50	3,000				36.0	16.4	4.7	1.9		
60	3,600				51.0	23.2	6.6	2.7		
70	4,200				68.8	31.3	8.9	3.6	1.2	
80	4,800				89.2	40.5	11.4	4.6	1.6	
90	5,400					51.0	14.2	5.8	2.0	
100	6,000					62.2	17.4	7.1	2.4	
120	7,200						24.7	10.1	3.4	
140	8,400						33.2	13.5	4.5	1.2
160	9,600						43.0	17.5	5.8	1.5
200	12,000						66.3	27.0	8.9	2.3
260	15,600							45.0	14.8	3.7
300	18,000							59.6	19.5	4.9

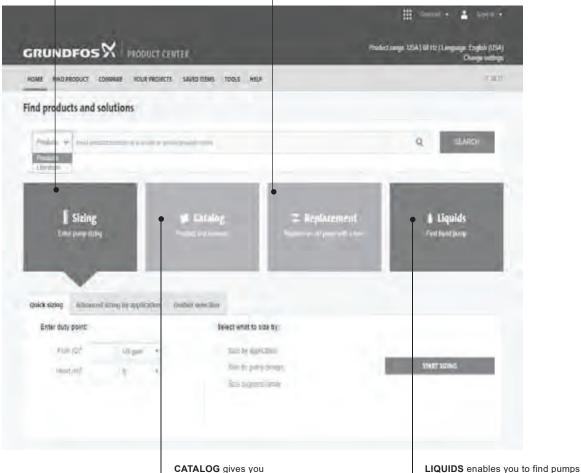
				Friction lo	ss table - SCI	H 40 PVC pipe	9			
		.5"	.75"	1"	1.25"	1.5"	2"	2.5"	3"	4"
[US gpm]	[US gph]	ID 0.622"	ID 0.824"	ID 1.049"	ID 1.380"	ID 1.610"	ID 2.067"	ID 2.469"	ID 3.068"	ID 4.026"
				Fric	tion loss in f	eet of head pe	er 100 feet of	pipe		
2	120	4.1								
3	180	8.7	2.2							
4	240	14.8	3.7							
5	300	22.2	5.7	1.8						
6	360	31.2	8.0	2.5						
7	420	41.5	10.6	3.3						
8	480	53.0	13.5	4.2						
9	540	66.0	16.8	5.2						
10	600	80.5	20.4	6.3	1.7					
12	720		28.6	8.9	2.3	1.1				
14	840		38.0	11.8	3.1	1.4				
16	960		48.6	15.1	4.0	1.9				
20	1,200		60.5	22.8	6.0	2.8				
25	1,500			38.7	9.1	4.3	1.3			
30	1,800				12.7	6.0	1.8			
35	2,100				16.9	8.0	2.4			
40	2,400				21.6	10.2	3.0	1.1		
45	2,700				28.0	12.5	3.8	1.4		
50	3,000					15.4	4.6	1.7		
60	3,600					21.6	6.4	2.3		
70	4,200					28.7	8.5	3.0	1.2	
80	4,800					36.8	10.9	3.8	1.4	
90	5,400					45.7	13.6	4.8	1.8	
100	6,000					56.6	16.5	5.7	2.2	
120	7,200						23.1	8.0	3.0	
140	8,400						30.6	10.5	4.0	1.1
160	9,600						39.3	13.4	5.0	1.4
200	12,000						66.3	20.1	7.6	2.1
260	15,600							32.4	12.2	3.4
300	18,000							42.1	15.8	4.4

		•	•	Nominal	size of fitting	and pipe	•	•
Type of fitting and application	Pipe and fitting	1/2"	3/4"	1"	1.25"	1.5"	2"	2.5"
	_		Friction	loss in equi	valent length o	of straight pip	oe in feet	
Insert coupling	Plastic	3	3	3	3	3	3	3
Threaded adapter (plastic to thread)	Plastic	3	3	3	3	3	3	3
90 ° standard elbow	Steel	2	2	3	4	4	5	6
90 Standard eibow	Plastic	2	2	3	4	4	5	6
Ctandard too (flave through run)	Steel	1	2	2	3	3	4	4
Standard tee (flow through run)	Plastic	1	2	2	3	3	4	4
Ctandard to a (flow through aids)	Steel	4	5	6	7	8	11	13
Standard tee (flow through side)	Plastic	4	5	6	7	8	11	13
Gate valve ¹	Steel	1	1	1	1	2	2	2
Swing check valve ¹	Steel	5	7	9	12	13	17	21

Notes:
Based on Schedule 40 steel and plastic fittings.
Friction loss figures are for screwed valves and are based on equivalent lengths of steel pipe.

13. Grundfos Product Center

Grundfos Product Center is an online search and sizing tool to help you make the right choice.


http://product-selection.grundfos.com

SIZING enables you to size a pump based on entered data and selection choices.

· the lowest purchase price

- the lowest energy consumptionthe lowest total life cycle cost.

access to the Grundfos product catalog.

designed for aggressive, flammable or other special liquids.

All the information you need in one place

Performance curves, technical specifications, pictures, dimensional drawings, motor curves, wiring diagrams, spare parts, service kits, 3D drawings, documents, system parts. The Product Center displays any recent and saved items - including complete projects right on the main page.

Downloads

On the product pages, you can download installation and Operating Instructions, data booklets, service instructions, etc. in PDF format.

Subject to alterations.

© 2020 Grundfos Holding A/S, all rights reserved.

Trademarks displayed in this material, including but not limited to Grundfos, the Grundfos logo and "be think innovate" are registered trademarks owned by The Grundfos Group. All rights reserved.

98992402 0120

ECM: 1278912

GRUNDFOS Chicago 3905 Enterprise Court P.O. Box 6620 Aurora, IL 60598-0620 Phone: +1-630-236-5500 Fax: +1-630-236-5511

GRUNDFOS Kansas City

9300 Loiret Boulevard Lenexa, Kansas 6619 Phone: +1-913-227-3400 Fax: +1-913-227-3500

GRUNDFOS CBS

902 Koomey Road Brookshire, TX 77423 Phone: +1-281-994-2700 Fax: +1-800-945-4777

www.grundfos.us

Canada GRUNDFOS Canada 2941 Brighton Road Phone: +1-905-829-9533 Fax: +1-905-829-9512

www.grundfos.ca

Mexico GRUNDFOS México Boulevard TLC No. 15 Parque Industrial Stiva Aeropuerto Phone: +011-52-81-8144-4000 Fax: +011-52-81-8144-4010

SQ, SQE, SQE-NE, CU331SP

1.	Product introduction Features and benefits Identification	3 3 5
2.	Applications SQ with pressure switch and pressure tank Constant-pressure control with	6 6
	CU 301 - residential water supply Constant-pressure control with	7
	CU 301 - irrigation Maintaining a constant water table	8
	Emptying or filling a tank Pumping from one tank to another	10 11
	Setting of operating parameters SQE with manual speed control	12 13
3.	Performance range	14
4.	Installation	15
5.	Sizing and selection System sizing guide	16 16
6.	Cable sizing Cable sizing chart	17 17
7.	SQ curve charts 5 SQ, SQE	18 18
	10 SQ, SQE 15 SQ, SQE	19 20
	22 SQ, SQE 30 SQ, SQE	21 22
	10 SQE-NE 22 SQE-NE	23 24
8.	Technical data	25
	Electrical data Operating conditions	25 25
	Motor data Dimensions and weights	26 27
9.	Construction	28
	Materials of construction Material specification	28 29
10.	Control units CU 301	30 30
	CU 300	33

11.	CU331SP variable frequency drive	37
	Features	37
	Applications	37
	System components	37
	Identification	38
	CU331SP product range	39
	CU331SP performance range	39
	CU331SP sizing	39
	CU331SP operation	40
	CU331SP installation	44
	CU331SP electrical connection	45
	CU331SP technical data	51
	CU331SP curve charts	53
12.	Accessories	59
	CU331SP Constant Pressure	
	Drive Kits (with sensor)	59
	CU 301 Constant Pressure System	59
	CU 300 Status Box & R100	59
	SQ, SQE flow sleeves	59
13.	Further product documentation	60
	WebCAPS	60
	WinCAPS	61

1. Product introduction

3-inch SQ, SQE submersible well pumps for 3-inch and larger wells

SQ, SQE pumps are suitable for both continuous and intermittent operation for a variety of applications:

- · Domestic water supply
- · light commercial
- irrigation
- tank applications.

Features and benefits

SQ, SQE pumps offer these features:

- · Dry-run protection
- · high efficiency pump and motor
- · protection against up-thrust
- soft-start
- over-voltage and under-voltage protection
- · over-temperature protection
- · high starting torque.

Additionally, SQE pumps offer these advantages:

- · Constant pressure control
- · variable speed
- electronic control and communication.

SQ, SQE innovative motor technology

SQ, SQE pumps feature an innovative motor design incorporating permanent-magnet technology. By combining permanent-magnet motors and a Grundfos micro-frequency converter, we are able to deliver unmatched performance and the ability to control and communicate with the pump in ways never before possible. A few of the features that result from this combined technology are Constant Pressure Control, Soft-Start, and Integrated Dry-Run Protection, but these are just a few of the features these pumps offer.

SQ pump models operate at a constant speed much like today's conventional pumps. The difference is that SQ delivers the benefits of an electronically controlled permanent-magnet motor that cannot be achieved with a conventional induction motor.

SQ pumps are available for single-phase power; a simple 2-wire design makes installation easy.

SQE pumps are equipped with a Grundfos "Smart Motor." Like the SQ models, SQ pumps have a high efficiency permanent-magnet motor — but we add the ability to communicate.

The "Smart Motor" communicates via the CU301 status box through the power leads.

It is not necessary to run any additional wires down the well. Communication with the pump provides Constant Pressure Control and the highly useful ability to change the pump performance while the pump is installed in the well. Like the SQ motor, this is also a 2-wire motor designed for single-phase operation.

Dry-running protection

The pumps are protected against dry running. A value of P_{cut-out} ensures cut-out of the pump in case of lack of water in the borehole thus preventing a burnout of the motor.

 $\mbox{P}_{\mbox{cut-out}}$ is factory-set both for the SQ and SQE, SQE-NE pumps.

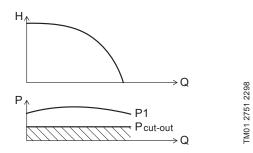


Fig. 1 P_{cut-out} curve

High pump efficiency

The hydraulic pump components are polyamide reinforced with 30 % glass fiber. The hydraulic design provides for high pump efficiency resulting in low energy consumption and therefore low energy costs.

High motor efficiency

The motors are based on a permanent magnet rotor (PM motor) featuring high efficiency within a wide load range.

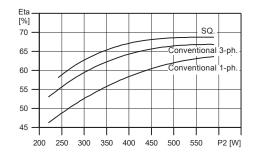


Fig. 2 Efficiency curves of Grundfos SQ motor versus conventional motors

Wear resistance

The pump design features "floating" impellers (not fastened to the shaft). Each impeller has its own tungsten carbide/ceramic bearing. The construction and materials ensure high wear resistance to sand for long product life.

Fig. 3 Example of Grundfos floating impeller

Protection against upthrust

Starting up a pump with a very low counter pressure involves the risk of the entire impeller stack being lifted, also called upthrust. Upthrust may cause breakdown of both pump and motor.

SQ, SQE, SQE-NE motors are fitted with a top bearing protecting both pump and motor against upthrust, thus preventing breakdown during the critical start-up phase.

Excellent starting capabilities

The integrated electronic unit of the motor features soft starting. Soft start reduces the starting current and thus gives the pump a smooth and steady acceleration.

The soft starter minimizes the risk of wear on the pump and prevents overloading of the mains during start-up.

The excellent starting capabilities are a result of the high locked-rotor torque of the permanent magnet motor together with the few pump stages. The high starting reliability also applies in case of low voltage supply.

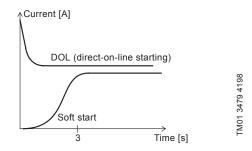


Fig. 4 Soft-start feature

Overvoltage and undervoltage protection

Overvoltage and undervoltage may occur in case of unstable voltage supply.

The integrated protection of all motors prevents damage to the motor in case the voltage moves outside the permissible voltage range.

The pump will cut out if the voltage falls below 150 V or rises above 315 V. The motor is automatically cut in again when the voltage again falls within the permissible voltage range. Therefore no extra protection relay is needed.

Overload protection

Exposure of the pump to heavy load causes the current consumption to rise. The motor will automatically compensate for this by reducing the speed to 3000 rpm. Further overload will lead to stop.

If the rotor is being prevented from rotating, this will automatically be detected and the power supply will be cut out. Consequently, no extra motor protection is needed.

Overtemperature protection

A permanent magnet motor gives off very little heat to its surroundings. In combination with an efficient internal circulation system leading the heat away from the rotor, stator and bearings, this ensures optimum operating conditions for the motor.

As an extra protection, the electronic unit has a built-in temperature sensor. When the temperature rises too high, the motor is cut out; when the temperature has dropped, the motor is automatically cut in again.

Reliability

The motors are built for high reliability and feature:

- · Tungsten carbide / ceramic bearings
- thrust bearings protecting against downthrust
- · product life time equal to conventional AC motors.

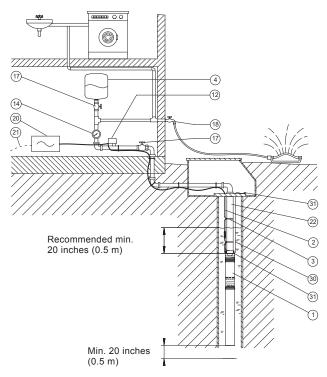
Variable speed


The SQE motor enables continuously variable speed control from 3,000 to 10,700 rpm. The pump can be set to operate in any duty point in the range between the 3,000 and 10,700 rpm performance curves of the pump. Consequently, the pump performance can be adapted to any specific requirement.

The variable speed control facility requires the use of the CU 300 or CU 301 control unit.

For the calculation of pump speed, the program "SQE Speed Calculation" is available on CD-ROM as an accessory.

Identification


Type key example SQ, SQE, SQE-NE

2. Applications

SQ with pressure switch and pressure tank

SQ is ideally suited for domestic water supply in single- family dwellings or summer homes which are not connected to municipal waterworks. SQ is easy to install and operate.

- 1 Pump, SQ 2 Cable
- 3 Cable clips
- 4 Pressure tank 12 Pressure switch
- 14 Pressure gauge 17 Isolating valve
- 18 Tap
- 20 Mains switch
- 21 Mains connection 22 Riser pipe 30 Safety cable

- 31 Wire clamp

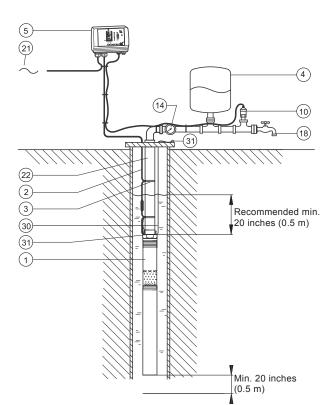
Fig. 5 Application example: SQ with pressure switch and pressure tank

Pos.	Part	Туре	No. of units	Product number	Unit price	Total price
1	Pump	SQ				
2	Cable					
3	Cable clips					
4	Pressure tank					
12	Pressure switch					
14	Pressure gauge					
20	Mains switch					
30	Safety cable					
31	Wire clamp					

Constant-pressure control with CU 301 - residential water supply

The system maintains a constant pressure within the maximum pump performance in spite of a varying water consumption.

The pressure is registered by the pressure sensor and transmitted to the CU 301. The CU 301 adjusts the pump performance accordingly.


Function

When a tap is opened the pressure in the tank will start to drop. At a flow lower than approximately 1 gpm (0.18 m³/h), the pressure will drop slowly.

When the pressure in the tank is 7 psi (0.5 bar) below setpoint, the pump will start. The pump will run until the pressure is 7 psi (0.5 bar) above setpoint. This way of operation is called on/off operation.

At a flow higher than approximately 1 gpm (0.18 m³/h), the pressure will drop quickly and the pump will start immediately and maintain a constant pressure.

During operation, the CU 301 will regulate the pump speed to maintain a constant pressure. If there is no consumption, the pump will boost the pressure to 7 psi (0.5 bar) above setpoint and stop after a few seconds.

- 1 Pump, SQE
- 2 Cable
- 3 Cable clips
- 4 Pressure tank, 2 gal (8 liters)
- 5 Control unit, CU 301
- 10 Pressure sensor, 0 120 psi (0 6 bar)
- 14 Pressure gauge
- 18 Tap
- 21 Mains connection
- 22 Riser pipe
- 30 Safety cable
- 31 Wire clamp

Fig. 6 Application example: Constant-pressure control with CU 301 - residential water supply

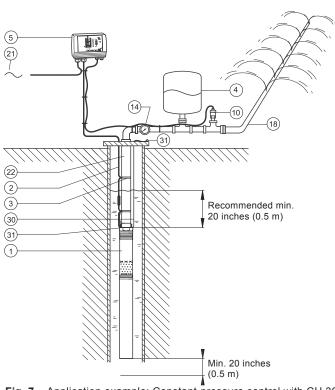
Pos.	Part	Туре	No. of units	Product number	Unit price	Total price
1	Pump	SQE				
2	Cable					
3	Cable clips					
4	Pressure tank	2 gal (8 liters)				
5	Control unit	CU 301				
10	Pressure sensor	0 - 120 psi (0 - 6 bar)				
14	Pressure gauge					
30	Safety cable					
31	Wire clamp					

Constant-pressure control with CU 301 - irrigation

The system maintains a constant pressure within the maximum pump performance in spite of a varying water consumption.

The pressure is registered by means of the pressure sensor and transmitted to the CU 301. The CU 301 adjusts the pump performance accordingly.

Function


When the sprinkler system is started, the pressure in the tank will start to drop.

At a flow lower than approximately 1 gpm (0.18 m³/h), the pressure will drop slowly. When the pressure in the

tank is 7 psi (0.5 bar) below setpoint, the pump will start. The pump will run until the pressure is 7 psi (0.5 bar) above setpoint. This way of operation is called on/off operation.

At a flow higher than approximately 1 gpm (0.18 m³/h), the pressure will drop quickly and the pump will start immediately and maintain a constant pressure.

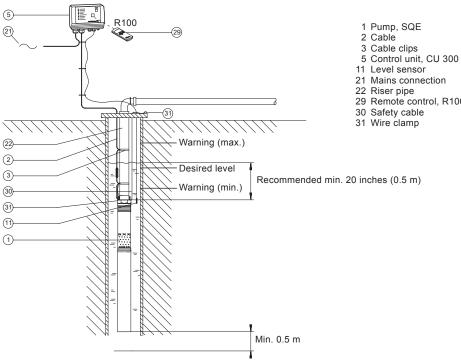
During operation, the CU 301 will regulate the pump speed to maintain a constant pressure. If there is no consumption, the pump will boost the pressure to 7 psi (0.5 bar) above setpoint and stop after a few seconds.

- 1 Pump, SQE
- 2 Cable
- 3 Cable clips
- 4 Pressure tank 2 gal (8 liter)
- 5 Control unit, CU 301
- 10 Pressure sensor, 0 120 psi (0-6 bar)
- 14 Pressure gauge
- 18 Sprinkler system
- 21 Mains connection
- 22 Riser pipe
- 30 Safety cable
- 31 Wire clamp

TAMOS 5450 55

Fig. 7 Application example: Constant-pressure control with CU 301 - irrigation

Pos.	Part	Туре	No. of units	Product number	Unit price	Total price
1	Pump	SQE				
2	Cable					
3	Cable clips					
4	Pressure tank	2 gal (8 liter)				
5	Control unit	CU 301				
10	Pressure sensor	0 - 120 psi (0 - 6 bar)				
14	Pressure gauge					
30	Safety cable					
31	Wire clamp					


Maintaining a constant water table

A constant water table can be maintained by adjusting pump performance. It may be important to maintain a constant water table, e.g. in connection with keeping out the groundwater on a building site or water remediation projects.

The example shows how to maintain a constant water table by adjusting pump performance.

Sensors

Level	Description	Reaction					
Level sensor (p	Level sensor (pos. 11)						
Warning (max.)	Too high water level. Possible cause: Insufficient pump capacity.	Alarm relay operates.					
Desired level	The water level which should be maintained.						
Warning (min.)	Too low water level. Possible cause: Too high pump capacity.	Alarm relay operates.					

- 21 Mains connection
- 29 Remote control, R100

Fig. 8 Application example: Maintaining a constant water table

Pos.	Part	Type	No. of units	Product number	Unit price	Total price
1	Pump	SQE				
2	Cable					
3	Cable clips					
5	Control unit	CU 300				
11	Level sensor					
29	Remote control	R100				
30	Safety cable					
31	Wire clamp					

Emptying or filling a tank

The SQE pump with CU 300 is ideal for emptying or filling a tank.

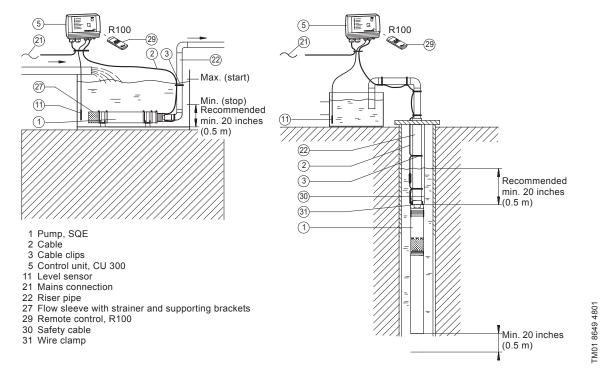
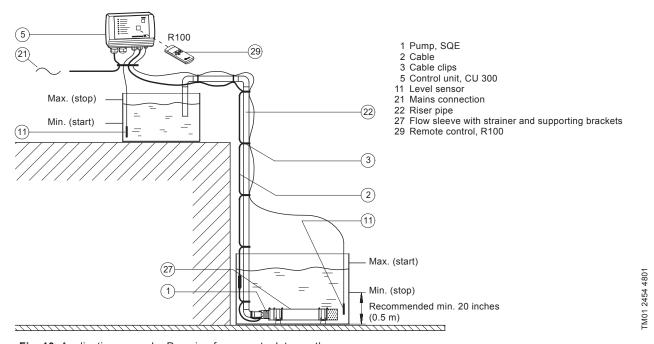


Fig. 9 Application example: Emptying or filling a tank


Pos.	Part	Type	No. of units	Product number	Unit price	Total price
1	Pump	SQE				
2	Cable					
3	Cable clips					
5	Control unit	CU 300				
11	Level sensor					
22	Riser pipe					
27	Flow sleeve with strainer and supporting brackets					
29	Remote control	R100				
30	Safety cable					
31	Wire clamp					

Pumping from one tank to another

The SQE pump is ideal for pumping water from one tank to another.

Sensors

Level	Description	Light indication on CU 300
Level sensor (p	os. 11, tank at top)	
Max. (stop)	When the water has reached this level, the pump stops.	Green indicator light in on/off button is flashing.
Min. (start)	When the water has dropped to this level, the pump starts.	Green indicator light in on/off button is permanently on.
Level sensor (p	os. 11, tank at bottom)	
Max. (start)	When the water has reached this level, the pump starts.	Green indicator light in on/off button is on.
Min. (stop)	When the water has dropped to this level, the pump stops.	Green indicator light in on/off button is flashing.

 $\textbf{Fig. 10} \ \ \textbf{Application example: Pumping from one tank to another}$

Pos.	Part	Type	No. of units	Product number	Unit price	Total price
1	Pump	SQE				
2	Cable					
3	Cable clips					
5	Control unit	CU 300				
11	Level sensor					
27	Flow sleeve with strainer and supporting brackets					
29	Remote control	R100				

TM01 8650 4801

Setting of operating parameters

Using the R100 and the CU 300 enables change of the motor speed and thereby setting of the pump to a specific performance.

The software program "SQE Speed Calculation" has been developed for the calculation of the speed in order to obtain the required flow rate and head.

R100

Dry-running protection

The value P_{cut-out}, ensuring dry-running protection, is factory-set for the SQE pump.

If the speed of the SQE pump is reduced by more than 1000 rpm, the $P_{cut\text{-out}}$ value must be readjusted by means of the CU 300 and R100.

Note: The SQE pump must not be started until the pump has been completely submerged below the water table. However, the change of the motor speed can be made even if the pump is not submerged.

Fig. 11 Application example: Workshop setting of operating parameters

e Total price	Unit price	Product number	No. of units	Type	Part
				SQE	Pump
				R100	Remote control
				CU 300	Control unit
					Control unit SQE Speed Calculation progra

SQE with manual speed control

Functioning and benefits

Manual speed control of the SQE pumps is possible by means of R100 and an SPP 1 potentiometer.

This application is especially suitable for sampling from groundwater monitoring wells. The monitoring well is purged at high speed and the sample is taken at a low speed (quiet flow). For contaminated groundwater the SQE-NE type range is recommended.

In case frequent sampling is required, dedicated installation of the pump is recommended, thus eliminating wear caused by frequent assembly and dismantling the installation.

Furthermore, dedicated installations saves the costs of assembling and dismantling the installation.

Important: Through dedicated installation the transfer of contamination from one monitoring well to another is avoided.

Dry-running protection

The value P_{cut out}, ensuring dry-running protection, is factory-set for the SQE pump. If the speed of the pump is reduced more than 1,000 rpm, the value of Pcut out must be readjusted by means of CU 300 and R100.

- 1 SQE pump
- 2 Cable
- 3 Cable clips
- 5 Control unit, CU 300
- 21 Mains connection
- 22 Riser pipe
- 30 Stainless-steel safety cable
- 31 Stainless-steel wire clamps, 2 per lifting eye 32 Potentiometer, SPP 1

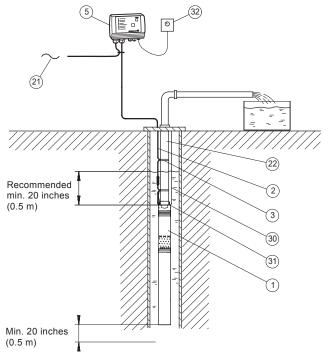
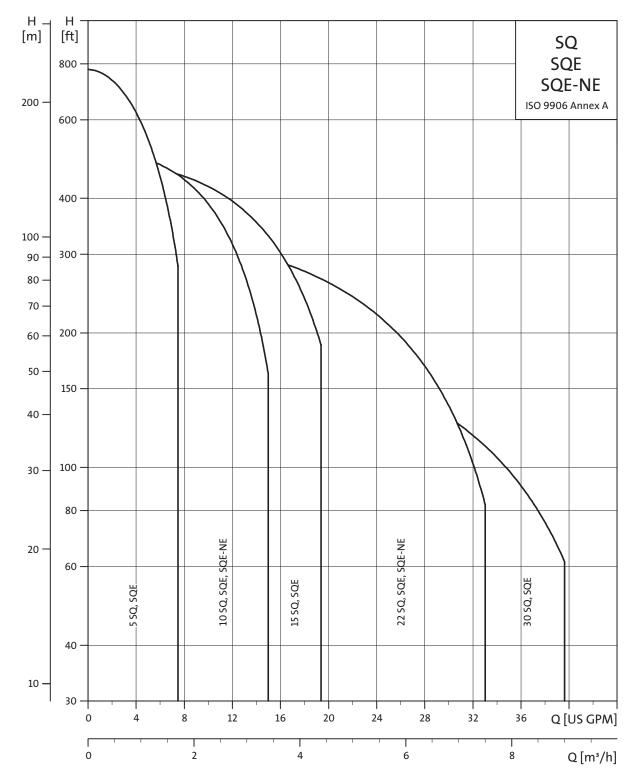



Fig. 12 Application example: Sampling/manual speed control of SQE

Pos.	Part	Туре	No. of units	Product number	Unit price	Total price
1	Pump	SQE				
2	Cable					
3	Cable clips					
5	Control unit	CU 300				
22	Riser pipe					
30	Stainless-steel safety cable					
31	Wire clamps	2 per lifting eye				
32	Potentiometer	SPP 1				

3. Performance range

4. Installation

The SQ and SQE, SQE-NE may be installed vertically, horizontally or in any position in between.

Note: The pump must not fall below the horizontal level in relation to the motor.

The following features ensure simple installation of the pump:

- · Built-in check valve with spring
- · low weight ensuring user-friendly handling
- installation in 3" or larger boreholes
- only on/off switch is needed, which means that no extra motor starter / starter box is necessary.

For horizontal installation a flow sleeve is recommended in order to:

- ensure sufficient flow velocity past the motor and thus provide sufficient cooling
- prevent motor and electronic unit from being buried in sand or mud.

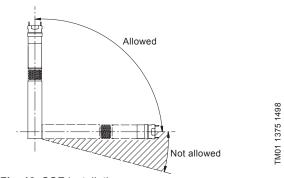


Fig. 13 SQE installation

5. Sizing and selection

System sizing guide

Step 1

Calculate minimum head requirements at no flow conditions:

H_{max} (required) = dynamic head + system pressure (in feet) + above grade elevation + friction loss

Step 2

Select pump from chart as follows:

- · Choose model family based on the desired flow rate (i.e. 15SQE for a flow rate of 15 gpm)
- Select the first model with a value in Column 2 greater than the H_{max} calculated in Step 1 (For example: the choice for a 22 gpm model with an H_{max} of 140 ft would be the 22SQE-160).
- Double check your selection in the performance curves; see 7. SQ curve charts on p. 18.

System sizing matrix								
	Column 1	Column 2						
Pump type Model B	Shutoff head (0 gpm) @ 3000 rpm min. speed	Head @ rated gpm @ 10700 rpm max. speed TDH [feet] 86 131						
	TDH [feet]							
5SQE-90	11							
5SQE-140	17							
5SQE-180	22	177						
5SQE-230	28	222						
5SQE-270	34	270						
5SQE-320	39	315						
5SQE-360	45	360						
5SQE-410	51	405						
5SQE-450	56	450						
10005 110		405						
10SQE-110	12	105						
10SQE-160	17	164						
10SQE-200	23	215						
10SQE-240	29	267						
10SQE-290	34	328						
10SQE-330	40	390						
15SQE-70	10	75						
15SQE-110	14	123						
15SQE-150	19	164						
15SQE-180	24	205						
15SQE-220	29	246						
15SQE-250	33	287						
15SQE-290	38	328						
22SQE-40	5	36						
22SQE-80	9	77						
22SQE-120	14	117						
22SQE-160	18	159						
22SQE-190	23	200						
22SQE-220	27	240						
30SQE-40	5	33						
30SQE-90	11	82						
30SQE-130	16	126						
JUU WL-100	10	120						

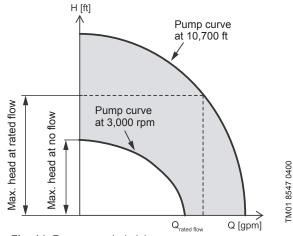
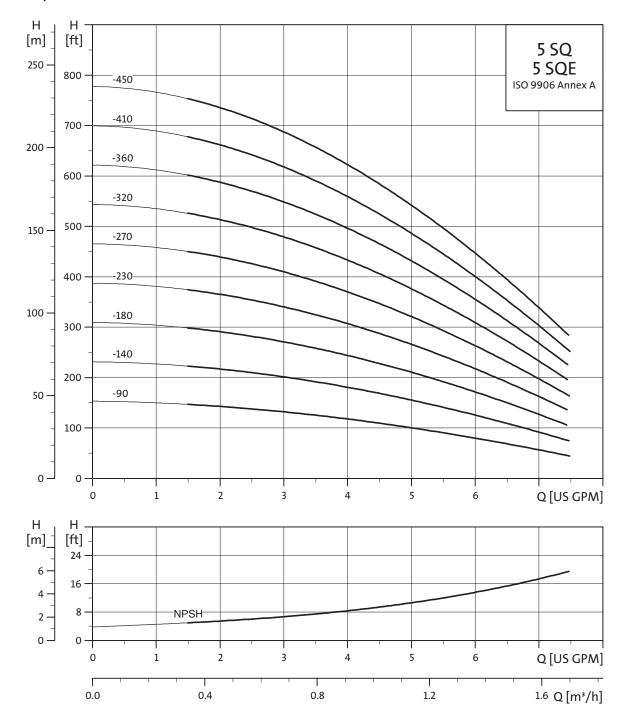


Fig. 14 Recommended sizing

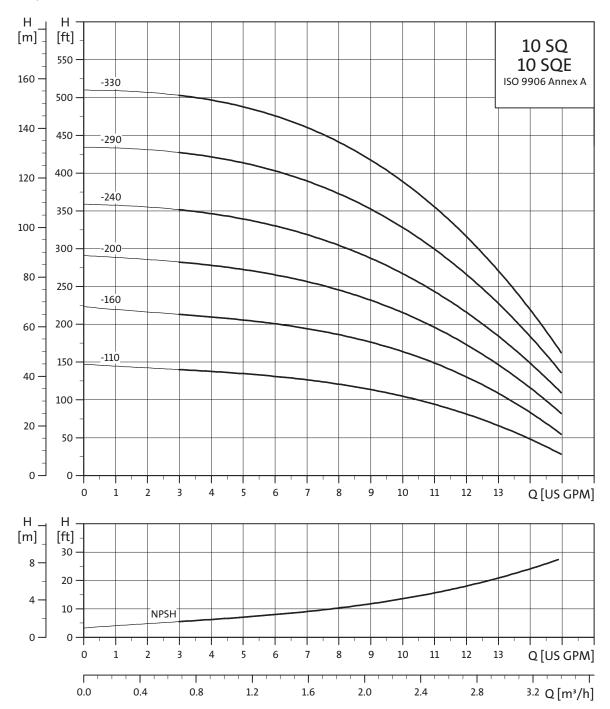
Note: All calculated head requirements must lie between the selected pump models minimum and maximum speed curves.

6. Cable sizing

Cable sizing chart

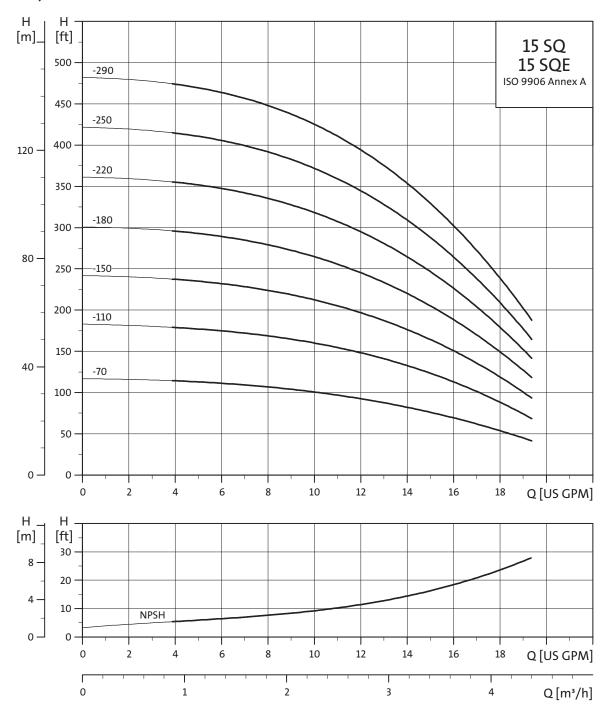

Motor rating			Copper wire size (AWG)						
Volts	Нр	Amps	14	12	10	8	6	4	2
115	0.5	12	140	220	360	550	880	1390	2260
230	0.5	5.2	640	1000	1660	2250	4060	_	_
230	0.75	8.4	400	620	1030	1580	2510	3970	_
230	1	11.2	300	460	770	1190	1890	2980	4850
230	1.5	12	280	430	720	1110	1760	2780	4530

Cable length in feet.

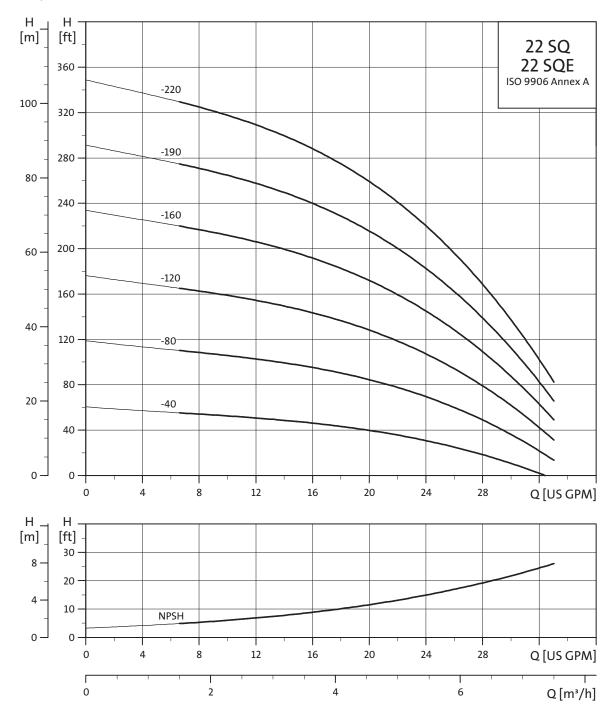

Note: shaded values do not apply when using a CU 301 as its max. recommended cable length is 650 ft.

7. SQ curve charts

5 SQ, SQE

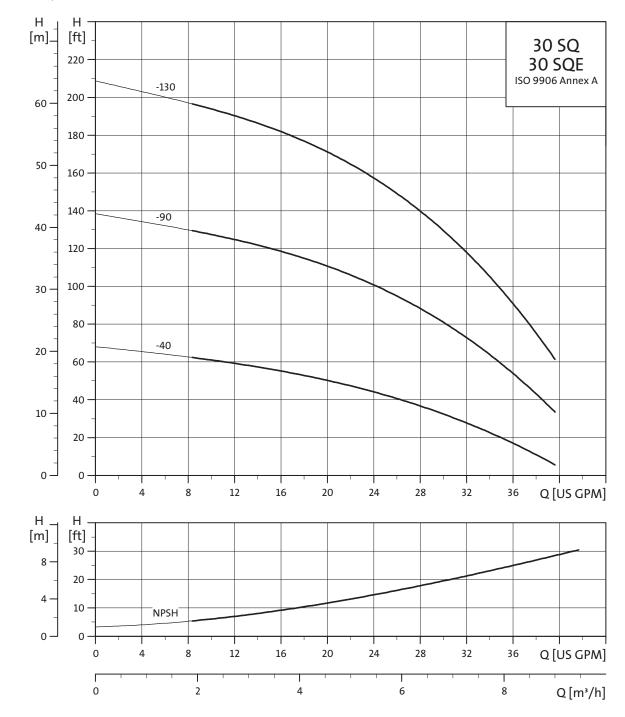


10 SQ, SQE

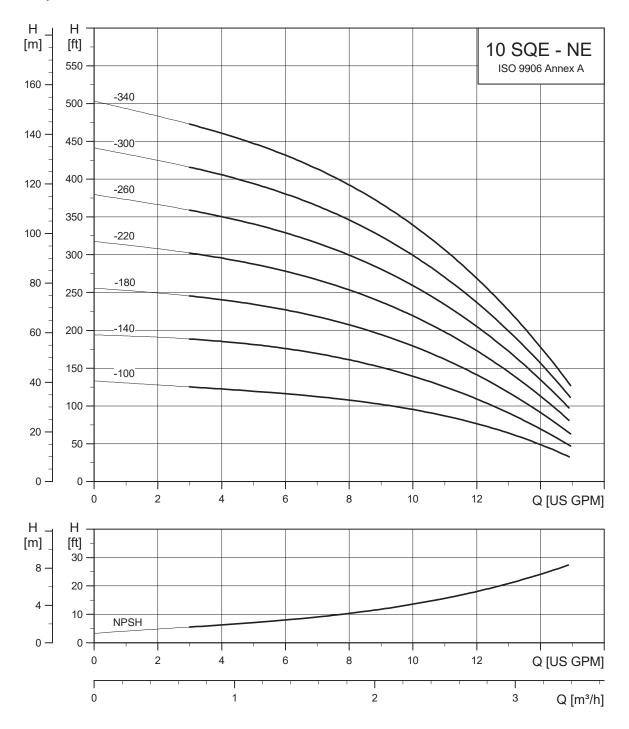


TM04 7464 2010

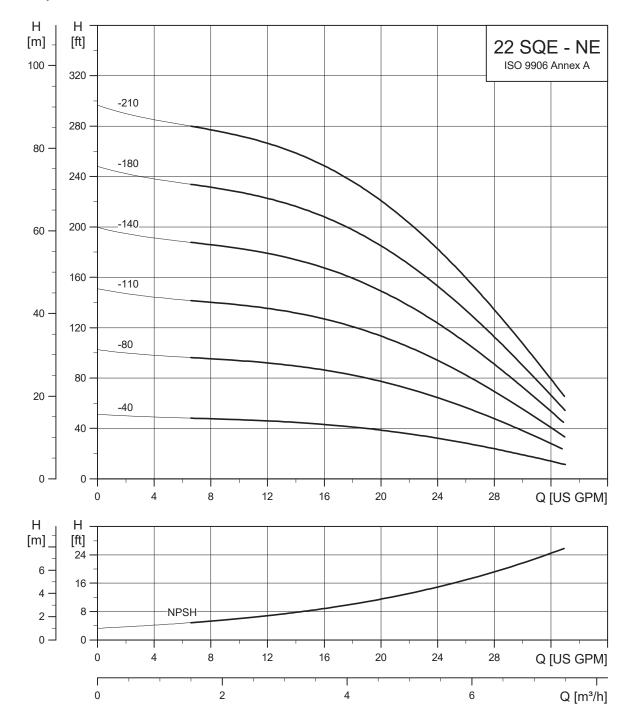
15 SQ, SQE



22 SQ, SQE



TM04 7466 2010


30 SQ, SQE

10 SQE-NE

22 SQE-NE

8. Technical data

Electrical data

Supply voltage:	1x200-240V +6%/-10%, 50/60 Hz, PE 1x100-115V +6%/-10%, 50/60 Hz, PE				
Operation via generator:	As a minimum, the generator output must be equal to the motor P1[kw] + 10%				
Starting current:	The motor starting current is equal to the highest value stated on the motor nameplate				
Starting:	Soft Start				
Run-up time:	Maximum: 2 seconds				
Motor protection:	Motor is protected against: - Dry running - overvoltage - undervoltage - overload - overtemperature.				
Power factor:	PF=1				
Motor cable:	3 wire, 14AWG XLPE, 5 ft				
Motor liquid:	Type SML 2				
H Values: SQ and SQE: 5 to 9 SQE-NE: 2 to 13					
Liquid temperature:	The temperature of the pumped liquid must not exceed 86 °F (30 °C)				

Note: If liquids with a viscosity higher than that of water are to be pumped, please contact Grundfos.

Control units CU 300 and CU 301

Voltage:	1 x 100-240 V – 10 %/+ 6 %, 50/60 Hz, PE	
Power consumption:	5 W	
Current consumption:	Maximum 130 mA	
Enclosure class:	IP 55	
Ambient temperature:	During operation: –22 °F to +122 °F (–30 °C to +50 °C) During storage: –22 °F to 140 °F (–30 °C to +60 °C)	
Relative air humidity:	95 %.	
Pump cable:	Maximum length between CU 300 or CU 301 and pump: 650 ft (198 m)	
Back-up fuse:	Maximum: 16 A	
Radio noise:	CU 300 and CU 301 comply with EMC Directive 89/336/EEC. Approved according to the standards EN 55014 and EN 55014-2	
Marking:	CE, cUL (CU 301)	
Load:	Max. 100 mA	

Operating conditions

Minimum ambient fluid temperature:	+34 °F (+1 °C)
Maximum ambient fluid temperature:	+86 °F (+30 °C)
Well diameter:	3-inch or larger
Installation depth (maximum):	500 feet below static water level

Storage conditions

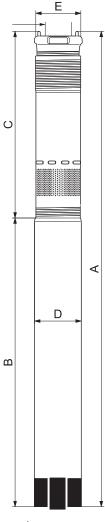
Minimum ambient temperature:	-4 °F (-20 °C)
Maximum ambient temperature:	+140 °F (+60 °F)
Frost protection:	If the pump has to be stored after use, it must be stored at a frost-free location, or it must be ensured that the motor liquid is frost-proof.

Motor data

Down town	11-	∐n Voltogo		d amps	Overloa	ad amps	Min.	Diaghama
Pump type	Нр	Hp Voltage -	230V	115V	230V	115V	well diameter	Discharge
5SQE05-90	1/2	230V / 115V	2.1	4.2	5	11	3"	1" NPT
5SQE05-140	1/2	230V / 115V	2.9	6.0	5	11	3"	1" NPT
5SQE05-180	1/2	230V / 115V	3.7	7.7	5	11	3"	1" NPT
5SQE07-230	3/4	230V	4.6	-	8	-	3"	1" NPT
5SQE07-270	3/4	230V	5.3	-	8	-	3"	1" NPT
5SQE07-320	3/4	230V	6.2	-	8	-	3"	1" NPT
5SQE10-360	1	230V	7.2	-	11		3"	1" NPT
5SQE10-410	1	230V	8.1	-	11	-	3"	1" NPT
5SQE15-450	1 1/2	230V	9.2	-	12	-	3"	1" NPT
10SQE05-110	1/2	230V / 115V	2.9	6.1	5	11	3"	1 1/4" NPT
10SQE05-160	1/2	230V / 115V	4.1	8.6	8	11	3"	1 1/4" NPT
10SQE07-200	3/4	230V	5.3	-	8	-	3"	1 1/4" NPT
10SQE7-240	3/4	230V	6.0	_	8	-	3"	1 1/4" NPT
10SQE10-290	1	230V	7.7	_	11	-	3"	1 1/4" NPT
10SQE15-330	1 1/2	230V	8.9	-	12		3"	1 1/4" NPT
15SQE05-70	1/2	230V / 115V	2.9	6.0	5	11	3"	1 1/4" NPT
15SQE05-110	1/2	230V / 115V	4.0	8.3	5	11	3"	1 1/4" NPT
15SQE07-150	3/4	230V	5.1	-	8	-	3"	1 1/4" NPT
15SQE07-180	3/4	230V	6.2	-	8	-	3"	1 1/4" NPT
15SQE10-220	1	230V	7.4	_	11	-	3"	1 1/4" NPT
15SQE10-250	1	230V	8.4	-	11	-	3"	1 1/4" NPT
15SQE15-290	1 1/2	230V	9.7	-	12	-	3"	1 1/4" NPT
22SQE05-40	1/2	230V / 115V	1.9	3.9	5	-	3"	1 1/2" NPT
22SQE05-80	1/2	230V / 115V	3.4	7.2	5	-	3"	1 1/2" NPT
22SQE07-120	3/4	230V	4.9	-	8	-	3"	1 1/2" NPT
22SQE10-160	1	230V	6.4	-	8	-	3"	1 1/2" NPT
22SQE10-190	1	230V	7.9	-	11	-	3"	1 1/2" NPT
22SQE15-220	1 1/2	230V	9.5	-	12	-	3"	1 1/2" NPT
30SQE05-40	1/2	230V / 115V	2.8	5.7	5	-	3"	1 1/2" NPT
30SQE07-90	3/4	230V	5.2	-	8	-	3"	1 1/2" NPT
30SQE10-130	1	230V	7.6	-	11	-	3"	1 1/2" NPT

Dimensions and weights

SQ, SQE

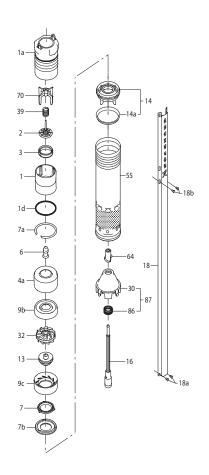

Model	Нр	Motor	Discharge		Dime	ensions in inc	ches		Approx
Wiodei	пр	size	size	Α	В	С	D	E	ship. wt
5SQ/SQE05-90	1/2	3"	1" NPT	30.4	19.8	10.6	2.6	2.9	12
5SQ/SQE05-140	1/2	3"	1" NPT	30.4	19.8	10.6	2.6	2.9	12
5SQ/SQE05-180	1/2	3"	1" NPT	31.5	19.8	11.6	2.6	2.9	12
5SQ/SQE07-230	3/4	3"	1" NPT	33.6	19.8	13.7	2.6	2.9	13
5SQ/SQE07-270	3/4	3"	1" NPT	33.6	19.8	13.7	2.6	2.9	13
5SQ/SQE07-320	3/4	3"	1" NPT	34.6	19.8	14.8	2.6	2.9	13
5SQ/SQE10-360	1	3"	1" NPT	38.2	21.3	16.9	2.6	2.9	16
5SQ/SQE10-410	1	3"	1" NPT	38.2	21.3	16.9	2.6	2.9	16
5SQ/SQE15-450	1 1/2	3"	1" NPT	39.3	21.3	18.0	2.6	2.9	16
10SQ/SQE05-110	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
0SQ/SQE05-160	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
0SQ/SQE07-200	3/4	3"	1 1/4" NPT	31.5	19.8	11.6	2.6	2.9	13
0SQ/SQE07-260	3/4	3"	1 1/4" NPT	33.6	19.8	13.7	2.6	2.9	13
10SQ/SQE10-290	1	3"	1 1/4" NPT	35.0	21.3	13.7	2.6	2.9	16
10SQ/SQE15-330	1 1/2	3"	1 1/4" NPT	36.14	21.3	14.8	2.6	2.9	16
15SQ/SQE05-70	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
15SQ/SQE05-110	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
15SQ/SQE07-150	3/4	3"	1 1/4" NPT	31.5	19.8	11.6	2.6	2.9	13
5SQ/SQE07-180	3/4	3"	1 1/4" NPT	33.6	19.8	13.7	2.6	2.9	13
5SQ/SQE10-220	1	3"	1 1/4" NPT	35.0	21.3	13.7	2.6	2.9	16
5SQ/SQE10-250	1	3"	1 1/4" NPT	36.1	21.3	14.8	2.6	2.9	16
5SQ/SQE10-290	1 1/2	3"	1 1/4" NPT	38.2	21.3	16.9	2.6	2.9	16
22SQ/SQE05-40	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQ/SQE05-80	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQ/SQE07-120	3/4	3"	1 1/2" NPT	31.5	19.8	11.6	2.6	2.9	13
22SQ/SQE10-160	1	3"	1 1/2" NPT	33.6	19.8	13.7	2.6	2.9	13
22SQ/SQE10-190	1	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16
22SQ/SQE15-220	1 1/2	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16
2000/00505 40	1/0	3"	1 1/2" NPT	20.4	10.0	10.6	2.6	2.0	12
30SQ/SQE05-40 30SQ/SQE07-90	1/2	3"	1 1/2 NPT	30.4	19.8	10.6	2.6	2.9	
30SQ/SQE07-90 30SQ/SQE10-130	3/4	3"	1 1/2 NPT	30.4	19.8	10.6	2.6	2.9	13 13
SQE-NE	1		1 1/2 101 1	33.0	21.0	10.7	2.0	2.9	13
10SQE-05-100NE	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
10SQE-05-140NE	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
10SQE-05-180NE	3/4	3"	1 1/4" NPT	31.5	19.8	11.6	2.6	2.9	13
10SQE-07-220NE	3/4	3"	1 1/4" NPT	33.6	19.8	13.7	2.6	2.9	13
10SQE-10-260NE	1	3"	1 1/4" NPT	35.0	21.3	13.7	2.6	2.9	16
10SQE-10-300NE	1	3"	1 1/4" NPT	36.1	21.3	14.8	2.6	2.9	16
10SQE-10-340NE	1	3"	1 1/4" NPT	38.2	21.3	16.9	2.6	2.9	16
220000 4000	4/0	2"	1 1/0" NDT	20.4	10.0	10.6	0.6	2.0	40
22SQE05-40NE	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQE05-80NE	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQE07-110NE	3/4	3"	1 1/2" NPT	31.5	19.8	11.6	2.6	2.9	13
22SQE07-140NE	3/4	3"	1 1/2" NPT	33.6	19.8	13.7	2.6	2.9	13
22SQE10-180NE	1	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16
22SQE10-210NE	1	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16

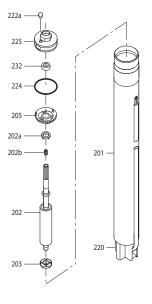
9. Construction

Materials of construction

SQ, SQE					
Component	Splined shaft				
Valve casing	Polyamide				
Discharge chamber	304 stainless steel				
Valve guide	Polyamide				
Valve spring	316LN stainless steel				
Valve cone	Polyamide				
Valve seat	NBR rubber				
O-ring	NBR rubber				
Lock ring	310 stainless steel				
Top bearing	NBR rubber				
Top chamber	Polyamide				
Guide vanes	Polyamide				
Impeller	Polyamide w/ tungsten carbide bearings				
Bottom chamber	Polyamide				
Neck ring	TPU / PBT				
Bearing	Aluminum oxide				
Suction interconnector	Polyamide				
Ring	304 stainless steel				
Pump sleeve	304 stainless steel				
Pressure equalization cone	Polyamide				
Spacer	Polyamide				
Sand trap	316 stainless steel				
Shaft w/coupling	304 stainless steel				
Cable guard	304 stainless steel				

SQE-NE					
Component	Splined shaft				
Valve casing	PVDF				
Discharge chamber	316 stainless steel				
O-ring	FPM rubber				
Valve cone	PVDF				
Valve seat	FPM rubber				
Top chamber	PVDF				
Empty chamber	PVDF				
Top bearing	FPM rubber				
Neck ring	PVDF				
Lock ring	316 stainless steel				
Guide vanes	PVDF				
Bottom chamber	PVDF				
Impeller w/ tungsten carbide bearing	PVDF				
Suction interconnector	PVDF				
Ring	316 stainless steel				
Chaft was unline	Sintered steel				
Shaft w/coupling	316 stainless steel				
Cable guard	316 stainless steel				
Cable guard screws	316 stainless steel				
Pressure equalization cone	PVDF				
Valve spring	316 stainless steel				
Pump sleeve	316 stainless steel				
Valve guide	PVDF				
Spacer	316 stainless steel				




Discharge sizes:
1" NPT 5 SQ/SQE
1 1/4" NPT 10 - 15 SQ/SQE
1 1/2" NPT 22-30 SQ/SQE

Material specification

		Pump)			
Pos.	Component	Material	DIN W-Nr. SQ/SQE	AISI	DIN W-Nr. SQ/-NE	AISI
1	Valve casing	Polyamide	1.4301	304	1.4401	316
1a	Discharge chamber	Stainless steel				
1d	O-ring	NBR rubber				
2	Valve cup	Polyamide				
3	Valve seat	NBR rubber				
4a	Empty chamber	Polyamide				
6	Top bearing	NBR rubber				
7	Neck ring	TPU / PBT				
7a	Lock ring	Stainless spring steel	1.4301	310	1.4401	316
7b	Neck ring retainer	Polyamide				
9b	Chamber top	Polyamide				
9c	Chamber bottom	Polyamide				
13	Impeller with tungsten carbide bearing	Polyamide				
14	Suction inter-connector	Polyamide				
14a	Ring	Stainless steel	1.4301	304	1.4401	316
16	Shaft with coupling	Stainless steel	1.4301	304	1.4401	316
10	Shalt with coupling	Sintered steel				
18	Cable guard	Stainless steel	1.4301	304	1.4401	316
18a 18b	Screws for cable guard	Stainless steel	1.4301	316	1.4401	316
30	Cone for pressure equalization	Polyamide				
32	Guide vanes	Polyamide				
39	Spring	Stainless spring steel	1.4406	316LN	1.4406	316LN
55	Pump sleeve	Stainless steel	1.4301	304	1.4401	316
64	Priming screw	Polyamide				
70	Valve guide	Polyamide				
86	Lip seal ring	NBR rubber				
87	Cone for pressure equalization complete	Polyamide / NBR rubber				

	Motor							
Pos.	Component	Material	DIN W-Nr. SQ-SQE	AISI	DIN W-Nr. SQE-NE	AISI		
201	Stator	Stainless steel	1.4301	304	1.4401	316		
202	Rotor	Stainless steel	1.4301	304	1.4401	316		
202a	Stop ring	PP						
202b	Filter	Polyester						
203	Thrust bearing	Carbon						
205	Radial bearing	Ceramic tungsten carbine						
220	Motor cable with plug	EPR						
222a	Filling plug	MS 3: NBR MSE 3: FKM						
224	O-ring	FKM						
225	Top cover	PPS						
232	Shaft seal	MS 3: NBR MSE 3: FKM						
	Motor liquid	SML-2						

11 2745 2016

10. Control units

CU 301

The CU 301 is a control and communication unit developed especially for the SQE submersible pumps in constant-pressure applications.

The CU 301 control unit provides:

- · Full control of the SQE pumps
- · two-way communication with the SQE pumps
- · possibility of adjusting the pressure
- · alarm indication (LED) when service is needed
- possibility of starting, stopping and resetting the pump simply by means of a push-button
- · configuration with R100 remote control.

The CU 301 communicates with the pump via mains borne signalling (Power Line Communication), meaning that no extra cables are required between the CU 301 and the pump.

The CU 301 features the following indications (see drawing in right column):

- 1. Pump running indicator
- 2. System pressure setting
- 3. System ON/OFF
- 4. Button lock indicator
- 5. Dry-running indicator
- 6. Service needed in case of:
 - -- no contact to pump
 - overvoltage
 - undervoltage
 - speed reduction
 - overtemperature
 - overload
 - sensor defective.

The CU 301 incorporates:

- · External signal input for pressure sensor
- connection to an operating relay for indication of pump operation.

Optional R100 remote control

Wireless infrared remote control of the CU 301 is possible by means of the R100.

Using the R100, it is possible to monitor and change the operating parameters, see the R100 menu structure on page 31.

The R100 is a valuable tool in case fault finding is required.

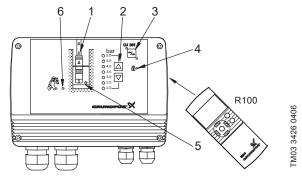


Fig. 15 CU 301 control unit

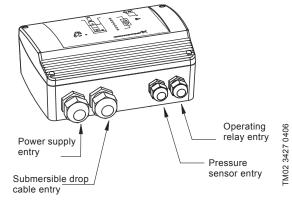


Fig. 16 CU 301 entry ports

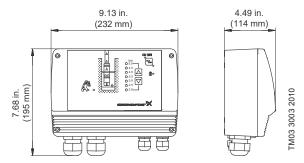
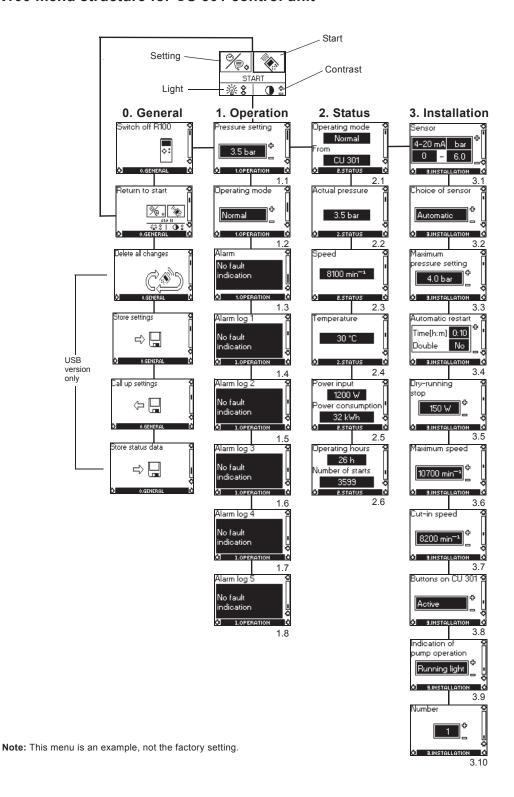



Fig. 17 CU 301 dimensions

R100 menu structure for CU 301 control unit

R100 menus for CU 301

0. General

1. Operation

- 1.1 Setpoint setting
- 1.2 Selection of operating mode
- 1.3 Alarm indication.

2. Status

The indication of:

- 2.1 Actual operating mode
- 2.2 Actual pressure
- 2.3 Actual motor speed
- 2.4 Actual motor temperature
- 2.5 Actual power input and accumulated motor power consumption
- 2.6 Accumulated number of operating hours and accumulated number of starts.

3.Installation

- 3.1 Sensor parameters
- 3.2 Choice of sensor
- 3.3 Setting of maximum pressure setpoint
- 3.4 Setting of automatic restart time
- 3.5 Setting of the dry-running stop limit
- 3.6 Setting of the maximum motor speed
- 3.7 Setting of the cut-in motor speed
- 3.8 Activating or deactivating the on/off-button and the buttons for system pressure setting on the CU 301
- 3.9 Indication of pump operation
- 3.10 Allocation of identification number.

CU 300

The CU 300 is a control and communication unit developed especially for the SQE submersible pumps for control applications other than constant pressure.

The CU 300 control unit provides:

- Flexible pump control based on various sensor inputs
- two-way communication with the SQE pumps
- alarm indication of pump operation by LED's on the front
- possibility of starting, stopping and resetting the pump simply by means of a push-button
- · communication with R100 remote control.

The CU 300 communicates with the pump via mains borne signalling (Power Line Communication), meaning that no extra cables are required between the CU 300 and the pump.

The following alarms can be indicated by the CU 300:

- No contact
- overvoltage
- undervoltage
- dry running
- · speed reduction
- overtemperature
- overload
- · sensor alarm.

The CU 300 incorporates:

- External signal input for two analog sensors and one digital sensor
- · relay output for external alarm indication
- control according to the signals received, e.g. of flow, pressure, water level and conductivity.

R100 remote control

Wireless infrared remote control of the CU 300 is possible by means of the R100.

Using the R100, it is possible to monitor and change the operating parameters, see the R100 menu structure on page 34.

The R100 is a valuable tool in case fault finding is required.

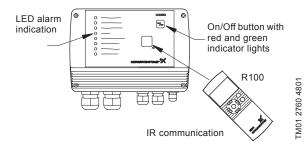


Fig. 18 CU 300 control unit with R100

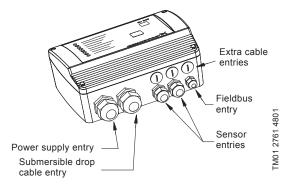


Fig. 19 CU 300 control unit, external entry ports

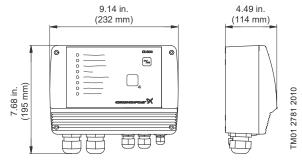
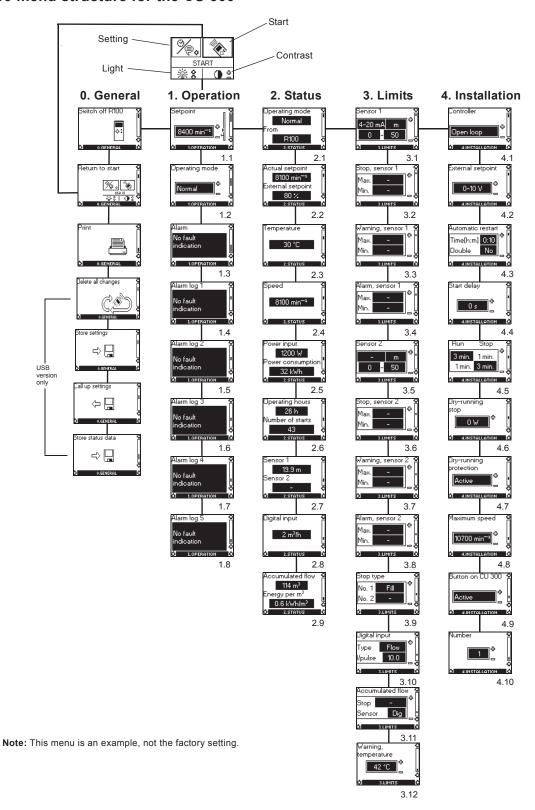



Fig. 20 CU 300 dimensions

R100 menu structure for the CU 300

R100 menus for CU 300

0. General

1. Operation

- 1.1 Setpoint setting
- 1.2 Selection of operating mode
- 1.3 Alarm indication.

2. Status

The indication of:

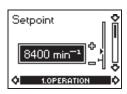
- 2.1 Actual operating mode
- 2.2 Actual and external setpoint
- 2.3 Actual motor temperature
- 2.4 Actual motor speed
- 2.5 Actual power input and accumulated motor power consumption
- 2.6 Accumulated number of operating hours and accumulated number of starts
- 2.7 Actual values of sensors 1 and 2, respectively
- 2.8 Actual values of the digital input
- 2.9 Accumulated flow, and the power used to pump.

R100 offers the possibility of making a number of settings.

3. Limits

The setting of:

- 3.1 Sensor 1 parameters
- 3.2 Min. and max. stop limits of sensor 1
- 3.3 Min. and max. warning limits of sensor 1
- 3.4 Min. and max. alarm limits of sensor 1
- 3.5 Sensor 2 parameters
- 3.6 Min. and max. stop limits of sensor 2
- 3.7 Min. and max. warning limits of sensor 2
- 3.8 Min. and max. alarm limits of sensor 2
- 3.9 Filling or emptying
- 3.10 Setting of the function of the digital sensor connected to the digital input
- 3.11 The setting of the water quantity stop limit and the setting of the sensor to detect water quantity
- 3.12 The setting of the temperature warning limits of the motor electronics.


4. Installation

- 4.1 Selection of controller open loop, closed loop
- 4.2 Setting of external setpoint
- 4.3 Setting of automatic restart time
- 4.4 Allocation of individual start delays
- 4.5 Setting of the stop and run times for the dewatering function
- 4.6 Setting of the dry-running stop limit
- 4.7 Activating or deactivating the dry-running protection
- 4.8 Setting of the maximum motor speed
- 4.9 Activating or deactivating the on/off-button on the CU 300
- 4.10 Allocation of ID number where more than one CU 300 is installed.

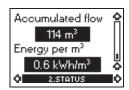
Examples of R100 displays

Menu OPERATION

Setpoint setting

1.1

From factory, the pump is set to maximum speed, 10,700 rpm. R100 makes it possible to reduce the pump speed by changing the setpoint. The speed can be set to 3,000 - 10,700 rpm, at 100 rpm intervals.


The unit of the setpoint is automatically changed according to the unit of the sensor connected to sensor input 1.

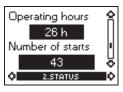
Example: Sensor input 1 is connected to a pressure sensor using the unit feet (ft) and the range 0-60. Consequently, the setpoint of display 1.1 can be set to between 0-60 ft.

Menu STATUS

The displays appearing in this menu are status displays only. It is not possible to change settings in this menu.

Accumulated flow

2.9


In display 2.9, the water quantity (m³)* pumped is shown. The value shown is the accumulated flow registered by the sensor selected in display 3.11.

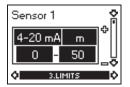
The power used to pump 1 m³ is shown in the display as energy per m³ (kWh/m³).

It is possible to read the status of the accumulated flow and energy per m^3 at any time.

*Water quantity in units of gpm can be chosen.

Accumulated number of operating hours and number of starts

2.6


The number of operating hours and the number of starts are values accumulated from the time of installation and they cannot be reset.

Both values are stored in the motor electronics, and they are kept even if the CU 300 is replaced.

The number of operating hours is registered every two hours of continuous operation.

Menu LIMITS

Sensor 1

3.1

The setting of sensor 1.

Depending on the type of sensor, the following settings can be made:

- Sensor outputs:
 - (not active), 0-10 V, 2-10 V, 0-20 mA, 4-20 mA
- setting range unit: m³/h, m, %, gpm, ft
- sensor minimum value: 0-249 (0, 1, 2, 3....249)
- sensor maximum value: 1-250 (1, 2, 3, 4.....250).

11. CU331SP variable frequency drive

Features

User interface

The user interface offers these possibilities:

- Local operation via a control panel with graphic display where the menu structure is based on the well-known system from Grundfos E-pumps.
- Monitoring of operating status via indicator lights and signal relays.
- Display of alarm or warning and logging of the last five alarms and warnings.

Functions

Control mode: Constant pressure

The CU331SP has only one control mode, Constant pressure. The pressure is kept constant, independently of the flow rate.

Start-up guide

The CU331SP has a start-up guide, which is launched at the first power up. Parameters are set manually on the basis of the installation. The start-up guide can be repeated, if necessary.

Thanks to the start-up guide, the installer can quickly set a few parameters and put the CU331SP into operation.

Direction of rotation test

During start-up, the CU331SP automatically tests and sets the correct direction of rotation without changing the cable connections. The direction of rotation test can be performed manually if it fails for any reason.

Dry-running protection

To protect the pump, the CU331SP will automatically set up dry-run protection so that water shortage can be detected. The dry-run alarm will automatically reset 30 minutes after the alarm is declared.

Low-flow stop function

The low-flow stop function is used for changing between on/off operation at low flow rate and continuous operation at high flow rate.

The low-flow stop function protects the pump and saves energy.

Applications

For 4" or larger wells. Main applications:

- Domestic and light commercial water supply
- irrigation
- · livestock watering
- water transfer.

System components

- Compact, efficient, and reliable variable frequency drive
- rugged stainless steel pump end and proven, reliable, 3-phase motor
- pressure sensor
- · diaphragm tank (sold separately).

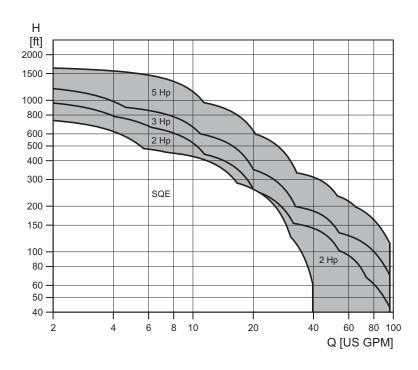
5 5801 4012

Fig. 21 CU331SP variable frequency drive and sensor

Identification

Nameplate

The CU331SP can be identified by means of the nameplate. An example is shown below.


Fig. 22 Example of nameplate

Key					
Text	Description				
T/C:	CU-331 (product name)				
Prod.no:	Product number (98370280)				
S/N:	Serial number (000201H462) The last four digits indicate the production date. In this case, 46 is the week, and 2 is the year 2012.				
3.0 hp	Typical shaft power on the motor				
IN:	Supply voltage, frequency and maximum input current.				
OUT:	Motor voltage, frequency and maximum output current. The maximum output frequency usually depends on the pump type.				
Type 12 / IP55	Enclosure class				
Tamb.	Maximum ambient temperature				

CU331SP product range

Enclosure type	NEMA	Нр	Input Ph	Input volts
		2	1	200 - 240
Indoor	Type 12	3	1	200 - 240
		5	1	200 - 240
		2	1	200 - 240
Outdoor	Type 4X	3	1	200 - 240
		5	1	200 - 240

CU331SP performance range

0

CU331SP sizing

Step 1

Calculate maximum head requirements at rated flow conditions:

H_{max}=dynamic head + system psi (in feet) + friction loss + above grade elevation.

Step 2

Select pump from performance curves as follows:

Select a model in which the calculated value of H_{max} is within the maximum performance curve of the pump. Refer to section *CU331SP curve charts* on page 53.

Step 3

Select the CU331SP that corresponds to the correct motor Hp and enclosure type.

CU331SP operation

Menu structure

The CU331SP has a start-up guide, which is launched at the first power up. After the start-up guide, the CU331SP has a menu structure divided into four main menus:

- **0. GENERAL** gives access to the start-up guide for the general setting of the CU331SP.
- **1. OPERATION** enables the setting of setpoint and resetting of alarms. It is also possible to see the latest five warnings and alarms.
- **2. STATUS** shows the status of the CU331SP and the pump. It is not possible to change or set values.
- **3. INSTALLATION** gives access to available parameters.

CU331SP menu overview

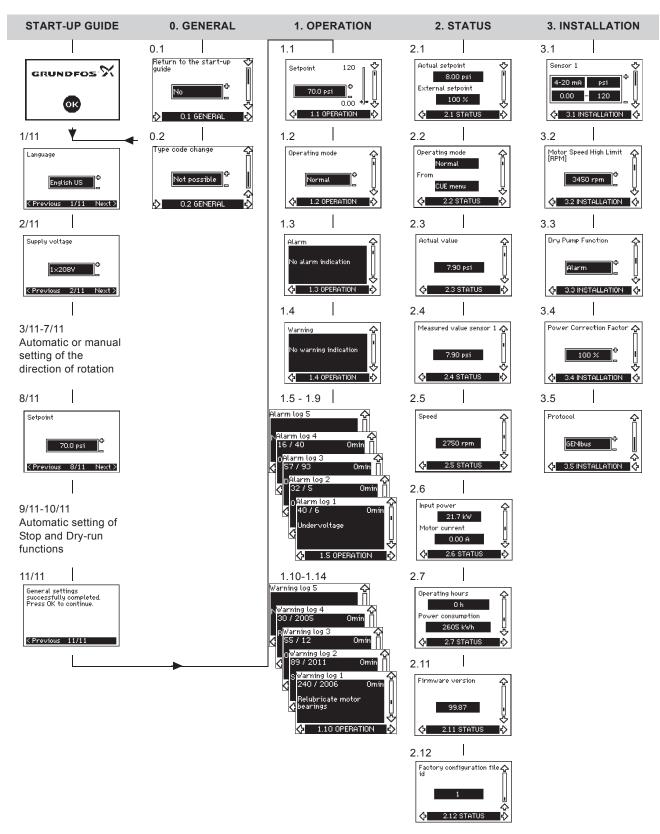


Fig. 23 Menu overview

Operating modes

These operating modes can be selected with the CU331SP:

- Normal
- Stop
- Min.
- Max.

The operating modes can be set without changing the setpoint setting.

Normal

The pump operates in constant pressure mode.

Stop

The pump has been stopped by user.

Min. curve

The pump is running at a set minimum speed value. See fig. 24.

For instance, this operating mode can be used during periods with a very small flow requirement.

Max. curve

The pump is running at a set maximum speed value.

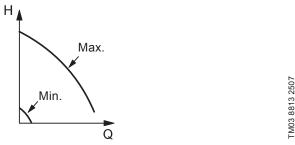


Fig. 24 Min. and max. curves

Control mode

The CU331SP has been developed specifically to operate submersible pumps in Constant Pressure mode. This Closed-Loop control mode uses an analog pressure transducer to provide pressure feedback to the drive.

Constant pressure with stop function

The outlet pressure is kept constant at high flow rate (Q > Qmin). On/off operation at low flow rate. See fig. 25.

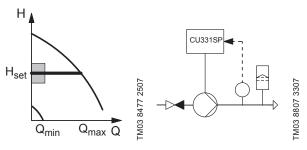


Fig. 25 Constant pressure with stop function

The pump is controlled according to a constant pressure measured after the pump. This means that the pump offers a constant pressure in the Q-range of Q_{min} to Q_{max} , represented by the horizontal line in the QH diagram.

Setting the setpoint by means of the OPERATION menu

The setpoint can be set or changed during operation using the setpoint display in the "OPERATION" menu shown below. It is not necessary to run the start guide to change the setpoint.

Low flow and stop functions

The pump will check the flow regularly by reducing the speed for a short time. If there is no or only a small change in pressure, this means that there is low flow.

The speed will be increased until the stop pressure (actual setpoint + 0.5 x Δ H) is reached and the pump will stop after a few moments. The pump will restart at the latest when the pressure has fallen to the start pressure (actual setpoint - 0.5 x Δ H).

Operating conditions for the stop function

It is only possible to use the stop function if the system incorporates a pressure sensor, a non-return valve and a diaphragm tank.

The non-return valve must always be installed before the pressure sensor.

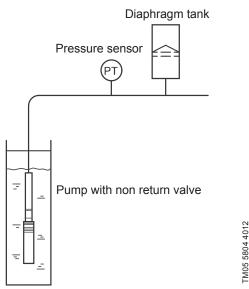


Fig. 26 Position of the pressure sensor and diaphragm

Diaphragm tank

The stop function requires a diaphragm tank of a certain minimum size. The tank must be installed as close as possible after the pump and the precharge pressure must be 0.7 x actual setpoint.

Recommended diaphragm tank size:

Rated flow of pump [gpm (m ³ /h)]	Typical diaphragm tank size [gal (I)]
0-26 (0-6)	2 (7.5)
27-105 (7-24)	4 (15.1)

If a diaphragm tank of the above size is installed in the system, the factory setting of ΔH is the correct setting. If the tank installed is too small, the pump will start and stop too often.

Setting the direction of rotation

The start-up guide is started the first time the CU331SP is connected to supply voltage. Then while going through the start-up guide, the CU331SP tests and sets the correct direction of rotation without changing the cable connections to the motor.

The correct direction of rotation can be set in these ways:

- · automatic setting.
- manual setting when the direction of rotation is not visible.

Automatic setting

The CU331SP automatically tests and sets the correct direction of rotation without changing the cable connections.

Automatic setting requires a sensor.

This test is not suitable for all pump types and will in certain cases not be able to determine for certainty the correct direction of rotation. In these cases, the CU331SP changes over to manual setting where the direction of rotation is determined on the basis of the installer's observations.

Manual setting when the direction of rotation is not visible

The correct direction of rotation is set manually without changing the cable connections. This requires that it is possible to observe the head or flow rate.

Status functions

The CU331SP shows the following data:

- · power consumption
- operating hours
- measured value
- speed
- input power
- · motor current.

The status information can be shown in the display.

Power consumption

The value of the power consumption is an accumulated value calculated from the pump's startup date and cannot be reset. No additional sensor is required.

Operating hours

The value of operating hours is an accumulated value calculated from the pump's startup date and cannot be reset. No additional sensor is required.

Measured value

Sensor display will show the actual pressure as received from the pressure transducer.

Speed

Display will show the motor speed in RPM's (calculated).

Input power

Display will show the power consumption in kW.

Motor current

Display will show the actual motor current being used.

Logging functions

Alarm and warning log

The latest five alarms and five warnings are logged with a timestamp corresponding to the power-on time after the fault has occurred. The alarm and warning log can be shown directly on the display.

See section Warning and alarm list.

TM05 5990 4012

Signal relays

The table shows the function of the signal relays.

Туре	Function	
Relay 1	Pump running	
Relay 2	• Alarm	

See also fig. 27.

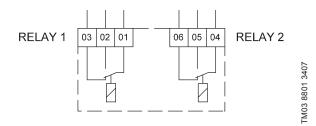


Fig. 27 Terminals for signal relays (normal state, not activated)

Terminal		Function
C1	C2	Common
NO 1	NO 2	Normally open contact
NC1	NC2	Normally closed contact

CU331SP installation

Mechanical installation

The individual CU331SP cabinet sizes are characterized by their enclosures. The table in section *CU331SP technical data* shows the relationship of enclosure class and enclosure type.

Reception and storage

Check on receipt that the packaging is intact, and the unit is complete. In case of damage during transport, contact the transport company to file a claim.

Note that the CU331SP is delivered in a packaging which is not suitable for outdoor storage.

Transportation and unpacking

The CU331SP must only be unpacked at the installation site to prevent damage during the transport to the site.

The packaging contains accessory bag(s), documentation and the unit itself. See fig. 28.

Fig. 28 CU331SP packaging

Space requirements and air circulation

CU331SP units can be mounted side by side, but as a sufficient air circulation is required for cooling these requirements must be met:

- Sufficient free space above and below the CU331SP
- Ambient temperature up to 122°F (50 °C)
- Hang the CU331SP directly on the wall, or fit it with a back plate. See fig. 29.

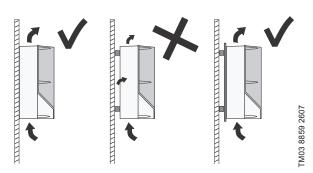


Fig. 29 CU331SP hung directly on the wall or fitted with a back plate

Required free space above and below the CU331SP:

Enclosure	Space [in (mm)]		
B1	7.9 (200)		

For information about enclosure, see section *Enclosure*.

Mounting

The CU331SP must be mounted securely on a firm surface. Ensure that screws are sized appropriately for the weight of the CU331SP (approximately 60 lbs) and anchored securely to the mounting surface.

- 1. Mark and drill holes. See fig. 30; also see section *Main dimensions and weight*.
- 2. Fit the screws, but leave loose. Mount the CU331SP, and tighten the four screws.

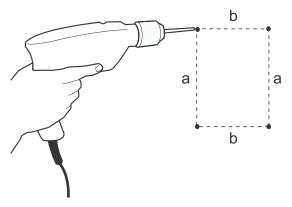


Fig. 30 Drilling holes for mounting

CU331SP electrical connection

Ensure the correct grounding and protection procedures are used for the installation. Before the electrical installation, ensure that the power supply and other voltage inputs are switched off.

Electrical protection

Protection against electric shock, indirect contact

The leakage current to ground exceeds 3.5 mA, and a reinforced ground connection is required.

Protective conductors must always have a yellow/ green (PE) or yellow/green/blue (PEN) color marking. Instructions according to EN IEC 61800-5-1:

- The CU331SP must be stationary, installed permanently and connected permanently to the mains supply.
- The ground connection must be carried out with duplicate protective conductors or with a single reinforced protective conductor with a cross-section of minimum AWG 7 (10 mm²).

Protection against short-circuit, fuses

The CU331SP and the supply system must be protected against short-circuit.

Grundfos requires that the back-up fuses are used for protection against short-circuit.

The CU331SP offers complete short-circuit protection in case of a short-circuit on the motor output.

Additional protection

The leakage current to ground exceeds 3.5 mA.

If the CU331SP is connected to an electrical installation where an earth leakage circuit breaker (ELCB) is used as additional protection, the circuit breaker must be of a type marked with the following symbols:

Fig. 31 Circuit breaker type B

The total leakage current of all the electrical equipment in the installation must be taken into account.

During start and in asymmetrical supply systems, the leakage current can be higher than normal and may cause the ELCB to trip.

Motor protection

FM03 8860 2607

The motor requires no external motor protection. The CU331SP protects the motor against thermal overloading and blocking.

Protection against overcurrent

The CU331SP has an internal overcurrent protection for overload protection on the motor output.

Protection against mains voltage transients

The CU331SP is protected against mains voltage transients according to EN 61800-3, second environment.

Mains and motor connection

The supply voltage and frequency are marked on the CU331SP nameplate. Make sure that the CU331SP is suitable for the power supply of the installation site.

The maximum output voltage of the CU331SP is equal to the input.

Example: if the supply voltage is rated at 208V choose a 208V motor for operation.

Mains switch

A mains switch can be installed before the CU331SP according to local regulations. See fig. 32.

Wiring diagram

The wires in the terminal box must be as short as possible. Excepted from this is the ground wire, which must be so long that it is the last one to be disconnected in case the cable is inadvertently pulled out of the cable entry.

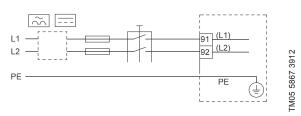


Fig. 32 CU331SP wiring diagram

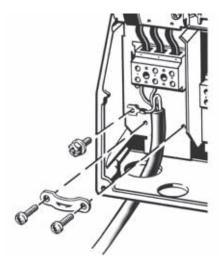
Terminal		Function	
91	(L1)	- Single phase cupply	
92	(L2)	Single-phase supply	
95/99	(PE)	Ground connection	

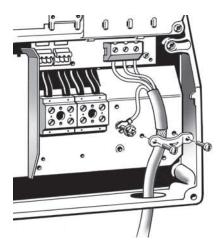
For single-phase connection, use L1 and L2.

Mains connection

Check that mains voltage and frequency correspond to the values on the nameplate of the CU331SP and the motor

- 1. Connect the ground wire to terminal 95 (PE). See fig. 33.
- 2. Connect the power leads to the terminals 91 (L1), 92 (L2).
- 3. Fix the mains cable with a cable clamp.




Fig. 33 Mains connection

CU331SP drive is usable with 3-phase input power by connecting leads to 91 (L1), 92 (L2), and 93 (L3).

Motor connection

The motor cable must be screened for the CU331SP to meet EMC requirements.

- 1. Connect the ground wire to terminal 99 (PE). See fig. 34.
- 2. Connect the motor leads to the terminals 96 (U), 97 (V), 98 (W).
- 3. Fix the screened cable with a cable clamp.

TM03 9020 2807

Fig. 34 Motor connection

The cable screen must be exposed and in physical contact with the mounting plate and clamp

11.1 Connecting the signal terminals

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

If no external on/off switch is connected, short-circuit terminals 18 and 20 using a short wire.

Connect the signal cables according to the guidelines for good practice to ensure EMC-correct installation. See section *EMC-correct installation*.

- Use screened signal cables with a conductor crosssection of min. AWG 20 (0.5 mm²) and max. AWG 16 (1.5 mm²).
- Use a 3-conductor screened bus cable in new systems.

Minimum connection, signal terminal

Operation is only possible when the terminals 18 and 20 are connected, for instance by means of an external on/off switch or a short wire.

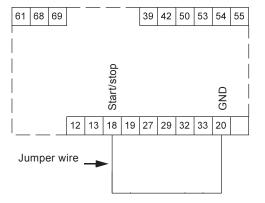


Fig. 35 Required minimum connection, signal terminal

TM03 9057 3207

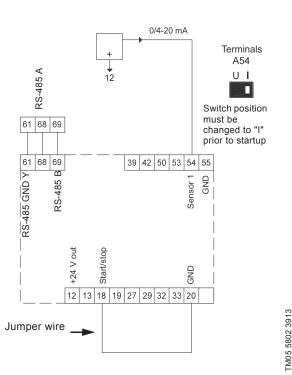
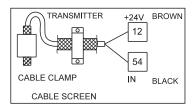



Fig. 36 Wiring diagram for CU331SP

TM05 6776 5112

TM05 5803 3912

Fig. 37 Sensor wiring diagram

Setting the analog input 54

The contact A54 is positioned behind the control panel and is used for setting the signal type of the analog input.

The factory setting of the inputs is voltage signal "U". This setting must be changed to "I" prior to starting the CU331SP. Be sure the power supply is switched off.

Remove the control panel to set the contact. See fig. 38.

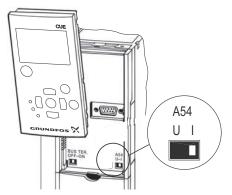


Fig. 38 Setting contact A54 to current signal "I"

Terminal key

Terminal	Туре	Function
12	+24 V out	Supply to sensor
18	DI 1	Digital input, start/stop
20	GND	Common frame for digital inputs
55	GND	Common frame for analog inputs
54	Al 2	Sensor input, sensor 1, 0/4-20 mA
61	RS-485 GND Y	GENIbus, frame
68	RS-485 A	GENIbus, signal A (+)
69	RS-485 B	GENIbus, signal B (-)

The RS-485 screen must be connected to frame.

Access to signal terminals

All signal terminals are behind the terminal cover of the CU331SP front. Remove the terminal cover as shown in fig. 39.

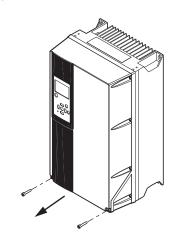


Fig. 39 Access to signal terminals

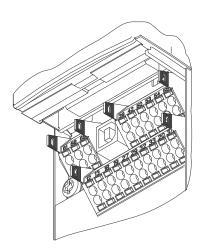


Fig. 40 Signal terminals

TM03 9025 2807

TM03 9004 2807

Fitting the conductor

- 1. Remove the insulation at a length of 0.35 to 0.40 inches (9 to 10 mm).
- 2. Insert a screwdriver with a tip of maximum 0.015 X 0.1 in (0.4 X 2.5 mm) into the square hole.
- 3. Insert the conductor into the corresponding round hole. Remove the screwdriver. The conductor is now fixed in the terminal.

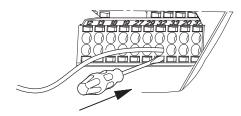


Fig. 41 Fitting the conductor into the signal terminal

Connecting the signal relays

As a precaution, signal cables must be separated from other groups by reinforced insulation in their entire lengths.

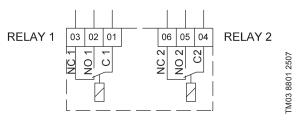


Fig. 42 Terminals for signal relays (normal state, not activated)

Terminal		Function
C 1	C 2	Common
NO 1	NO 2	Normally open contact
NC 1	NC 2	Normally closed contact

Signal relay

TM03 9026 2807

The signal relays on the CU331SP are predefined as follows:

Relay 1: Pump running

Relay 2: Alarm

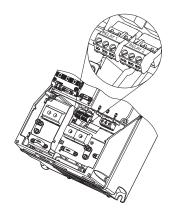


Fig. 43 Terminals for relay connection

TM03 9008 2807

EMC-correct installation

This section gives guidelines for good practice when installing the CU331SP. Follow these guidelines to meet EN 61800-3, first environment.

- Use only motor and signal cables with a braided metal screen in applications without output filter.
- There are no special requirements to supply cables, apart from local requirements.
- Leave the screen as close to the connecting terminals as possible. See fig. 44.
- Avoid terminating the screen by twisting the ends.
 See fig. 45. Use cable clamps or EMC screwed cable entries instead.
- Connect the screen to frame at both ends for both motor and signal cables. If the controller has no cable clamps, connect only the screen to the CU331SP.
- Avoid unscreened motor and signal cables in electrical cabinets with variable frequency drives.
- Make the motor cable as short as possible in applications without output filter to limit the noise level and minimize leakage currents.
- Screws for frame connections must always be tightened whether a cable is connected or not.
- Keep main cables, motor cables and signal cables separated in the installation, if possible.

Other installation methods may give similar EMC results if the above guidelines for good practice are followed.

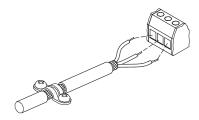


Fig. 44 Example of stripped cable with screen

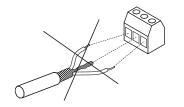


Fig. 45 Do not twist the screen ends

Line disturbance and transient protection

To protect itself from AC line voltage disturbances, the CU331SP monitors the input power supply and interrupts drive operation in the event of phase loss or imbalance. Transients on the AC line are suppressed by MOVs as well as zener diodes for extreme transients. The CU331SP meets VDE 0160 (European standard - 2.3 x line voltage for 1.3 msec) for transient protection.

RFI filters

To meet the EMC requirements, the CU331SP comes with the following types of built-in radio frequency interference filter (RFI).

Voltage Typical shaft power F		2 RFI filter type	
1 x 200-240 V *	1.5 - 10 hp	C1	

^{*}Single-phase input - three-phase output.

Description of RFI filter types

C1: For use in domestic areas.

RFI filter types are according to EN61800-3

Control panel

The on/off button on the control panel does not disconnect the CU331SP from the power supply and must therefore not be used as a safety switch.

FM02 1325 0901

TM03 8812 2507

The On/Off button has the highest priority. In "Off" condition, pump operation is not possible.

The control panel is used for local setting of the CU331SP. The functions available are preset in the CU331SP.

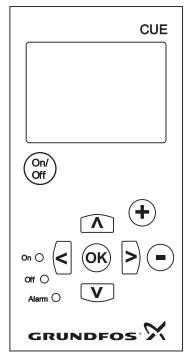


Fig. 46 Control panel of the CU331SP

Editing buttons

Button	Function
On/ Off	Makes the pump ready for operation/starts and stops the pump.
OK	Saves changed values, resets alarms and expands the value field.
+ -	Changes values in the value field.

Navigating buttons

Button	Function
< >	Navigates from one menu to another. When the menu is changed, the display shown will always be the top display of the new menu.
ΛV	Navigates up and down in the individual menu.

Adjusting the display contrast

Press OK and + for darker display. Press OK and - for brighter display.

Button lock

To lock the buttons on the panel press and hold the up and down arrows simultaneously.

Indicator lights

The operating condition of the pump is indicated by the indicator lights on the front of the control panel. See fig. 46.

The table shows the function of the indicator lights.

Indicator light	Function
On (groon)	The pump is running or has been stopped by a stop function.
On (green)	If flashing, the pump has been stopped by the user (CU331SP menu), external start/stop or bus.
Off (orange)	The pump has been stopped with the on/off button.
Alarm (red)	Indicates an alarm or a warning.

Displays, general terms

Figures 47 and 48 show the general terms of the display.

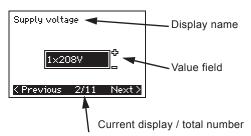


Fig. 47 Example of display in the start-up guide

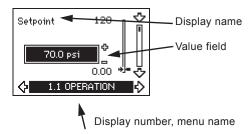


Fig. 48 Example of display in the user menu

Warning and alarm list

St			Status	ntus		
Code and display text		Warning	Alarm	Locked alarm	Operating mode	Resetting
1	Too high leakage current			•	Stop	Man.
2	Mains phase failure		•		Stop	Aut.
3	External fault		•		Stop	Man.
16	Other fault		•		Stop	Aut.
10	Other lault			•	Stop	Man.
32	Overvoltage	•			-	Aut.
52	Overvoitage		•		Stop	Aut.
40	l la da sualta sa	•			-	Aut.
40	Undervoltage		•		Stop	Aut.
48	Overload		•		Stop	Aut.
40	Overload			•	Stop	Man.
49	Overload		•		Stop	Aut.
55	Overload	•			-	Aut.
	Overload		•		Stop	Aut.
57	Dry running		•		Stop	Aut.
64	Too high CU331SP temperature		•		Stop	Aut.
89	Sensor 1 outside range		•		1)	Aut.
96	Setpoint signal outside range		•		1)	Aut.
155	Inrush fault		•		Stop	Aut.
044					-	Aut.
241	Motor phase failure		•		Stop	Aut.

¹⁾ In case of an alarm, the CU331SP will change the operating mode depending on the pump type.

²⁾ Warning is reset in display 3.20.

CU331SP technical data

SQ, SQE, SQE-NE,

Enclosure

CU331SP

All CU331SP enclosures are size B1.

The enclosure rating can be either IP 55 / TYPE 12 or IP 66 / TYPE 4X.

Main dimensions and weight

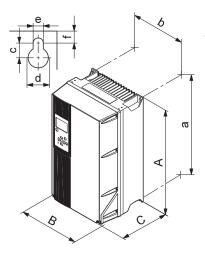


Fig. 49 Enclosure B1

1) The dimensions are maximum height, width and depth.

Enclo- sure		ight n]		dth n]	Depth [in]
	Α	а	В	b	С
-	18.9	17.9	9.5	8.3	10.2
B1 -		Screw h	oles [in]		Weight
_	С	d	е	f	[lbs]
-	0.47	0.75	0.35	0.35	50.7

Surroundings

Relative humidity	5-95 % RH
Ambient temperature	Max. 122 °F (50 °C)
Average ambient temperature over 24 hours	Max. 113 °F (45 °C)
Minimum ambient temperature at full operation	32 °F (0 °C)
Minimum ambient temperature at reduced operation	14 °F (-10 °C)
Temperature during storage and transportation	-13 to 150 °F (-25 to 65 °C)
Storage duration	Max. 6 months
Maximum altitude above sea level without performance reduction	3280 ft (1000 m)
Maximum altitude above sea level with performance reduction	9840 ft (3000 m)

The CU331SP comes in a packaging which is not suitable for outdoor storage.

Terminal tightening torques

Enclosure -	1	rightening torq	ue [ft-lb]	
Eliciosure –	Mains	Motor	Earth	Relay
B1	1.3	1.3	2.2	0.4

Cable length

Maximum length, screened motor cable	500 ft (152 m)
Maximum length, unscreened motor cable	1000 ft (305 m)
Maximum length, signal cable	1000 ft (305 m)

Fuses and cable cross-section

Always comply with national and local regulations as to cable cross-sections.

Cable cross-section to signal terminals

Maximum cable cross-section to signal terminals, rigid conductor	AWG 14
Maximum cable cross-section to signal terminals, flexible conductor	AWG 18
Minimum cable cross-section to signal terminals	AWG 20

Non-UL fuses and conductor crosssection to mains and motor

Typical shaft power P2	Maximum fuse size	Fuse type –	Maximum conductor cross section ¹	
[Hp]	[A]	type -	[AWG] [mm ²]	[mm ²]
2	40	gG	7	10
3	40	gG	7	10
5	80	gG	7	10

Screened motor cable, unscreened supply cable.

UL fuses and conductor cross-section to mains and motor

Typical shaft power P2 [Hp]	Maximum fuse size [A]	Bussmann RK1	Maximum conductor cross section ¹ [AWG}
2	40	KTN-R40	7
3	40	KTN-R40	7
5	80	KTN-R80	7

¹⁾ Screened motor cable, unscreened supply cable.

Inputs and outputs

Mains supply (L1, L2)

Supply voltage	200-240 V ± 10 %
Supply frequency	60 Hz
Maximum temporary imbalance between phases	3 % of rated value
Leakage current to earth	> 3.5 mA
Number of cut-ins	Max. 1 time/min.

Do not use the power supply for switching the CU331SP on and off.

Motor output (U, V, W)

Output voltage	0-100 % ¹⁾
Output frequency	0-60 Hz
Switching on output	Not recommended

Output voltage in % of supply voltage.

RS-485 GENIbus connection

Terminal number 6	88 (A), 69 (B), 61 GND (Y)
-------------------	----------------------------

The RS-485 circuit is functionally separated from other central circuits and galvanically separated from the supply voltage (PELV).

Digital inputs

Terminal number	18
Voltage level	0-24 VDC
Voltage level, open contact	> 19 VDC
Voltage level, closed contact	< 14 VDC
Maximum voltage on input	28 VDC
Input resistance, R _i	Approx. 4 kΩ

All digital inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

Signal relays

Relay 01, terminal number	1 (C), 2 (NO), 3 (NC)
Relay 02, terminal number	4 (C), 5 (NO), 6 (NC)
Maximum terminal load (AC-1) 1)	240 VAC, 2 A
Maximum terminal load (AC-15) 1)	240 VAC, 0.2 A
Maximum terminal load (DC-1) 1)	50 VDC, 1 A
Minimum terminal load	24 V DC 10 mA 24 V AC 20 mA

¹⁾ IEC 60947, parts 4 and 5.

C Common

NO Normally open

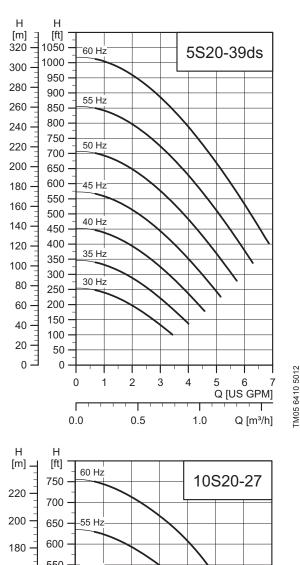
NC Normally closed

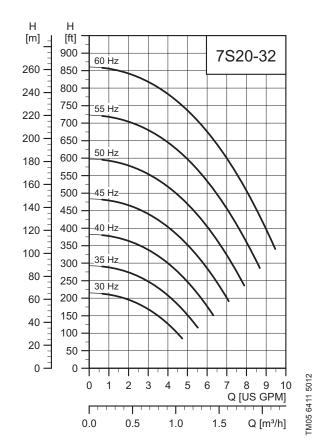
The relay contacts are galvanically separated from other circuits by reinforced insulation (PELV).

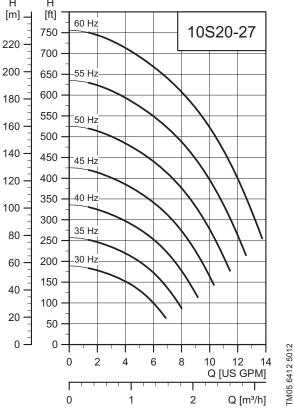
Analog input

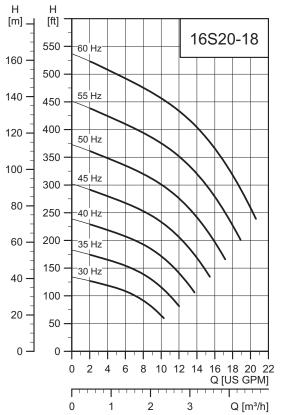
Terminal number	54
Current signal	A54 = "I" ¹⁾
Current range	0-20, 4-20 mA
Input resistance, R _i	Approx. 200 Ω
Maximum current	30 mA
Maximum fault, terminals 53, 54	0.5 % of full scale

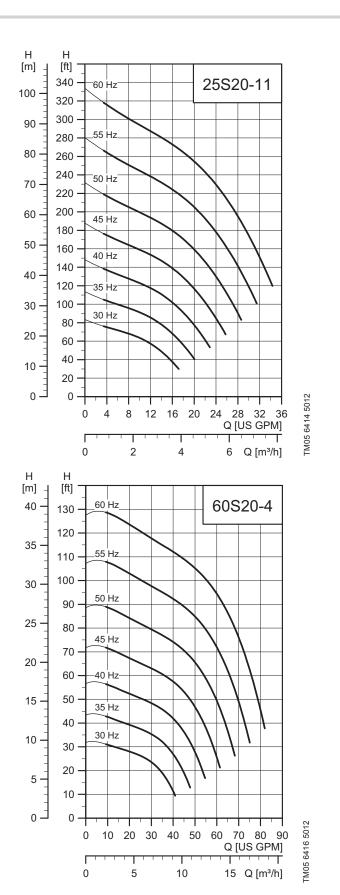
¹⁾ The factory setting is voltage signal "U".

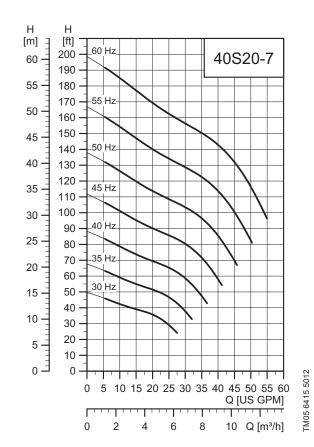

All analog inputs are galvanically separated from the supply voltage (PELV) and other high-voltage terminals.

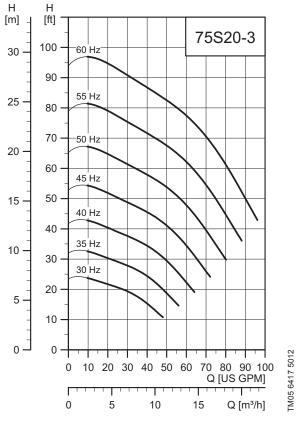

Sound pressure level

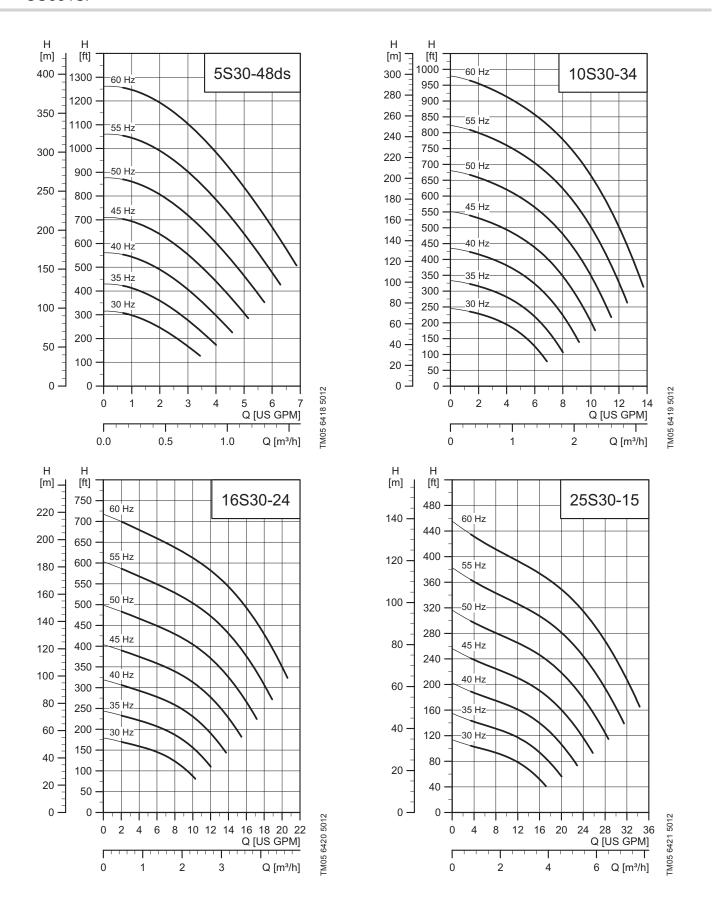

The sound pressure of the CU331SP is maximum 70 dB(A).

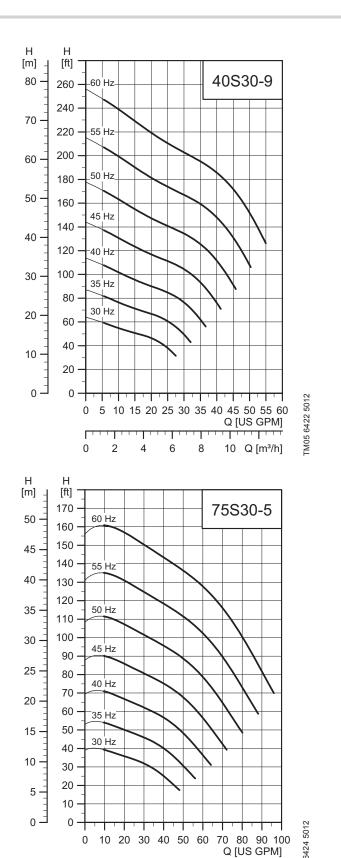

The sound pressure level of a motor controlled by a Variable frequency drive may be higher than that of a corresponding motor which is not controlled by a variable frequency drive.

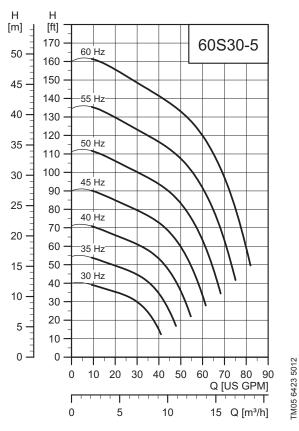

CU331SP curve charts

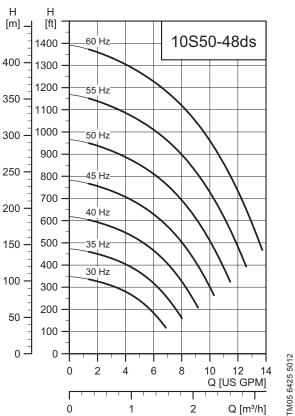


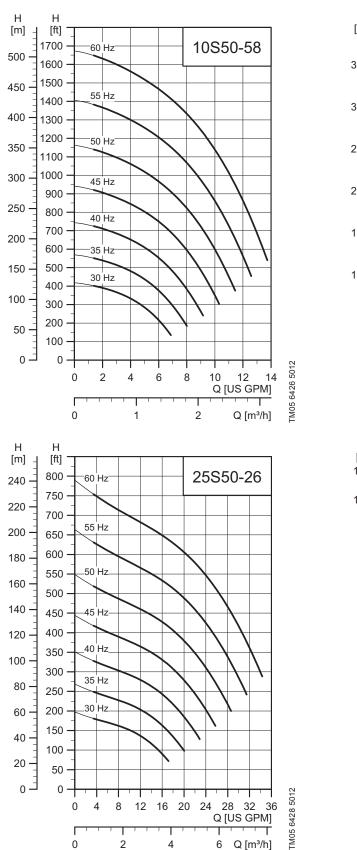


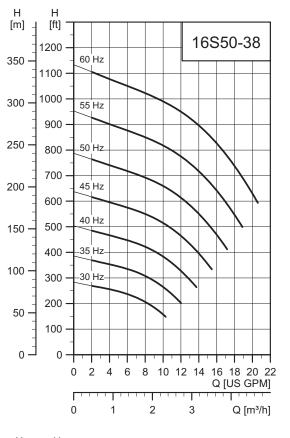


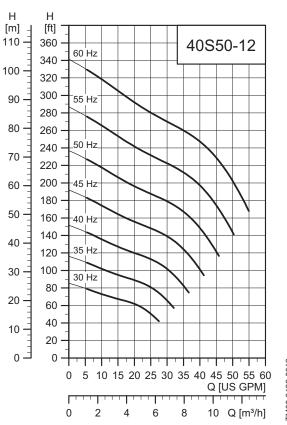


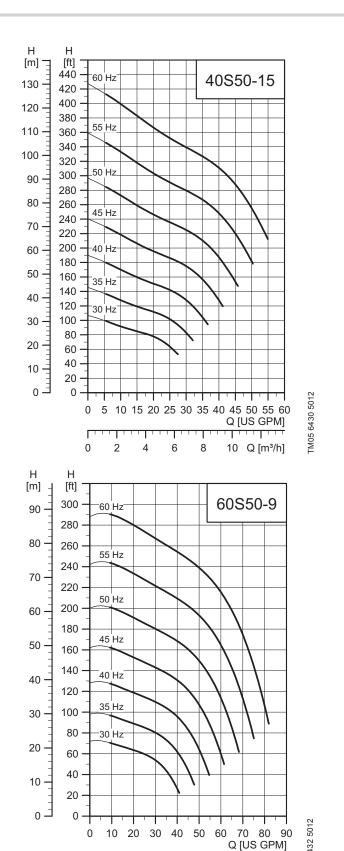


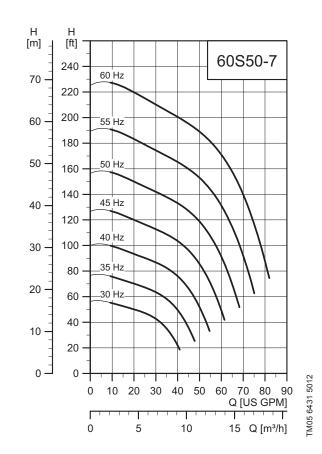


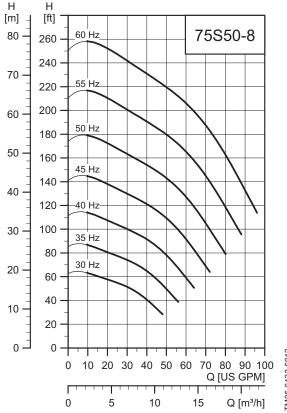

5


10


15


Q [m³/h]


TM05 6427 5012



5

10

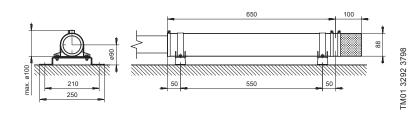
15 Q [m³/h]

12. Accessories

CU331SP Constant Pressure Drive Kits (with sensor)

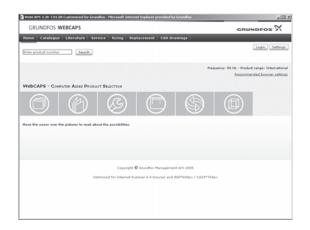
Enclosure type	NEMA	Нр	Input Ph	Input volts	Product number	Approx. ship wt. [lbs]
		2	1	200 - 240	98370277	60
Indoor	Type 12	3	1	200 - 240	98370280	60
		5	1	200 - 240	98370304	60
		2	1	200 - 240	98370279	60
Outdoor	Type 4X	3	1	200 - 240	98370301	60
		5	1	200 - 240	98370305	60

CU 301 Constant Pressure System


Description	Product number
Constant Pressure Kit (CU 301 and Transducer)	96438895

CU 300 Status Box & R100

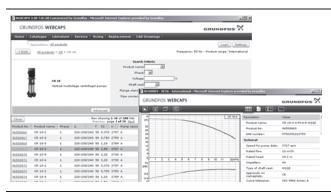
Description	Product number
CU300 Status Box	96422776
Description	Product number


SQ, SQE flow sleeves

Description	Product number
SQ, SQE flow sleeve, complete	98148594

13. Further product documentation

WebCAPS



WebCAPS is a **Web**-based **C**omputer **A**ided **P**roduct **S**election program available on www.grundfos.com.

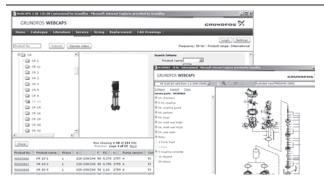
WebCAPS contains detailed information on more than 185,000 Grundfos products in more than 20 languages.

In WebCAPS, all information is divided into 6 sections:

- Catalog
- Literature
- Service
- · Sizing
- Replacement
- CAD drawings.

Catalog (

This section is based on fields of application and pump types, and contains


- · technical data
- curves (QH, Eta, P1, P2, etc) which can be adapted to the density and viscosity of the pumped liquid and show the number of pumps in operation
- · product photos
- dimensional drawings
- wiring diagrams
- · quotation texts, etc.

Literature

In this section you can access all the latest documents of a given pump, such as $\,$

- product guides
- installation and operating instructions
- service documentation, such as Service kit catalog and Service kit instructions
- quick guides
- · product brochures, etc.

Service (3)

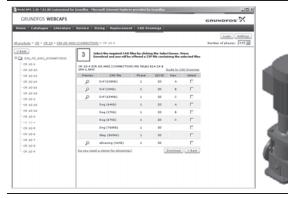
This section contains an easy-to-use interactive service catalog. Here you can find and identify service parts of both existing and discontinued Grundfos pumps.

Furthermore, this section contains service videos showing you how to replace service parts.

Sizing

This section is based on different fields of application and installation examples, and gives easy step-by-step instructions in

- select the most suitable and efficient pump for your installation
- carry out advanced calculations based on energy consumption, payback periods, load profiles, life cycle costs,
- analyse your selected pump via the built-in life cycle cost tool
- determine the flow velocity in wastewater applications, etc.



Replacement

In this section you find a guide to selecting and comparing replacement data of an installed pump in order to replace the pump with a more efficient Grundfos pump.

The section contains replacement data of a wide range of pumps produced by other manufacturers than Grundfos.

Based on an easy step-by-step guide, you can compare Grundfos pumps with the one you have installed on your site. When you have specified the installed pump, the guide will suggest a number of Grundfos pumps which can improve both comfort and efficiency.

CAD drawings (ff)

In this section it is possible to download 2-dimensional (2D) and 3-dimensional (3D) CAD drawings of most Grundfos pumps.

These formats are available in WebCAPS:

2-dimensional drawings:

- .dxf, wireframe drawings
- .dwg, wireframe drawings.

3-dimensional drawings:

- .dwg, wireframe drawings (without surfaces)
- .stp, solid drawings (with surfaces)
- .eprt, E-drawings.

WinCAPS

Fig. 50 WinCAPS CD-ROM

WinCAPS is a Windows-based Computer Aided Product Selection program containing detailed information on more than 185,000 Grundfos products in more than 20 languages.

The program contains the same features and functions as WebCAPS, but is an ideal solution if no Internet connection is available.

WinCAPS is available on CD-ROM and updated once a year.

© Copyright Grundfos Holding A/S

The name Grundfos, the Grundfos logo, and be think innovate are registered trademarks owned by Grundfos. Holding AS or Grundfos AS, Denmark. All rights reserved worldwide.

L-SQ-PG-001

98440904 0313

ECM: -

GRUNDFOS Pumps Corporation 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Telefax: +1-913-227-3500

GRUNDFOS Canada Inc. 2941 Brighton Road Oakville, Ontario L6H 6C9 Canada Phone: +1-905 829 9533 Telefax: +1-905 829 9512

Bombas GRUNDFOS de Mexico S.A. de C.V. Boulevard TLC No. 15 Parque Industrial Stiva Aeropuerto Apodaca, N.L. Mexico 66600 Phone: +52-81-8144 4000 Telefax: +52-81-8144 4010

SUBMERSIBLE MOTORS & CONTROL BOXES

4" Submersible Motors	
Specifications and Materials	
Ordering Information	
Dimensions and Weights	
Leads and Accessories	10
6" Submersible Motors	11
Specifications and Materials	
Ordering Information	13
Dimensions and Weights	
Leads and Accessories	19
8" Submersible Motors	20
Specifications and Materials	
Ordering Information	22
Dimensions and Weights	
Leads and Accessories	26
10" Rewindable Motors	27
Specifications and Materials	
Ordering Information	
Dimensions and Weights	
Leads and Accessories	
12" Rewindable Motors	
Specifications and Materials	
Ordering Information	
Dimensions and Weights	
Leads and Accessories	
Motor Accessories	
Motor Filling Liquid	
Motor Filling Kit	
PT100 Rewindable Motors	
Control Boxes	43
Parts	48
Accessories & Services	51
Couplings	
QD Service Box & Special Services	53

For the most up-to-date product information, visit **franklinwater.com**.

4" SUBMERSIBLE MOTORS

These motors are built for dependable operation in 4" diameter or larger water wells.

BASIC FEATURES

- Corrosion-resistant stainless steel exterior
- Stainless steel splined shaft
- Hermetically-sealed windings
- StatorShield[™] resin system
- Filter check valve
- Water lubrication
- Kingsbury-type thrust bearing
- Pressure-equalizing diaphragm
- Built-in lightning arrestors (all single-phase; 200 & 300 V three-phase)
- Removable Water-Bloc[™] lead
- Franklin-manufactured control boxes available for single-phase motors
- UL 778 recognized (North American voltages)
- CSA certified
- ANSI/NSF 61 certified
- Industry standard NEMA mounting dimensions

SPECIAL FEATURES

- Flow inducer sleeve not required in water up to 86 °F (30 °C) for motors through 2 hp
- Two-wire motors are split-phase designs with integral starting components and do not require a control box; features Franklin's patented 2-wire BIAC starting switch, which provides reverse impact torque to aid starting in adverse environments and prevents extreme fast cycling (e.g. water-logged tank)
- Three-wire motors through 1 hp use Franklin's exclusive three-wire QD (Quick Disconnect) Control Box with the patented QD Relay. This relay provides the ultimate in operational life
- Single-phase motors can be used with Pumptec products to protect against dry-run and other installation conditions that can damage motors and/or pumps;
 see single-phase protection devices for details

POLLUTION RECOVERY OPTION

- Pollution Recovery motors are equipped for use in monitoring and recovery wells in which hydrocarbons and other chemicals may be present
- Features nitrile rubber parts and other chemical-resistant materials as listed in the construction materials chart

4" SUBMERSIBLE MOTORS - SPECIFICATIONS AND MATERIALS

MOTOR SPECIFICATIONS

Hz	Model	Phase	HP Range	kW Range	Poles	RPM	Max. Ambient Temp.	Duty Rating
		1	0.5 - 1.5	0.37 - 1.1				Continuous
	Super Stainless	1	0.3 - 3	0.25 - 2.2				Continuous*
		3	0.5 - 3	0.37 - 2.2				Continuous*
50		1	0.5 - 1.5	0.37 - 1.1		2875		Continuous
50	Pollution Recovery	1	0.3 - 2	0.25 - 1.5		20/3		Continuous*
		3	0.5 - 2	0.37 - 1.5			- 86 °F / 30 °C	Continuous*
	High Thrust	1	1.5 - 5	1.1 - 3.7	2			Continuous*
	nigii iiilust	3	1.5 - 10	1.1 - 7.5				Continuous*
		1	0.3 - 1.5	0.25 - 1.1	2		00 F/30 C	Continuous
	Super Stainless	1	0.3 - 3	0.25 - 2.2				Continuous*
		3	0.5 - 3	0.37 - 2.2				Continuous*
60		1	0.3 - 1.5	0.25 - 1.1		3450		Continuous
00	Pollution Recovery	1	0.3 - 2	0.25 - 1.5		3430		Continuous*
		3	0.5 - 2	0.37 - 1.5				Continuous*
	High Thrust	1	1.5 - 5	1.1 - 3.7				Continuous*
	riigii IIIIust	3	1.5 - 10	1.1 - 7.5				Continuous*

^{*3} hp motors require 0.25 ft/sec flow past motor

CONSTRUCTION MATERIALS

Model No.	-	-	-8602G	-8802G	-3529G (not including 15HP)	-0630G	-8502G	-8702G	-8801G
Model Type	Super Stainless	Super Stainless	High Thrust	High Thrust	High Thrust	High Thrust	High Thrust	High Thrust	High Thrust
Component	Watwer Well	Pollution Recovery	Water Well	Sand Fighter®	CBM+	SERIES 600M	316 SS	Oil Stripper	ES
Top Castings	304 SS over Iron	304 SS over Iron	303 SS	303 SS	316 SS	303 SS	316 SS	316 SS	316 SS
Bottom Castings	Cast iron	Cast iron	304 SS over cast iron	304 SS over cast iron	316 SS	304 SS over cast iron	316 SS	316 SS	304 SS over cast iron
Stator Shell	301 SS	301SS	304 SS	304 SS	316 SS	316 SS	316 SS	316 SS	304 SS
Stator Ends	Low-carbon steel	Low-carbon steel	Low-carbon steel	Low-carbon steel	316 SS	Low-carbon steel	316 SS	316 SS	Low-carbon steel
Shaft Extension	17-4 SS	17-4 SS	17-4 SS	17-4 SS	17-4 SS	17-4 SS	17-4 SS	17-4 SS	17-4 SS
Fasteners	300 Series SS	316 SS	300 Series SS	300 Series SS	316 SS	300 Series SS	316 SS	316 SS	300 Series SS
Seal Cover	Acetal	Tefzel	Acetal	Sintered bronze	316 SS	Sintered bronze	316 SS	316 SS	Sintered bronze
Seal	Lip-Nitrile	Lip-FKM	Lip-Nitrile	Mech-Nitrile, SiC face	Mech-FKM, SiC face	Mech-FKM, SiC face	Mech-Nitrile, SiC face	Mech-FKM, SiC face	Mech-FKM, SiC face
Diaphragm	Nitrile	FKM	Nitrile	Nitrile	FKM	Nitrile	Nitrile	FKM	FKM
Diaphragm Cup	N/A	N/A	316 SS	316 SS	316 SS	316 SS	316 SS	316 SS	316 SS
Diaphragm Spring	N/A	N/A	316 SS	316 SS	316 SS	316 SS	316 SS	316 SS	316 SS
Diaphragm Cover	304 SS	304 SS	304 SS	304 SS	316 SS	316 SS	316 SS	316 SS	304 SS
Slinger	Nitrile	FKM	Nitrile	Nitrile	FKM	Nitrile	Nitrile	FKM	FKM
Lead Wire/Cable	XLPE or EPCV	sold separately	XLPE or EPCV	XLPE or EPCV	sold separately	XLPE or EPCV	XLPE or EPCV	Nitrile	Sold separately
Lead Potting	Ероху	N/A	Ероху	Ероху	N/A	Ероху	Ероху	Ероху	N/A
Lead Type	303 SS jam nut	304 SS jam nut	316 SS screws/clamp	316 SS screws/clamp	316 SS screw/clamp	316 SS screws/clamp	316 SS screws/clamp	316 SS screws/clamp	316 SS screw/clamp
Filter	Polyester	Polyester	Acetal/polyester	Acetal/polyester	316 SS plug	Acetal/polyester	316 SS plug	316 SS plug	316 SS plug
Max Temp Range	30C	30C	30C (1/4 ft/sec)	30C (1/4 ft/sec)	50C (1/4 ft/sec)	30C (1/4 ft/sec)	30C (1/4 ft/sec)	80C (1 ft/sec)	30C (1/4 ft/sec)
Thrust Rating	300 to 900	300 to 900	1500	1500	1500	300 to 1500	1500	1500	1500

3

2-WIRE MODELS

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (Lbs)
		115	60	1.75	-	2445020117GS	300	16
	Makan Mall	115	60	1.75	Yes	2445029004GS	300	16
1/7	Water Well	230	60	1.75	-	2445030117GS	300	16
1/3		230	60	1.75	Yes	2445039004GS	300	16
	Dellution Deservery	115	60	1.75	-	2445020917GS	300	16
	Pollution Recovery	230	60	1.75	-	2445030917GS	300	16
		115	60	1.6	-	2445040117GS	300	18
		115	60	1.6	Yes	2445049004GS	300	18
	Water Well	220	50	1.0	-	2445550117GS	300	18
1/2		230	60	1.6	-	2445050117GS	300	18
		230	60	1.6	Yes	2445059004GS	300	18
	Pollution Recovery	115	60	1.6	-	2445040917GS	300	18
		230	60	1.6	-	2445050917GS	300	18
		220	50	1.0	-	2445570117GS	300	21
3/4	Water Well	230	60	1.5	-	2445070117GS	300	21
5/4		230	60	1.5	Yes	2445079004GS	300	21
	Pollution Recovery	230	60	1.5	-	2445070917GS	300	21
		220	50	1.0	-	2445581203GS	650	24
1	Water Well	230	60	1.4	-	2445081203GS	650	24
'		230	60	1.4	Yes	2445089003GS	650	24
	Pollution Recovery	230	60	1.4	-	2445082303GS	650	24
		220	50	1.0	-	2443591217GS	650	31
1.5	Water Well	230	60	1.3	-	2443091217GS	650	31
1.5		230	60	1.3	Yes	2443099004GS	650	31
	Pollution Recovery	230	60	1.3	-	2443092317GS	650	31

NOTE: All 3 hp motors are single-packed; pallet packs available but not shown; contact customer service for availability

3-WIRE MODELS

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (Lbs)
		115	60	1.75	Yes	2145029004GS	300	17
	Weben Well	220	50	1.0	-	2145534116GS	300	17
1/3	Water Well	230	60	1.75	-	2145034416GS	300	17
1/3		230	60	1.75	Yes	2145039004GS	300	17
	Pollution Recovery	115	60	1.75	-	2145024916GS	300	17
	r ollution Recovery	230	60	1.75	-	2145034916GS	300	17
		115	60	1.6	-	2145044416GS	300	19
		115	60	1.6	Yes	2145049004GS	300	19
	Water Well	220	50	1.0	-	2145554116GS	300	19
1/2		220	50	1.0	Yes	2145559204GS	300	19
<i>,,</i> –		230	60	1.6	-	2145054416GS	300	19
		230	60	1.6	Yes	2145059004GS	300	19
	Pollution Recovery	115	60	1.6	-	2145044916GS	300	19
		230	60	1.6	-	2145054916GS	300	19
		220 220	50 50	1.0	- Vac	2145574116GS	300 300	21
	Water Well	230		1.0	Yes	2145579204GS		21
3/4			60			2145074416GS	300	21
-	Dellution Deseugns	230	60	1.5	Yes -	2145079004GS	300 300	21
	Pollution Recovery	_				2145074916GS		
	Series 600M	230	60	1.5	Yes	2145070600GS	300	22
		220	50	1.0	- V	2145581903GS	650	24
	Water Well	220	50	1.0	Yes	2145589203GS	650	24
1		230	60	1.4	-	2145081203GS	650	24
	D II I' D	230	60	1.4	Yes	2145089003GS	650	24
	Pollution Recovery	230	60	1.4	-	2145082303GS	650	24
	Series 600M	230	60	1.4	Yes	2145080610GS	650	25
	Motor Mall	220	50	1.0	-	2243501903GS	650	28
		220	50	1.0	Yes	2243509203GS	650	28
	Water Well	230	60	1.3	-	2243001903GS	650	28
1.5		230	60	1.3	Yes	2243009203GS	650	28
1.5		230	60	1.3	-	2243008600G	1500	38
	Pollution Recovery	230	60	1.3	-	2243002303GS	650	28
	Series 600M	230	60	1.3	Yes	2243000610GS	650	25
	316 SS	230	60	1.3	Yes	2243008502G	1500	40
		220	50	1.0	-	2243511916GS	650	33
		220	50	1.0	Yes	2243519204GS	650	33
		220	50	1.0	Yes	2243518602G	1500	43
	Water Well	230	60	1.25	-	2243011916GS	650	33
		230	60	1.25	Yes	2243019204GS	650	33
2		230	60	1.25	-	2243018600G	1500	43
2		230	60	1.25	Yes	2243018602G	1500	43
	Pollution Recovery	230	60	1.25	-	2243012316GS	650	33
	Series 600M	230	60	1.25	Yes	2243010610GS	650	29
	Sand Fighter®	230	60	1.15	Yes	2243018802G	1500	43
	Oil Stripper	230	60	1.25	Yes	2243018702G	1500	46
	316 SS	230	60	1.25	Yes	2243018502G	1500	45
		220	50	1.0	-	2243522504G	900	41
		220	50	1.0	-	2247528600G	1500	56
	Water Well	230	60	1.15	-	2247022504G	900	41
	Water Well	230	60	1.15	Yes	2247022604G	900	41
		230	60	1.15	-	2247028600G	1500	56
3		230	60	1.15	Yes	2243028602G	1500	56
	Series 600M	230	60	1.15	Yes	2247020620G	900	35
	Series 000M	230	60	1.15	Yes	2247020630G	1500	44
	Sand Fighter®	230	60	1.15	Yes	2247028802G	1500	56
	Oil Stripper	230	60	1.15	Yes	2247028702G	1500	56
	316 SS	230	60	1.15	Yes	2247028502G	1500	56
		220	50	1.0	-	2243538600G	1500	71
	Water Well	230	60	1.15	-	2247038600G	1500	71
		230	60	1.15	Yes	2247038602G	1500	71
5	0 : 60014		60	1.15	Yes	2243030630G	1500	56
5	Series 600M	230	00				1300	
5				_				
5	Series 600M Sand Fighter® Oil Stripper	230	60	1.15	Yes	2247038802G 2247038702G	1500 1500	71

NOTE: All 3 hp motors are single-packed; pallet packs available but not shown; contact customer service for availability

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust	Wt. (Lbs
	Description	48	60	1.5	Yes	2349049204GS	300	18
		200	60	1.6	- 163	2345014116GS	300	18
		200	60	1.6	Yes	2345019204GS	300	19
		220	50	1.0	-	2345514116GS	300	18
		230	60	1.6	-	2345114116GS	300	18
	Water Well	230	60	1.6	Yes	2345119204GS	300	19
1/2		380-415	50	1.0	-	2345613116GS	300	18
		460	60	1.6	-	2345213116GS	300	18
		460	60	1.6	Yes	2345219404GS	300	19
		575	60	1.6	Yes	2345319404GS	300	19
		200	60	1.6	-	2345014916GS	300	18
	Pollution Recovery	230	60	1.6	-	2345114916GS	300	18
		460	60	1.6	-	2345214916GS	300	18
		100	60	1.5	Yes	2349029204GS	300	21
		200	60	1.5	-	2345024116GS	300	21
		200	60	1.5	Yes	2345029204GS	300	22
		220	50	1.0	-	2345524116GS	300	21
	Water Well	230	60	1.5	-	2345124116GS	300	21
	Water Well	230	60	1.5	Yes	2345129204GS	300	22
		380-415	50	1.0	-	2345623116GS	300	21
3/4		460	60	1.5	-	2345223116GS	300	21
		460	60	1.5	Yes	2345229404GS	300	22
		575	60	1.5	Yes	2345329404GS	300	22
		200	60	1.5	-	2345024916GS	300	21
	Pollution Recovery	230	60	1.5	-	2345124916GS	300	21
		460	60	1.5	-	2345224916GS	300	21
	Series 600M	230	60	1.5	Yes	2345120600GS	300	22
	36163 00011	460	60	1.5	Yes	2345220600GS	300	22
		200	60	1.4	-	2345031903GS	650	24
		200	60	1.4	Yes	2345039203GS	650	25
		220	50	1.0	-	2345534116GS	650	24
		230	60	1.4	-	2345131903GS	650	24
	Water Well	230	60	1.4	Yes	2345139203GS	650	25
		380-415	50	1.0	-	2345633116GS	650	24
1		460	60	1.4	-	2345231603GS	650	24
		460	60	1.4	Yes	2345239403GS	650	25
		575	60	1.4	Yes	2345339403GS	650	25
	Dellation December	200	60	1.4	-	2345032303GS	650	24
	Pollution Recovery	230	60	1.4	-	2345132303GS	650	24
		460	60	1.4	- Vas	2345232303GS	650	24
	Series 600M	230			Yes	2345130610GS	650	
		460 200	60	1.4	Yes -	2345230610GS 2345041903GS	650 650	25 28
		200	60	1.3	Yes	2345049203GS	650	29
		200	60	1.3	- 162	2345048600	1500	33
		220	50	1.3	Yes	2345549003GS	650	28
		230	60					
		230	60	1.3	- Yes	2345141903GS 2345149203GS	650 650	28
	Water Well	230	60	1.3	-	2345148600G	1500	33
	water well	460/380	60/50	1.3/1.0	-	2345241603GS	650	28
		460/380	60/50	1.3/1.0	Yes	2345249403GS	650	28
		460/380	60/50	1.3/1.0	-	2345248600G	1500	28
		575	60	1.3/ 1.0	-	2345341603GS	650	28
1.5		575	60	1.3	Yes	2345349403GS	650	29
		575	60	1.3	-	2345348600G	1500	33
		200	60	1.3	-	2345042303GS	650	28
	Pollution Recovery	230	60	1.3	-	2345142303GS	650	28
F	. S. addon Necovery	460/380	60/50	1.3/1.0	-	2345242303GS	650	28
		230	60	1.3	Yes	2345140610GS	650	25
	Series 600M	460/380	60/50	1.3/1.0	Yes	2345240610GS	650	25
		200	60	1.3	Yes	2345048502G	1500	40
		230	60	1.3	Yes	2345148502G	1500	40
	316 SS	460/380	60/50	1.3/1.0	Yes	2345248502G	1500	40
		575	60	1.3	Yes	2345348502G	1500	40

THREE-PHASE MODELS

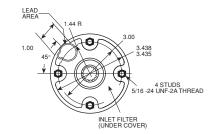
HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust	Wt. (Lt
		200	60	1.25	-	2343051618GS	650	33
		200	60	1.25	Yes	2343059204GS	650	34
		200	60	1.25	-	2343058600G	1500	44
		220	50	1.0	-	2343551916GS	650	33
		230	60	1.25	-	2343151618GS	650	33
		230	60	1.25	Yes	2343159204GS	650	34
) A/-+- :: \A/-!!	230	60	1.25	-	2343158600G	1500	44
	Water Well	460/380	60/50	1.25/1.0	-	2343251618GS	650	33
		460/380	60/50	1.25/1.0	Yes	2343259404GS	650	34
		460/380	60/50	1.25/1.0	-	2343258600G	1500	44
		460/380	60/50	1.25/1.0	Yes	2343258602G	1500	44
		575	60	1.25	-	2343351618GS	650	33
2		575	60	1.25	Yes	2343359404GS	650	34
		575	60	1.25	-	2343358600G	1500	44
		200	60	1.25	-	2343052318GS	650	33
	Pollution Recovery	230	60	1.25	-	2343152318GS	650	33
		460/380	60/50	1.25/1.0	-	2343252318GS	650	33
		230	60	1.25	Yes	2343150610GS	650	29
	Series 600M	460/380	60/50	1.25/1.0	Yes	2343250610GS	650	29
		200	60	1.25	Yes	2343058502G	1500	44
		230	60	1.25	Yes	2343158502G	1500	44
	316 SS	460/380	60/50	1.25/1.0	Yes	2343258502G	1500	44
		575	60	1.25	Yes	2343358502G	1500	44
		230	60	1.25	Yes	2343158702G	1500	44
	Oil Stripper	460/380	60/50	1.25/1.0	Yes	2343258702G	1500	44
		200	60	1.15	-	2343062504G	900	41
		200	60	1.15	Yes	2343062604G	900	41
	200	60	1.15	-	2343068600G	1500	43	
		200	60	1.15	Yes	2343068602G	1500	44
		220	50	1.0	-	2343562504G	900	41
		220	50	1.0	-	2343568600G	1500	43
		230	60	1.15	-	2343162504G	900	43
		230	60	1.15	Yes	2343162604G	900	41
		230	60	1.15	-	2343168600G	1500	43
		230	60	1.15	Yes	2343168602G	1500	43
		380		1.15	-			41
	Water Well	380	60	1.15		2343462504G	900	
					Yes	2343462604G	900	41
		380	60	1.15		2343468600G	1500	43
		380	60	1.15	Yes	2343468602G	1500	44
		460/380	60/50	1.15/1.0	-	2343262504G	900	41
		460/380	60/50	1.15/1.0	Yes	2343262604G	900	41
		460/380	60/50	1.15/1.0	- V-	2343268600G	1500	43
-		460/380	60/50	1.15/1.0	Yes	2343268602G	1500	44
3		575	60	1.15	- V	2343362504G	900	41
		575	60	1.15	Yes	2343362604G	900	41
		575	60	1.15	-	2343368600G	1500	43
		575	60	1.15	Yes	2343368602G	1500	44
		230	60	1.15	Yes	2343160620G	900	35
	Series 600M	230	60	1.15	Yes	2343160630G	1500	44
	33.163 00011	460/380	60/50	1.15	Yes	2343260620G	900	35
		460/380	60/50	1.15	Yes	2343260630G	1500	44
		200	60	1.15	Yes	2343068802G	1500	44
		230	60	1.15	Yes	2343168802G	1500	44
	Sand Fighter®	380	60	1.15	Yes	2343468802G	1500	44
		460/380	60/50	1.15/1.0	Yes	2343268802G	1500	44
		575	60	1.15	Yes	2343368802G	1500	44
		200	60	1.15	Yes	2343068502G	1500	44
	710.00	230	60	1.15	Yes	2343168502G	1500	44
	316 SS	460/380	60/50	1.15/1.0	Yes	2343268502G	1500	44
		575	60	1.15	Yes	2343368502G	1500	44
		230	60	1.15	Yes	2343168702G	1500	44
	Oil Stripper	460/380	60/50	1.15/1.0	Yes	2343268702G	1500	44

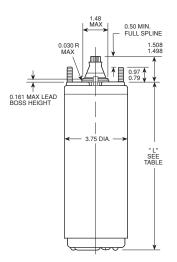
7

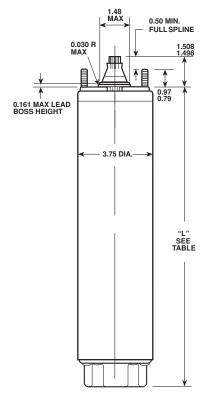
HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust	Wt. (Lbs)
4	Water Well	380	50	1.0	-	2343958600G	1500	49
	Water Weil	380	50	1.0	Yes	2348068602G	1500	50
		200	60	1.15	-	2343078600G	1500	55
		200	60	1.15	Yes	2343078602G	1500	56
		220	50	1.0	-	2347578600G	1500	55
		230	60	1.15	-	2347178600G	1500	55
		230	60	1.15	Yes	2347178602G	1500	56
	Water Well	380	60	1.15	-	2343478600G	1500	55
		380	60	1.15	Yes	2347478602G	1500	56
		460/380	60/50	1.15/1.0	-	2343278600G	1500	55
		460/380	60/50	1.15/1.0	Yes	2347278602G	1500	56
		575	60	1.15	-	2343378600G	1500	55
		575	60	1.15	Yes	2347378602G	1500	56
	Series 600M	230	60	1.15	Yes	2347170630G	1500	56
5		460/380	60/50	1.15	Yes	2347270630G	1500	56
, and the second		200	60	1.15	Yes	2343078802G	1500	56
		230	60	1.15	Yes	2347178802G	1500	56
	Sand Fighter®	380	60	1.15	Yes	2343478802G	1500	56
		460/380	60/50	1.15/1.0	Yes	2347278802G	1500	56
		575	60	1.15	Yes	2347378802G	1500	56
		200	60	1.15	Yes	2343078502G	1500	56
	316 SS	230	60	1.15	Yes	2347178502G	1500	56
	310 33	460/380	60/50	1.15/1.0	Yes	2347278502G	1500	56
		575	60	1.15	Yes	2347378502G	1500	56
	Oil Stripper	230	60	1.15	Yes	2347178702G	1500	58
		460/380	60/50	1.15/1.0	Yes	2347278702G	1500	58
	ES	460/380	60/50	1.15/1.0	-	2347278801G	1500	56
	CBM+	460/380	60/50	1.15/1.0	-	2347273529G	1500	59
5.5	Water Well	460/380	60/50	1.0	-	2343978600G	1500	60
	Water Well	460/380	60/50	1.0	Yes	2347658602G	1500	61
		200	60	1.15	-	2343088600G	1500	70
		200	60	1.15	Yes	2343088602G	1500	71
		220	50	1	-	2343588600G	1500	70
		230	60	1.15	-	2343188600G	1500	70
		230	60	1.15	Yes	2347188602G	1500	71
	Water Well	380	60	1.15	-	2343488600G	1500	70
		380	60	1.15	Yes	2347488602G	1500	71
		460/380	60/50	1.15/1.0	-	2343288600G	1500	70
		460/380	60/50	1.15/1.0	Yes	2347288602G	1500	71
		575	60	1.15	-	2343388600G	1500	70
		575	60	1.15	Yes	2347388602G	1500	71
7.5		200	60	1.15	Yes	2343088802G	1500	71
1.5		230	60	1.15	Yes	2347188802G	1500	71
	Sand Fighter®	380	60	1.15	Yes	2347488802G	1500	71
		460/380	60/50	1.15/1.0	Yes	2347288802G	1500	71
		575	60	1.15	Yes	2347388802G	1500	71
		200	60	1.15	Yes	2343088502G	1500	71
	316 SS	230	60	1.15	Yes	2347188502G	1500	71
	310 33	460/380	60/50	1.15/1.0	Yes	2343288502G	1500	71
		575	60	1.15	Yes	2343388502G	1500	71
	Oil Stripper	230	60	1.15	Yes	2347188702G	1500	71
	Oil Stripper	460/380	60/50	1.15/1.0	Yes	2343288702G	1500	71
	ES	460/380	60/50	1.15/1.0	-	2347288801G	1500	71
	CBM+	460/380	60/50	1.15/1.0	-	2347283529G	1500	74
		380	60	1.15	Yes	2347498602G	1500	77
	Water Well	460/380	60/50	1.15/1.0	Yes	2347298602G	1500	77
		575	60	1.15	Yes	2347398602G	1500	77
		380	60	1.15	Yes	2347498802G	1500	77
10	Sand Fighter®	460/380	60/50	1.15/1.0	Yes	2347298802G	1500	77
10		575	60	1.15	Yes	2347398802G	1500	77
	316 SS	460/380	60/50	1.15	Yes	2347298502G	1500	77
	Oil Stripper	460/380	60/50	1.15	Yes	2347298702G	1500	77
	ES	460/380	60/50	1.15/1.0	-	2347298801G	1500	77
	CBM+	460/380	60/50	1.15/1.0	-	2347293529G	1500	80
	CDI-II	1 700/300	00/30	1.15/1.0		2346268996	3500	115

4" SUBMERSIBLE MOTORS - DIMENSIONS AND WEIGHTS

SUPER STAINLESS

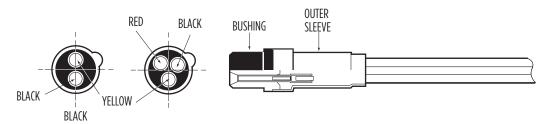

HP / kW	Phase	L (in)	Mot	or Carton Size	(in)	Shippi	ng Wt.
⊓P / KW	Pildse	L (III)	W	Н	L	lbs	kg
0.777 / 0.25	1	8.76	4.25	4.38	16.00	16	7.3
0.333 / 0.25	1	8.76	4.25	4.38	16.00	17	7.7
	1	9.51	4.25	4.38	16.00	18	8.2
0.5 / 0.37	1	9.51	4.25	4.38	16.00	19	8.6
	3	9.51	4.25	4.38	16.00	18	8.2
	1	10.64	4.25	4.38	19.00	21	9.5
0.75 / 0.55	1	10.64	4.25	4.38	19.00	21	9.5
	3	10.64	4.25	4.38	16.00	21	9.5
	1	11.73	4.25	4.38	19.00	24	10.9
1 / 0.75	1	11.73	4.25	4.38	19.00	24	10.9
	3	11.73	4.25	4.38	19.00	24	10.9
	1	15.1	4.25	4.38	21.25	31	14.1
1.5 / 1.1	1	13.6	4.25	4.38	21.25	28	12.7
	3	11.73	4.25	4.38	19.00	24	10.9
2 / 1.5	1	15.1	4.25	4.38	21.25	33	15
2 / 1.5	3	13.6	4.25	4.38	21.25	28	12.7
3 / 2.2	1	19.04	4.25	4.38	21.25	41	18.6
3 / 2.2	3	16.04	4.25	4.38	21.25	35	15.9

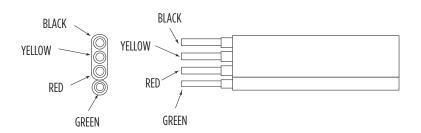

NOTE: All dimensions listed above are for models supplied with lead; consult factory for other models


HIGH THRUST

HP / kW	Model	Phase	l (in)	Moto	r Carton Siz	e (in)	Shippi	ng Wt.
np/kw	Model	Pilase	L (in)	W	Н	L	lbs	kg
1.5 / 1.1	Standard, Sand Fighter®	1	19.1	6.50	6.25	21.50	35	15.9
1.5 / 1.1	Standard, Sand Fighter®	3	17.98	6.50	6.25	21.50	37	16.8
	Standard, Sand Fighter®	1	20.6	6.50	6.25	24.25	43	19.5
2 / 1.5	Oil Stripper	1	22.85	6.50	6.25	25.75	46	20.9
2 / 1.3	Standard, Sand Fighter®	3	19.1	6.50	6.25	24.25	44	20
	Oil Stripper	3	21.35	6.50	6.25	25.75	42	19.1
	Standard, Sand Fighter®	1	22.49	6.50	6.25	27.75	47	21
3 / 2.2	Oil Stripper	1	22.98	6.50	6.25	27.75	48	22
3 / 2.2	Standard, Sand Fighter®	3	19.44	6.50	6.25	24.75	41	19
	Oil Stripper	3	19.93	6.50	6.25	26.25	42	19
	Standard, Sand Fighter®	1	27.41	6.50	6.25	33.75	64	29
	Oil Stripper	1	27.90	6.50	6.25	33.75	65	30
5 / 3.7	Standard, Sand Fighter®	3	22.49	6.50	6.25	27.75	50	23
	Oil Stripper	3	22.98	6.50	6.25	27.75	51	23
	CBM+	3	23.45	6.50	6.25	27.75	52	24
5.5 / 4	Standard, Sand Fighter®	3	23.39	6.50	6.25	27.75	52	24
	Standard, Sand Fighter®	3	27.41	6.50	6.25	33.75	64	29
7.5 / 5.5	Oil Stripper	3	27.90	6.50	6.25	33.75	65	30
	CBM+	3	28.37	6.50	6.25	33.75	66	30
	Standard, Sand Fighter®	3	30.48	6.50	6.25	35.25	72	33
10 / 7.5	Oil Stripper	3	30.97	6.50	6.25	35.25	73	33
	CBM+	3	31.44	8.88	8	39.5	74	34
15 / 11	CBM+	3	47.50	6.50	6.25	50.00	115	52

NOTE: Consult factory for 316 SS weights and dimensions




4" SUBMERSIBLE MOTORS - LEADS AND ACCESSORIES

MOTOR LEADS AND CABLES

HP	Wire	Description	Wire AWG	Model No.	Wt. (lbs)
		Lead, Individual XLPE, 303 SS, 48 in, Ground		152552905	1
	2	Lead, Individual XLPE, 303 SS, 100 in, Ground] [152552906	1
	2 T	Lead, Individual Nitrile, 316 SS, 48 in, No Ground		152328905*	1
		Lead, Individual Nitrile, 316 SS, 100 in, No Ground] [152328906*	1
		Lead, Individual XLPE, 303 SS, 48 in, Ground]	152553905	<1
		Lead, Individual XLPE, 303 SS, 100 in, Ground] [152553906	<1
	7	Lead, Individual Nitrile, 316 SS, 48 in, No Ground *] [152255901	< 1
		Lead, Individual Nitrile, 316 SS, 100 in, No Ground *] [152255902	<1
	(lam Nut Ctule)	Lead, Individual Nitrile, 316 SS, 160 in, No Ground *] [152255904	<1
All	(Jam-Nut Style)	Lead, Individual Nitrile, 316 SS, 30 ft, No Ground *	14	152255906	5
		Lead, Individual Nitrile, 316 SS, 50 ft, No Ground *		152255907	5
		Lead, Individual Nitrile, 316 SS, 100 ft, No Ground *		152255910	9
		Lead, Individual Nitrile, 316 SS, 150 ft, No Ground *]	152255912	14
		Lead, Individual XLPE, 316 SS, 48 in, Ground		152735911	<1
		Lead, Individual XLPE, 316 SS, 100 in, Ground] [152735941	1
	3	Lead, Individual Nitrile, 316 SS, 100 in, No Ground *		152744902	<1
	(Clamp Style)	Lead, Individual Nitrile, 316 SS, 160 in, No Ground *	1	152744904	<1
		Lead, Individual Nitrile, 316 SS, 50 ft, No Ground *] [152744907	5
		Lead, Individual Nitrile, 316 SS, 100 ft, No Ground *	1	152744910	9

NOTE: Refer to Franklin Application Installation Maintenance (AIM) Manual for accurate cable sizing; MOTOR WARRANTY IS VOID if Franklin-supplied leads are not used *Nitrile not for use in potable water

MOTOR ACCESSORIES

HP	Description	Model No.	Wt. (lbs)
All	Coupling, 4-inch, #416 SS, 3/16 x 1/8 x 1 3/8 Key	151551911	1

6" SUBMERSIBLE MOTORS

These motors are built for dependable operation in 6" diameter or larger water wells.

BASIC FEATURES

- Double flanged NEMA mounting design
- Stainless steel splined shaft
- StatorShield[™], Franklin's six-feature encapsulation system
- High-capacity, Kingsbury-type, water-lubricated thrust bearing
- Factory-filled with Franklin's non-toxic water soluble fill solution
- Field replaceable lead using Franklin's exclusive Water-Bloc™ technology
- Full 3,450 rpm 60 Hz design point
- External sand slinger on shaft
- Mechanical face seal at shaft exit
- Copper bar rotor
- All models variable frequency drive (VFD) compatible
- Single-phase models must be used with a Franklin Electric control box

SPECIAL FEATURES

- 316 Stainless Steel: Special construction option for acid, low pH, and seawater applications. All 316 SS motors include a Subtrol™ heat sensor.
- Sand Fighter® models include SubTrol™ heat sensor on 40, 50, and 60 hp models.
- Consult factory for other voltage, hertz, and horsepower ratings not listed in this catalog
- Specifications are subject to change without notice; contact Franklin Electric if current materials are required for bid specifications
- Overmolded motor leads on all 10 GA leads

6" SUBMERSIBLE MOTORS - SPECIFICATIONS AND MATERIALS

MOTOR SPECIFICATIONS

Hz	Model	Phase	HP Range	kW Range	Poles	RPM	Max. Ambient Temp.	Duty Rating
50	Sand Fighter®*	3	5 - 40	3.7 -45			86° F / 30° C	
50	Salia Figiliei	3	50 - 60	37 - 45		2875	86° F / 30° C	
50	High-Temp 90° C**	3	5 - 40	3.7 - 30	,		195° F / 90° C	Continuous
60	Sand Fighter®*	3	5 - 40	3.7 - 30	2		86° F / 30° C	Continuous
60	Salia Figiliei	3	50 - 60	37 - 45		3450	86° F / 30° C	
60	High-Temp 90° C**	3	5 - 40	3.7 - 30		195° F / 90° C		

^{*}At 0.5 ft/sec flow past motor, motors are rated for continuous duty up to 86 °F (30 °C) water temperature.

CONSTRUCTION MATERIALS

Sand Fighter* Class F 86 °F / 30 °C Standard (5-40 hp) / Hi-Temp (50-60 hp) FES91 Epoxy-coated gray iron No (5-30 hp) / Yes (40-60 hp) 300 series SS Carbon steel	Constructi Corrosion Resistant (316 SS) Class F 86 °F / 30 °C Standard (5-40 hp) / Hi-Temp (50-60 hp) FES91 316 SS Yes	Hi-Temp 90 °C (300 SS Shell) Class F 194 °F / 90 °C (5-40 hp) FE Hi-Temp FES92 Epoxy-coated gray iron	Hi-Temp 90 °C (316 SS) Class F 194 °F / 90 °C (5-40 hp) FE Hi-Temp FES92 316 SS
86 °F / 30 °C Standard (5-40 hp) / Hi-Temp (50-60 hp) FES91 Epoxy-coated gray iron No (5-30 hp) / Yes (40-60 hp) 300 series SS	86 °F / 30 °C Standard (5-40 hp) / Hi-Temp (50-60 hp) FES91 316 SS	194 °F / 90 °C (5-40 hp) FE Hi-Temp FES92 Epoxy-coated gray iron	194 °F / 90 °C (5-40 hp) FE Hi-Temp FES92
Standard (5-40 hp) / Hi-Temp (50-60 hp) FES91 Epoxy-coated gray iron No (5-30 hp) / Yes (40-60 hp) 300 series SS	Standard (5-40 hp) / Hi-Temp (50-60 hp) FES91 316 SS	FE Hi-Temp FES92 Epoxy-coated gray iron	FE Hi-Temp FES92
FES91 Epoxy-coated gray iron No (5-30 hp) / Yes (40-60 hp) 300 series SS	FES91 316 SS	FES92 Epoxy-coated gray iron	FES92
Epoxy-coated gray iron No (5-30 hp) / Yes (40-60 hp) 300 series SS	316 SS	Epoxy-coated gray iron	
No (5-30 hp) / Yes (40-60 hp) 300 series SS	* * * * * * * * * * * * * * * * * * * *		316 SS
300 series SS	Yes		310 33
***************************************		Not Available	Not Available
Carbon steel	316 SS	300 series SS	316 SS
	310 33	Carbon steel	316 SS
300 Series SS (5-30 hp) / 17-4 SS (40-60 hp)	17-4 SS	300 SS (5-20 hp), 17-4 SS (25-40 hp)	17-4 SS
316 SS	716.55	316 SS	316 SS
300 series SS	310 33	300 series SS	316 SS
Sand Fighter™ Seal System	Sand Fighter™ Seal System	Sand Fighter™ Seal System	Sand Fighter™ Seal System
Nitrile (5-40 hp) / FKM (50-60 hp)	Nitrile (5-40 hp) / FKM (50-60 hp)	FKM	FKM
Nitrile (5-40 hp) / FKM (50-60 hp)	Nitrile (5-40 hp) / FKM (50-60 hp)	FKM	FKM
300 series SS	316 SS	300 series SS	316 SS
300 series SS	25-6 MO SS	300 series SS	25-6 MO SS
Nitrile (5-40 hp) / FKM (50-60 hp)	Nitrile	FKM	FKM
Jacketed (10 AWG) Individual (8 AWG)	Jacketed (10 AWG) Individual (8 AWG)	Individual Hi-Temp XLPO	Individual Hi-Temp XLPO
Overmolded (10 AWG) Potted (8 AWG)	Overmolded (10 AWG) Potted (8 AWG)	Potted	Potted
Brass	316 SS	Brass	316 SS
3500 lbs (5-30 hp) 6000 lbs (40-60 hp)	3500 lbs (5-30 hp) 6000 lbs (40-60 hp)	Standard 5-20 hp • 4,500 lbs Standard 25-40 hp • 7,500 lbs	Standard 5-20 hp • 4,500 lbs Standard 25-40 hp • 7,500 lbs
	Ground wire in power lead connector	Ground wire in power lead connector	
	300 series SS Sand Fighter™ Seal System Nitrile (5-40 hp) / FKM (50-60 hp) Nitrile (5-40 hp) / FKM (50-60 hp) 300 series SS 300 series SS Nitrile (5-40 hp) / FKM (50-60 hp) Jacketed (10 AWG) Individual (8 AWG) Overmolded (10 AWG) Potted (8 AWG) Brass 3500 lbs (5-30 hp)	300 series SS Sand Fighter™ Seal System Nitrile (5-40 hp) / FKM (50-60 hp) Nitrile (5-40 hp) / FKM (50-60 hp) Nitrile (5-40 hp) / FKM (50-60 hp) 300 series SS 300 series SS 316 SS 300 series SS Nitrile (5-40 hp) / FKM (50-60 hp) Jacketed (10 AWG) Individual (8 AWG) Overmolded (10 AWG) Potted (8 AWG) Brass 3500 lbs (5-30 hp) 6000 lbs (40-60 hp) 316 SS 3250 lbs (5-30 hp) 6000 lbs (40-60 hp)	316 SS 300 series SS Sand Fighter™ Seal System Sand Fighter™ Seal System Sand Fighter™ Seal System Nitrile (5-40 hp) / FKM (50-60 hp) Nitrile (5-40 hp) / FKM (50-60 hp) FKM Nitrile (5-40 hp) / FKM (50-60 hp) Nitrile (5-40 hp) / FKM (50-60 hp) FKM 300 series SS Nitrile (5-40 hp) / FKM (50-60 hp) Jacketed (10 AWG) Individual (8 AWG) Overmolded (10 AWG) Potted (8 AWG) Potted (8 AWG) Brass 3500 lbs (5-30 hp) Standard 5-20 hp • 4,500 lbs

NOTE: Specifications subject to change without notice; contact Franklin Electric if current material types are required for bid specifications

^{**}At 0.5 ft/sec flow past motor, motors are rated for continuous duty up to 195 °F (90 °C) water temperature and up to 86 °F (30 °C) water temperature with NO FLOW in lakes or in wells 12 inches or larger in diameter.

SINGLE-PHASE MODELS

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs)
Г	Sand Fighter®	230	60	1.15	DOL (3)	2261108020	3500	110
5	316 SS	230	60	1.15	DOL (3)	2261103920	3500	110
7.5	Sand Fighter®	230	60	1.15	DOL (3)	2261118020	3500	123
7.5	316 SS	230	60	1.15	DOL (3)	2261113920	3500	123
10	Sand Fighter®	230	60	1.15	DOL (3)	2261128020	3500	141
10	316 SS	230	60	1.15	DOL (3)	2261123920	3500	141
15	Sand Fighter®	230	60	1.15	DOL (3)	2261138020	3500	154
13	316 SS	230	60	1.15	DOL (3)	2261133920	3500	154

ITIINEE ITIMOI	- TTODEES							
HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs)
		200	60	1.15	DOL (3)	2366508120	3500	101
		220	50	1.0	DOL (3)	2366808120	3500	101
		230	60	1.15	DOL (3)	2366008120	3500	101
	Sand Fighter®	380	60	1.15	DOL (3)	2366608120	3500	101
		460/380	60/50	1.15/1.0	DOL (3)	2366108120	3500	101
		460/380	60/50	1.15/1.0	Y-Δ (6)	2367108120	3500	106
		575	60	1.15	DOL (3)	2366208120	3500	101
	316 SS w/SubTrol™	200	60	1.15	DOL (3)	2366504020	3500	101
		230	60	1.15	DOL (3)	2366004020	3500	101
		380	60	1.15	DOL (3)	2366604020	3500	101
		460/380	60/50	1.15/1.0	DOL (3)	2366104020	3500	101
5		460/380	60/50	1.15/1.0	Y-Δ (6)	2367104020	3500	106
5		575	60	1.15	DOL (3)	2366204020	3500	101
		200	60	1.15	DOL (3)	2766500003	4500	116
		230	60	1.15	DOL (3)	2766000003	4500	116
	Hi-Temp 90 °C	380	60	1.15	DOL (3)	2766600003	4500	116
	HI-Terrip 90 C	460/380	60/50	1.15/1.0	DOL (3)	2766100003	4500	116
		460/380	60/50	1.15/1.0	Y-Δ (6)	2767100003	4500	121
		575	60	1.15	DOL (3)	2766200003	4500	116
		200	60	1.15	DOL (3)	2766503003	4500	116
		230	60	1.15	DOL (3)	2766003003	4500	116
	Hi-Temp 90 °C - 316 SS	380	60	1.15	DOL (3)	2766603003	4500	116
		460/380	60/50	1.15/1.0	DOL (3)	2766103003	4500	116
		575	60	1.15	DOL (3)	2766203003	4500	116

НР	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs)
		200	60	1.15	DOL (3)	2366518120	3500	108
		220	50	1.0	DOL (3)	2366818120	3500	108
		230	60	1.15	DOL (3)	2366018120	3500	108
		380	60	1.15	DOL (3)	2366618120	3500	108
	Sand Fighter®	415	50	1.0	DOL (3)	2366918120	3500	108
		460/380	60/50	1.15/1.0	DOL (3)	2366118120	3500	108
		460/380	60/50	1.15/1.0	Υ-Δ (6)	2367118120	3500	113
		575	60	1.15	DOL (3)	2366218120	3500	108
		200	60	1.15	DOL (3)	2366514020	3500	108
		230	60	1.15	DOL (3)	2366014020	3500	108
		380	60	1.15	DOL (3)	2366614020	3500	108
	316 SS w/SubTrol™	460/380	60/50	1.15/1.0	DOL (3)	2366114020	3500	108
7.5		460/380	60/50	1.15/1.0	Υ-Δ (6)	2367114020	3500	113
		575	60	1.15	DOL (3)	2366214020	3500	108
		200	60	1.15	DOL (3)	2766510003	4500	129
		230	60	1.15	DOL (3)	2766010003	4500	129
		380	60	1.15	DOL (3)	2766610003	4500	129
	Hi-Temp 90 °C	460/380	60/50	1.15/1.0	DOL (3)	2766110003	4500	129
		460/380	60/50	1.15/1.0	Y-Δ (6)	2767110003	4500	134
		575	60	1.15	DOL (3)	2766210003	4500	129
		200	60	1.15	DOL (3)	2766513003	4500	129
	Hi-Temp 90 °C - 316 SS	230	60	1.15	DOL (3)	2766013003	4500	129
		380	60	1.15	DOL (3)	2766613003	4500	129
		460/380	60/50	1.15/1.0	DOL (3)	2766113003	4500	129
		575	60	1.15	DOL (3)	2766213003	4500	129
		200	60	1.15	DOL (3)	2366528120	3500	116
		220	50	1.0	DOL (3)	2366828120	3500	116
		230	60	1.15	DOL (3)	2366028120	3500	116
		380	60	1.15	DOL (3)	2366628120	3500	116
	Sand Fighter®	415	50	1.0	DOL (3)	2366928120	3500	116
		460/380	60/50	1.15/1.0	DOL (3)	2366128120	3500	116
		460/380	60/50	1.15/1.0	Y-Δ(6)	2367128120	3500	121
		575	60	1.15	DOL (3)	2366228120	3500	116
		200	60	1.15	DOL (3)	2366524020	3500	116
		230	60	1.15	DOL (3)	2366024020	3500	116
		380	60	1.15	DOL (3)	2366624020	3500	116
	316 SS w/SubTrol™	460/380	60/50	1.15/1.0	DOL (3)	2366124020	3500	116
10		460/380	60/50	1.15/1.0		2367124020	3500	121
10		575	60	1.15	Y-Δ (6) DOL (3)	2366224020	3500	116
		200	60	1.15	DOL (3)	2766520003	4500	145
		230	60	1.15	DOL (3)	2766020003	4500	145
		380	60	1.15	DOL (3)	2766620003	4500	145
	Hi-Temp 90 °C	460/380	60/50	1.15/1.0	DOL (3)	2766120003	4500	145
		460/380	60/50	1.15/1.0		2767120003	4500	150
		575	60	1.15/ 1.0	Y-Δ (6) DOL (3)	2766220003	4500	145
		200			DOL (3)		4500	145
		230	60	1.15	DOL (3)	2766523003 2766023003	4500	145
	Hi Tomp 00 %C 71C CC							
	Hi-Temp 90 °C - 316 SS	380	60	1.15	DOL (3)	2766623003	4500	145
		460/380	60/50	1.15/1.0	DOL (3)	2766123003	4500	145
		575	60	1.15	DOL (3)	2766223003	4500	145

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs
		200	60	1.15	DOL (3)	2366538120	3500	129
		220	50	1.0	DOL (3)	2366838120	3500	129
		230	60	1.15	DOL (3)	2366038120	3500	129
	6 15:11 8	380	60	1.15	DOL (3)	2366638120	3500	129
	Sand Fighter®	415	50	1.0	DOL (3)	2366938120	3500	129
		460/380	60/50	1.15/1.0	DOL (3)	2366138120	3500	129
		460/380	60/50	1.15/1.0	Υ-Δ (6)	2367138120	3500	134
		575	60	1.15	DOL (3)	2366238120	3500	129
		200	60	1.15	DOL (3)	2366534020	3500	129
		230	60	1.15	DOL (3)	2366034020	3500	129
	716.66 /6 7 174	380	60	1.15	DOL(3)	2366634020	3500	129
	316 SS w/SubTrol™	460/380	60/50	1.15/1.0	DOL (3)	2366134020	3500	129
15		460/380	60/50	1.15/1.0	Υ-Δ (6)	2367134020	3500	134
		575	60	1.15	DOL (3)	2366234020	3500	129
		200	60	1.15	DOL (3)	2766530003	4500	156
		230	60	1.15	DOL (3)	2766030003	4500	156
		380	60	1.15	DOL (3)	2766630003	4500	156
	Hi-Temp 90 °C	460/380	60/50	1.15/1.0	DOL (3)	2766130003	4500	156
		460/380	60/50	1.15/1.0	Υ-Δ (6)	2767130003	4500	161
		575	60	1.15	DOL (3)	2766230003	4500	156
		200	60	1.15	DOL (3)	2766533003	4500	156
		230	60	1.15	DOL (3)	2766033003	4500	156
	Hi-Temp 90 °C - 316 SS	380	60	1.15	DOL (3)	2766633003	4500	156
	111 Temp 30 C 310 33	460/380	60/50	1.15/1.0	DOL (3)	2766133003	4500	156
		575	60	1.15	DOL (3)	2766233003	4500	156
		200	60	1.15	DOL (3)	2366548120	3500	145
		220	50	1.0	DOL (3)	2366848120	3500	145
		230	60	1.15			3500	145
		380		1.15	DOL (3)	2366048120		145
	Sand Fighter®		60		DOL (3)	2366648120	3500	
		415	50	1.0	DOL (3)	2366948120	3500	145
		460/380	60/50	1.15/1.0	DOL (3)	2366148120	3500	145
		460/380	60/50	1.15/1.0	Y-Δ (6)	2367148120	3500	150
		575	60	1.15	DOL (3)	2366248120	3500	145
		200	60	1.15	DOL (3)	2366544020	3500	145
		230	60	1.15	DOL (3)	2366044020	3500	145
	316 SS w/SubTrol™	380	60	1.15	DOL (3)	2366644020	3500	145
	· ·	460/380	60/50	1.15/1.0	DOL (3)	2366144020	3500	145
20		460/380	60/50	1.15/1.0	Y-Δ (6)	2367144020	3500	150
		575	60	1.15	DOL (3)	2366244020	3500	145
		200	60	1.15	DOL (3)	2766540003	4500	174
		230	60	1.15	DOL (3)	2766040003	4500	174
	Hi-Temp 90 °C	380	60	1.15	DOL (3)	2766640003	4500	174
	Thi temp 50 c	460/380	60/50	1.15/1.0	DOL (3)	2766140003	4500	174
		460/380	60/50	1.15/1.0	Y-Δ (6)	2767140003	4500	179
		575	60	1.15	DOL (3)	2766240003	4500	174
		200	60	1.15	DOL (3)	2766543003	4500	174
		230	60	1.15	DOL (3)	2766043003	4500	174
	Hi-Temp 90 °C - 316 SS	380	60	1.15	DOL (3)	2766643003	4500	174
		460/380	60/50	1.15/1.0	DOL (3)	2766143003	4500	174
		575	60	1.15	DOL (3)	2766243003	4500	174

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs)
		200	60	1.15	DOL (3)	2366558120	3500	156
		220	50	1.0	DOL (3)	2366858120	3500	156
		230	60	1.15	DOL (3)	2366058120	3500	156
		380	60	1.15	DOL (3)	2366658120	3500	156
	Sand Fighter®	415	50	1.0	DOL (3)	2366958120	3500	156
		460/380	60/50	1.15/1.0	DOL (3)	2366158120	3500	156
		460/380	60/50	1.15/1.0	Υ-Δ (6)	2367158120	3500	161
		575	60	1.15	DOL (3)	2366258120	3500	156
		200	60	1.15	DOL (3)	2366554020	3500	156
		230	60	1.15	DOL (3)	2366054020	3500	156
		380	60	1.15	DOL (3)	2366654020	3500	156
	316 SS w/SubTrol™	460/380	60/50	1.15/1.0	DOL (3)	2366154020	3500	156
25		460/380	60/50	1.15/1.0	Y-Δ (6)	2367154020	3500	161
25		575	60	1.15	DOL (3)	2366254020	3500	156
		200	60	1.15	DOL (3)	2766550103	7500	202
		230	60	1.15	DOL (3)	2766050103	7500	202
		380	60	1.15	DOL (3)	2766650103	7500	202
	Hi-Temp 90 °C	460/380	60/50	1.15/1.0	DOL (3)	2766150103	7500	202
		460/380	60/50	1.15/1.0	Y-Δ (6)	2767150103	7500	207
		575	60	1.15/ 1.0	DOL (3)	2766250103	7500	207
		200	60	1.15			7500	202
		230	60	1.15	DOL (3)	2766553103 2766053103	7500	202
	Hi Town 00 9C 71C CC				DOL (3)			
	Hi-Temp 90 °C - 316 SS	380	60	1.15	DOL (3)	2766653103	7500	202
		460/380	60/50	1.15/1.0	DOL (3)	2766153103	7500	202
		575	60	1.15	DOL (3)	2766253103	7500	202
		200	60	1.15	DOL (3)	2366568120	3500	174
		220	50	1.0	DOL (3)	2366868120	3500	174
		230	60	1.15	DOL (3)	2366068120	3500	174
	Sand Fighter®	380	60	1.15	DOL (3)	2366668120	3500	174
		415	50	1.0	DOL (3)	2366968120	3500	174
		460/380	60/50	1.15/1.0	DOL (3)	2366168120	3500	174
		460/380	60/50	1.15/1.0	Y-Δ (6)	2367168120	3500	179
		575	60	1.15	DOL (3)	2366268120	3500	174
		200	60	1.15	DOL (3)	2366564020	3500	174
		230	60	1.15	DOL (3)	2366064020	3500	174
	316 SS w/SubTrol™	380	60	1.15	DOL (3)	2366664020	3500	174
		460/380	60/50	1.15/1.0	DOL (3)	2366164020	3500	174
30		460/380	60/50	1.15/1.0	Y-Δ (6)	2367164020	3500	179
		575	60	1.15	DOL (3)	2366264020	3500	174
		200	60	1.15	DOL (3)	2766560103	7500	300
		230	60	1.15	DOL (3)	2766060103	7500	300
	Hi-Temp 90 °C	380	60	1.15	DOL (3)	2766660103	7500	300
	Thi lettip 50 C	460/380	60/50	1.15/1.0	DOL (3)	2766160103	7500	300
		460/380	60/50	1.15/1.0	Y-Δ (6)	2767160103	7500	305
		575	60	1.15	DOL (3)	2766260103	7500	300
		200	60	1.15	DOL (3)	2766563103	7500	300
		230	60	1.15	DOL (3)	2766063103	7500	300
	Hi-Temp 90 °C - 316 SS	380	60	1.15	DOL (3)	2766663103	7500	300
		460/380	60/50	1.15/1.0	DOL (3)	2766163103	7500	300
		575	60	1.15	DOL (3)	2766263103	7500	300

THREE-PHASE MODELS

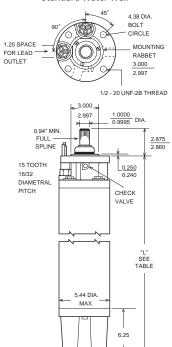
HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs)
		380	60	1.15	DOL (3)	2366678125	6000	202
		415	50	1.0	DOL (3)	2366978125	6000	202
	Sand Fighter® w/SubTrol™	460/380	60/50	1.15/1.0	DOL (3)	2366178125	6000	202
		460/380	60/50	1.15/1.0	Y-Δ (6)	2367178125	6000	207
		575	60	1.15	DOL (3)	2366278125	6000	202
		380	60	1.15	DOL (3)	2366674025	6000	202
	316 SS w/SubTrol™	460/380	60/50	1.15/1.0	DOL (3)	2366174025	6000	202
40	310 33 W/ 3UD 1101	460/380	60/50	1.15/1.0	Y-Δ (6)	2367174025	6000	207
40		575	60	1.15	DOL (3)	2366274025	6000	202
		380	60	1.15	DOL (3)	2766670103	10000	330
	Hi-Temp 90 °C	460/380	60/50	1.15/1.0	DOL (3)	2766170103	10000	330
	HI-TEITIP 90 C	460/380	60/50	1.15/1.0	Y-Δ(6)	2767170103	10000	335
		575	60	1.15	DOL (3)	2766270103	10000	330
	Hi-Temp 90 °C - 316 SS	380	60	1.15	DOL (3)	2766673103	10000	330
		460/380	60/50	1.15/1.0	DOL (3)	2766173103	10000	330
		575	60	1.15	DOL (3)	2766273103	10000	330
		380	60	1.15	DOL (3)	2366688125	6000	300
	Cand Fighton w/CubTrolim	460/380	60/50	1.15/1.0	DOL (3)	2366188125	6000	300
	Sand Fighter® w/SubTrol™	460/380	60/50	1.15/1.0	Y-Δ (6)	2367188125	6000	305
50		575	60	1.15	DOL (3)	2366288125	6000	300
50		380	60	1.15	DOL (3)	2366684025	6000	300
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2366184025	6000	300
	310 33	460/380	60/50	1.15/1.0	Y-Δ (6)	2367184025	6000	305
		575	60	1.15	DOL (3)	2366284025	6000	300
		380	60	1.15	DOL (3)	2366698125	6000	330
	Const Fighton /Cub Too IM	460/380	60/50	1.15/1.0	DOL (3)	2366198125	6000	330
	Sand Fighter® w/SubTrol™	460/380	60/50	1.15/1.0	Y-Δ (6)	2367198125	6000	335
60		575	60	1.15	DOL (3)	2366298125	6000	330
60		380	60	1.15	DOL (3)	2366694025	6000	330
	710.00	460/380	60/50	1.15/1.0	DOL (3)	2366194025	6000	330
	316 SS	460/380	60/50	1.15/1.0	Y-Δ (6)	2367194025	6000	335
		575	60	1.15	DOL (3)	2366294025	6000	330

NOTE: Models designated above as Sand Fighter® are water well construction; all 316 SS and Ni-Resist models are equipped with Sand Fighter® sealing system; all models listed above include factory-installed leads (13 ft)

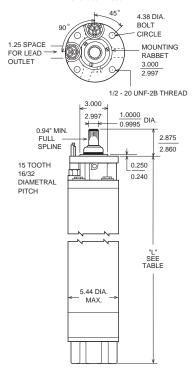
6" SUBMERSIBLE MOTORS - DIMENSIONS AND WEIGHTS

STANDARD

HP/kW	Construction	"L" (in)	Mot	or Carton Size	(in)	Shippi	ng Wt.
TIF / KVV	Construction	L (III)	W	Н	L	lbs	kg
5 / 3.7	304 SS 3-Lead	22.9	7.50	10.75	34.50	101	46
5 / 5./	316 SS 3-Lead	22.5	7.50	10.75	34.50	101	46
7.5 / 5.5	304 SS 3-Lead	24.2	7.50	10.75	34.50	108	49
7.5 / 5.5	316 SS 3-Lead	23.8	7.50	10.75	34.50	108	49
10 / 7.5	304 SS 3-Lead	25.4	7.50	10.75	34.50	116	53
10 / 7.5	316 SS 3-Lead	25.0	7.50	10.75	34.50	116	53
15 / 11	304 SS 3-Lead	28.0	7.50	10.75	34.50	129	59
15 / 11	316 SS 3-Lead	27.6	7.50	10.75	34.50	129	59
20 / 15	304 SS 3-Lead	30.6	7.50	10.75	37.00	145	66
20 / 15	316 SS 3-Lead	30.2	7.50	10.75	37.00	145	66
25 / 18.5	304 SS 3-Lead	33.1	7.50	10.75	42.25	156	71
25 / 18.5	316 SS 3-Lead	32.7	7.50	10.75	42.25	156	71
30 / 22	304 SS 3-Lead	35.7	7.50	10.75	42.25	174	79
30 / 22	316 SS 3-Lead	35.3	7.50	10.75	42.25	174	79
40 / 70	304 SS 3-Lead	40.8	7.50	10.75	47.25	202	92
40 / 30	316 SS 3-Lead	40.4	7.50	10.75	47.25	202	92
FO / 77	304 SS 3-Lead	55.3	8.75	10.50	71.75	300	136
50 / 37	316 SS 3-Lead	54.9	8.75	10.50	71.75	300	136
60 - 45	304 SS 3-Lead	61.3	8.75	10.50	71.75	330	150
00 - 45	316 SS 3-Lead	60.9	8.75	10.50	71.75	330	150


NOTE: 6-Lead Y-∆ models available (add 5 lbs to shipping weight)

HIGH-TEMP 90


HP / kW	Construction	L (in)	Mot	or Carton Size	(in)	Shipping Wt.		
nr/kvv	CONSTRUCTION	L (III)	W	Н	L	lbs	kg	
5 / 3.7	304 SS 3-Lead	26.4	9	11	35	116	53	
3 / 3./	316 SS 3-Lead	26.4	9	11	35	116	53	
7.5 / 5.5	304 SS 3-Lead	28.96	9	11	37	129	59	
7.5 / 5.5	316 SS 3-Lead	28.96	9	11	37	129	59	
10 / 7.5	304 SS 3-Lead	31.52	9	11	42	145	66	
10 / 7.5	316 SS 3-Lead	31.52	9	11	42	145	66	
15 / 11	304 SS 3-Lead	34.09	9	11	42	156	71	
15 / 11	316 SS 3-Lead	34.09	9	11	42	156	71	
20 / 15	304 SS 3-Lead	36.65	9	11	51	174	79	
20 / 15	316 SS 3-Lead	36.65	9	11	51	174	79	
25 / 18.5	304 SS 3-Lead	41.77	9	11	51	202	92	
23 / 10.3	316 SS 3-Lead	41.77	9	11	51	202	92	
30 / 22	304 SS 3-Lead	58.14	9	11	72	300	136	
30 / 22	316 SS 3-Lead	58.14	9	11	72	300	136	
40 / 30	304 SS 3-Lead	64.14	9	11	72	330	150	
40 / 30	316 SS 3-Lead	64.14	9	11	72	330	150	

NOTE: 6-Lead Y-∆ models available (add 5 lbs to shipping weight)

Standard Water Well

316 Stainless

6" SUBMERSIBLE MOTORS - LEADS AND ACCESSORIES

MOTOR LEADS AND CABLES

HP	Model	Description	Wire AWG	Model No.	Wt. (lbs)
		Lead, XLPE, Brass, 13 ft, w/Ground	8	305517901	4
		Lead, XLPE, Brass, 26 ft, w/Ground	8	305517902	9
All		Lead, XLPE, 316 SS, 13 ft, w/Ground	8	305517951	4
		Lead, XLPE, 316 SS, 26 ft, w/Ground	10	305518952	9
		Lead, XLPE, 316 SS, 26 ft, w/Ground	8	305517952	9
		Lead, XLPE, 316 SS, 50 ft, w/Ground	10	305518955	11
		Lead, XLPE, 316 SS, 50 ft, w/Ground	8	305517955	16
	Standard	Lead, XLPE, 316 SS, 75 ft, w/Ground	10	305518957	16
		Lead, XLPE, 316 SS, 75 ft, w/Ground	8	305517957	24
Г 70		Lead, XLPE, 316 SS, 100 ft, w/Ground	10	305518960	21
5-30		Lead, XLPE, 316 SS, 100 ft, w/Ground	8	305517960	32
		Lead, XLPE, 316 SS, 125 ft, w/Ground	10	305518962	27
		Lead, XLPE, 316 SS, 125 ft, w/Ground	8	305517962	40
		Lead, XLPE, 316 SS, 150 ft, w/Ground	10	305518965	32
		Lead, XLPE, 316 SS, 150 ft, w/Ground	8	305517965	48
		Lead, XLPO, 316 SS, 13 ft, w/Ground	8	305519951	4
All		Lead, XLPO, 316 SS, 26 ft, w/Ground	8	305519952	9
		Lead, XLPO, 316 SS, 50 ft, w/Ground	8	305519955	16
	Hi-Temp	Lead, XLPO, 316 SS, 75 ft, w/Ground	8	305519957	24
5-30		Lead, XLPO, 316 SS, 100 ft, w/Ground	8	305519960	32
5-30		Lead, XLPO, 316 SS, 125 ft, w/Ground	8	305519962	40
		Lead, XLPO, 316 SS, 150 ft, w/Ground	8	305519965	48

NOTE: Refer to Franklin Application Installation Maintenance (AIM) Manual for accurate cable sizing; MOTOR WARRANTY IS VOID if Franklin-supplied leads are not used

MOTOR ACCESSORIES

HP	Description	Model No.	Wt. (lbs)
	Coupling, 6-inch, #416 SS, 3/4" Pump Shaft, 3/16 x 1/8 x 1-3/4 Key	151935902	2
	Coupling, 6-inch, #416 SS, 7/8" Pump Shaft, 1/4 x 3/16 x 1-3/4 Key	151935901	2
	Coupling, 6-inch, #416 SS, 1" Pump Shaft, 1/4 x 3/16 x 1-3/4 Key	151935909	2
All	Coupling, 6-inch, #316 SS, 3/4" Pump Shaft, 3/16 x 1/8 x 1-3/4 Key	151935922	2
All	Coupling, 6-inch, #316 SS, 7/8" Pump Shaft, 1/4 x 3/16 x 1-3/4 Key	151935921	2
	Coupling, 6-inch, #316 SS, 1" Pump Shaft, 1/4 x 3/16 x 1-3/4 Key	151935929	2
	Surge Arrestor - Three-Phase - Up to 650 V to Ground	155440902	2
	PT 100 Sensor - 6-inch (1/2-13 Threads)	305327903	< 2

8" SUBMERSIBLE MOTORS

These motors are built for dependable operation in vertical 8" diameter or larger water wells.

BASIC FEATURES

- Double flanged NEMA mounting design
- Stainless steel splined shaft
- StatorShield[™] six feature encapsulation system
- High-capacity, Kingsbury-type, water lubricated thrust bearing
- Factory filled with Franklin's non-toxic water soluble fill solution
- Field replaceable lead using Franklin's exclusive Water-Bloc™ technology
- Full 3,525 rpm 60 Hz design point
- External sand slinger on shaft
- Mechanical face seal at shaft exit
- Copper bar rotor
- All models are variable frequency drive (VFD) compatible
- Franklin's Exclusive on-winding SubTrol™ heat sensor for use with SubMonitor Connect™

SPECIAL FEATURES

■ Sand Fighter® and 316 stainless steel models are equipped with Franklin's exclusive Sand Fighter® sealing system for sand or other abrasives Consult factory for other voltage, hert and horsepower ratings not listed in this catalog; specifications are subject to change without notice; contact Franklin Electric if current materials are required for bid specifications

8" SUBMERSIBLE MOTORS - SPECIFICATIONS AND MATERIALS

THREE-PHASE MOTOR SPECIFICATIONS

Hz	Model	Phase	HP Range	kW Range	Poles	RPM	Max. Ambient Temp.	Duty Rating
50	Standard	3	40 - 200	30 - 150	2	2900	86 °F / 30 °C	
50	Hi-Temp 75		40 - 150	30 - 110			167 °F / 75 °C	Continuous*
CO	Standard		40 - 200	30 - 150		3525	86 °F / 30 °C	
60	Hi-Temp 75		40 - 150	30 - 110			167 °F / 75 °C	

^{*}At 0.5 ft/sec flow past motor, Motors are also rated for continuous duty up to 86 °F (30 °C) water temperature with NO FLOW in lakes or in wells 12 inches or larger in diameter, Higher temperature ambient motors are available in the 8" Hi-Temp motor line

CONSTRUCTION MATERIALS

Community					
Component	Sand Fighter® (300 SS Shell)	Corrosion Resistant (316 SS)	Hi-Temp 75 (300 SS Shell)	Hi-Temp 75 (316 SS)	
UL Insulation Class Rating	Class F	Class F	Class F	Class F	
Motor Ambient Temp. Rating	86 °F / 30 °C	86 °F / 30 °C	167 °F / 75 °C	167 °F / 75 °C	
Stator Resin Type	FE Standard	FE Standard	FE Hi-Temp	FE Hi-Temp	
Motor Fill Solution (Water Soluble/Non-Toxic)	FES91	FES91	FES92	FES92	
Top End Bell & Thrust Housing	Epoxy-coated gray iron	316 SS	Epoxy-coated gray iron	316 SS	
SubTrol™ heat sensor (Mounted On Winding)	Yes	Yes	No	No	
Stator Shell	300 series SS	316 SS	300 series SS	316 SS	
Stator Ends	Carbon Steel	316 SS	Carbon Steel	316 SS	
Shaft Extension	17-4 SS	Per standard water well	17-4 SS	17-4 SS	
Bushing	Bronze	316 SS	Bronze	316 SS	
Bushing Retainer	300 series SS	316 SS	300 series SS	316 SS	
Shaft Mechanical Seal	Sand Fighter® Seal System	Sand Fighter® Seal System	Sand Fighter® Seal System	Sand Fighter® Seal System	
Mechanical Seal / Rubber Components	Nitrile	Nitrile	FKM	FKM	
Diaphragm Material	Nitrile	Nitrile	FKM	FKM	
Diaphragm Plate	300 SS	316 SS	316 SS	316 SS	
Diaphragm Spring	300 SS	316 SS	316 SS	316 SS	
Shaft Slinger	Nitrile	Nitrile	FKM	FKM	
Lead Wire	XLPE (#8 AWG) / EPCV (#4 & #2 AWG)	XLPE (#8 AWG) / EPCV (#4 & #2 AWG)	XLPO	XLPO	
Lead Potting	Ероху	Ероху	Ероху	Ероху	
Lead Jam Nut or Compression Plate	Brass jam nut (40-125 hp) 316 SS plate (150-200 hp)	316 SS jam nut (40-125 hp) 316 SS plate (150-200 hp)	316 SS plate (150-200 hp)	316 SS plate (150-200 hp)	
Thrust Bearing Rating (86 °F / 30 °C)	10,000 lbs	10,000 lbs	12,500 lbs (86 °F / 30 °C) 10,000 lbs (167 °F / 75 °C)	12,500 lbs (86 °F / 30 °C) 10,000 lbs (167 °F / 75 °C)	
Method Of Connecting System Ground To Motor	Ground lug on top end bell	Ground lug on top end bell	Ground lug on top end bell	Ground lug on top end bell	

NOTE: Specifications subject to change without notice; Contact Franklin Electric if current material types are required for bid specifications

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs)
		380	60	1.15	DOL (3)	2396608521	10000	320
	Sand Fighter®	460/380	60/50	1.15/1.0	DOL (3)	2396008521	10000	320
	Sand Fighter	460/380	60/50	1.15/1.0	Y-Δ (6)	2396208621	10000	325
		575	60	1.15	DOL (3)	2396108521	10000	320
		380	60	1.15	DOL (3)	2396606221	10000	320
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2396006221	10000	320
	310 33	460/380	60/50	1.15/1.0	Y-∆ (6)	2396202221	10000	325
40		575	60	1.15	DOL (3)	2396106221	10000	320
		380	60	1.15	DOL (3)	2791609004	12500	400
		380	60	1.15	Y-Δ (6)	2791809004	12500	405
	Hi-Temp 75 °C	460/380	60/50	1.15/1.0	DOL (3)	2791009004	12500	400
		460/380	60/50	1.15/1.0	Y-∆ (6)	2791209004	12500	405
		575	60	1.15	DOL (3)	2791109004	12500	400
		575	60	1.15	Y-∆ (6)	2791909004	12500	405
	Hi-Temp 75 °C - 316 SS	460/380	60/50	1.15/1.0	DOL (3)	2791009204	12500	400
		380	60	1.15	DOL (3)	2396618521	10000	345
	Sand Fighter®	460/380	60/50	1.15/1.0	DOL (3)	2396018521	10000	345
	Sand Fighter	460/380	60/50	1.15/1.0	Y-Δ (6)	2396218621	10000	350
		575	60	1.15	DOL (3)	2396118521	10000	345
	316 SS	380	60	1.15	DOL (3)	2396616221	10000	345
		460/380	60/50	1.15/1.0	DOL (3)	2396016221	10000	345
		460/380	60/50	1.15/1.0	Y-Δ (6)	2396212221	10000	350
50		575	60	1.15	DOL (3)	2396116221	10000	345
		380	60	1.15	DOL (3)	2791619004	12500	455
		380	60	1.15	Y-Δ (6)	2791819004	12500	450
	Hi-Temp 75 °C	460/380	60/50	1.15/1.0	DOL (3)	2791019004	12500	455
	HI-Terrip 75 C	460/380	60/50	1.15/1.0	Y-Δ (6)	2791219004	12500	450
		575	60	1.15	DOL (3)	2791119004	12500	455
		575	60	1.15	Y-Δ (6)	2791919004	12500	450
	Hi-Temp 75 °C - 316 SS	460/380	60/50	1.15/1.0	DOL (3)	2791019204	12500	455
		380	60	1.15	DOL (3)	2396628521	10000	375
	Sand Fighter®	460/380	60/50	1.15/1.0	DOL (3)	2396028521	10000	375
	Sand Figiter	460/380	60/50	1.15/1.0	Y-Δ (6)	2396228621	10000	380
		575	60	1.15	DOL (3)	2396128521	10000	375
		380	60	1.15	DOL (3)	2396626221	10000	375
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2396026221	10000	375
	310 33	460/380	60/50	1.15/1.0	Y-Δ (6)	2396222221	10000	380
60		575	60	1.15	DOL (3)	2396126221	10000	375
		380	60	1.15	DOL (3)	2791629004	12500	555
		380	60	1.15	Y-Δ (6)	2791829004	12500	560
	III: T 7F 0C	460/380	60/50	1.15/1.0	DOL (3)	2791029004	12500	555
	Hi-Temp 75 °C	460/380	60/50	1.15/1.0	Y-Δ (6)	2791229004	12500	560
		575	60	1.15	DOL (3)	2791129004	12500	555
		575	60	1.15	Y-Δ (6)	2791929004	12500	560
	Hi-Temp 75 °C - 316 SS	460/380	60/50	1.15/1.0	DOL (3)	2791029204	12500	455

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs
		380	60	1.15	DOL (3)	2396638541	10000	430
	Cand Fightor®	460/380	60/50	1.15/1.0	DOL (3)	2396038541	10000	430
	Sand Fighter®	460/380	60/50	1.15/1.0	Y-Δ (6)	2396238641	10000	435
		575	60	1.15	DOL (3)	2396138541	10000	430
		380	60	1.15	DOL (3)	2396636241	10000	430
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2396036241	10000	430
	310 33	460/380	60/50	1.15/1.0	Y-Δ (6)	2396232241	10000	435
75		575	60	1.15	DOL (3)	2396136241	10000	430
		380	60	1.15	DOL (3)	2791639004	12500	700
		380	60	1.15	Y-Δ (6)	2791839004	12500	705
	Hi-Temp 75 °C	460/380	60/50	1.15/1.0	DOL (3)	2791039004	12500	700
	The temp 75 c	460/380	60/50	1.15/1.0	Y-Δ (6)	2791239004	12500	705
		575	60	1.15	DOL (3)	2791139004	12500	700
		575	60	1.15	Y-Δ (6)	2791939004	12500	705
	Hi-Temp 75 °C - 316 SS	460/380	60/50	1.15/1.0	DOL (3)	2791039204	12500	700
		380	60	1.15	DOL (3)	2396648541	10000	530
	Sand Fighter®	460/380	60/50	1.15/1.0	DOL (3)	2396048541	10000	530
	Sand Fighter	460/380	60/50	1.15/1.0	Y-Δ (6)	2396248641	10000	535
		575	60	1.15	DOL (3)	2396148541	10000	530
		380	60	1.15	DOL (3)	2396646241	10000	530
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2396046241	10000	530
		460/380	60/50	1.15/1.0	Y-Δ (6)	2396242241	10000	535
100		575	60	1.15	DOL (3)	2396146241	10000	530
		380	60	1.15	DOL (3)	2791649004	12500	840
		380	60	1.15	Y-Δ (6)	2791849004	12500	845
	Hi-Temp 75 °C	460/380	60/50	1.15/1.0	DOL (3)	2791049004	12500	840
	Til-Terrip 75 C	460/380	60/50	1.15/1.0	Y-Δ (6)	2791249004	12500	845
		575	60	1.15	DOL (3)	2791149004	12500	840
		575	60	1.15	Y-Δ (6)	2791949004	12500	845
	Hi-Temp 75 °C - 316 SS	460/380	60/50	1.15/1.0	DOL (3)	2791049204	12500	840
		380	60	1.15	DOL (3)	2391658504	10000	700
	Sand Fighter®	460/380	60/50	1.15/1.0	DOL (3)	2391058504	10000	700
	Sand Fighter	460/380	60/50	1.15/1.0	Y-Δ (6)	2391258604	10000	705
		575	60	1.15	DOL (3)	2391158504	10000	700
		380	60	1.15	DOL (3)	2391656204	10000	700
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2391056204	10000	700
	310 33	460/380	60/50	1.15/1.0	Y-Δ (6)	2391252204	10000	705
125		575	60	1.15	DOL (3)	2391156204	10000	700
		380	60	1.15	DOL (3)	2791659004	12500	945
		380	60	1.15	Y-Δ (6)	2791859004	12500	950
	Hi-Temp 75 °C	460/380	60/50	1.15/1.0	DOL (3)	2791059004	12500	945
	ni-leftip /5 °C	460/380	60/50	1.15/1.0	Y-Δ (6)	2791259004	12500	950
		575	60	1.15	DOL (3)	2791159004	12500	945
		575	60	1.15	Y-Δ (6)	2791959004	12500	950
	Hi-Temp 75 °C - 316 SS	460/380	60/50	1.15/1.0	DOL (3)	2791059204	12500	945

THREE-PHASE MODELS

HP	Description	Volts	Hz	S.F.	Motor Lead	Model No.	Thrust Rating	Wt. (lbs)
		380	60	1.15	DOL (3)	2391668504	10000	840
		380	60	1.15	Y-Δ (6)	2391868604	10000	845
	Sand Fighter®	460/380	60/50	1.15/1.0	DOL (3)	2391068504	10000	840
		460/380	60/50	1.15/1.0	Y-Δ (6)	2391268604	10000	845
		575	60	1.15	DOL (3)	2391168504	10000	840
		380	60	1.15	DOL (3)	2391666204	10000	840
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2391066204	10000	840
150	310 33	460/380	60/50	1.15/1.0	Y-Δ (6)	2391262204	10000	845
150		575	60	1.15	DOL (3)	2391166204	10000	840
		380	60	1.15	DOL (3)	2791669004	12500	1040
		380	60	1.15	Y-Δ (6)	2791869004	12500	1045
	Hi-Temp 75 °C	460/380	60/50	1.15/1.0	DOL (3)	2791069004	12500	1040
	ni-leilip /5 C	460/380	60/50	1.15/1.0	Y-Δ (6)	2791269004	12500	1045
		575	60	1.15	DOL (3)	2791169004	12500	1040
		575	60	1.15	Y-Δ (6)	2791969004	12500	1045
	Hi-Temp 75 °C - 316 SS	460/380	60/50	1.15/1.0	DOL (3)	2791069204	12500	1040
		380	60	1.15	DOL (3)	2391678504	10000	945
	Sand Fighter®	380	60	1.15	Y-Δ (6)	2391878604	10000	950
		460/380	60/50	1.15/1.0	DOL (3)	2391078504	10000	945
		460/380	60/50	1.15/1.0	Y-Δ (6)	2391278604	10000	950
175		575	60	1.15	DOL (3)	2391178504	10000	945
		380	60	1.15	DOL (3)	2391676204	10000	945
	316 SS	460/380	60/50	1.15/1.0	DOL (3)	2391076204	10000	945
	310 33	460/380	60/50	1.15/1.0	Y-Δ (6)	2391272204	10000	950
		575	60	1.15	DOL (3)	2391176204	10000	945
		380	60	1.15	DOL (3)	2391688504	10000	1040
		380	60	1.15	Y-Δ (6)	2391888604	10000	1045
	Sand Fighter®	460/380	60/50	1.15/1.0	DOL (3)	2391088504	10000	1040
		460/380	60/50	1.15/1.0	Y-Δ (6)	2391288604	10000	1045
200		575	60	1.15	DOL (3)	2391188504	10000	1040
		380	60	1.15	DOL (3)	2391686204	10000	1040
	710.00	460/380	60/50	1.15/1.0	DOL (3)	2391086204	10000	1040
	316 SS	460/380	60/50	1.15/1.0	Y-Δ (6)	2391282204	10000	1045
	1	575	60	1.15	DOL (3)	2391186204	10000	1040

NOTE: Models designated above as Sand Fighter* are water well construction; all 316 SS models are equipped with Sand Fighter* sealing system; all models listed above include factory installed leads (13 ft); motor leads do not include ground

Type 1.0 (40-150 hp)

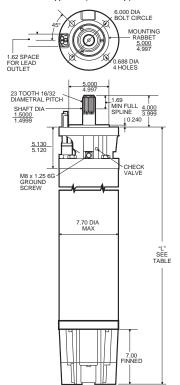
5.000 4.997

8" SUBMERSIBLE MOTORS - DIMENSIONS AND WEIGHTS

STANDARD

HD / MM	IP / kW Phase	l (in)	Mot	Shipping Wt.			
nr/kw	Pildse	L (in)	W	Н	L	lbs	kg
40 / 30		36.4	9	17	51	320	146
50 / 37		39.4	9	17	51	345	157
60 / 45		42.4	9	17	51	375	171
75 / 55		47.4	9	17	64	430	196
100 / 75	3 (3-Lead)	54.9	9	17	64	530	241
125 / 93		68.8	9	17	79	700	318
150 - 110		77.8	9	17	96	840	382
175 - 130		85.8	9	17	96	945	430
200 / 150		94.8	9	17	108	1040	473

NOTE: 6-Lead Y-∆ models available (add 5 lbs to shipping weight)


HI-TEMP 75

HP/kW	Phase	I (in)	Mot	or Carton Size	Shipping Wt.		
HP / KVV		L (in)	W	Н	L	lbs	kg
40 / 30		44.8	9	17	64	400	181
50 / 37		49.8	9	17	64	455	206
60 / 45		57.3	9	17	79	555	252
75 / 55	3	68.8	9	17	79	700	318
100 / 75		77.8	9	17	96	840	382
125 / 93		85.8	9	17	96	945	430
150 - 110		94.8	9	17	108	1040	473

| State | Shipping Wt. | State | Shipping Wt. | State | Shipping Wt. | Shipping W

23 TOOTH 16/32 DIAMETRAL PITO

Type 2.1 (40-100 hp)

1.62 SPACE
OR LEAD
DUTLET

23 TOOTH 16/32
DIAMETRAL PITCH
SHAFT DIA
1.5000
1.4997

1.4999

23 TOOTH 23 TOOTH 23 TOOTH 24 TOOTH 25 TOOTH 25

8" SUBMERSIBLE MOTORS - LEADS AND ACCESSORIES

MOTOR LEADS AND CABLES

HP	Model	Description	Wire AWG	Model No.	Wt. (lbs)
40 - 60	Standard	Lead, Brass, 13 ft, No Ground	8	305516901	4
		Lead, Brass, 26 ft, No Ground	8	305516902	9
		Lead, 316 SS, 13 ft, No Ground	8	305516950	4
		Lead, 316 SS, 26 ft, No Ground	8	305516951	9
75-125 DOL / 75-200 Y-D		Lead, Brass, 26 ft, No Ground	6	305310903	9
		Lead, Brass, 13 ft, No Ground	6	305310901	17
		Lead, 316 SS, 26 ft, No Ground	6	305310953	9
75-200 Y-D Only		Lead, 316 SS, 13 ft, No Ground	6	305310951	17
150-200 DOL Only	All Hi-Temp	Lead, XLPO, 316 SS, 13 ft, No Ground	2	305315901	12
		Lead, XLPO, 316 SS, 26 ft, No Ground	2	305315902	23

NOTE: Refer to Franklin Application Installation Maintenance (AIM) Manual for accurate cable sizing; MOTOR WARRANTY IS VOID if Franklin-supplied leads are not used

MOTOR ACCESSORIES

НР	Description	Model No.	Wt. (lbs)
All	Coupling, 8-inch, #416 SS, 1" Pump Shaft, 1/4 x 1/4 x 2 Key	156563901	5
	Coupling, 8-inch, #416 SS, 1-3/16" Pump Shaft, 1/4 x 1/4 x 2 Key	156563906	5
	Coupling, 8-inch, #416 SS, 1-3/16" Pump Shaft, 5/16 x 5/16 x 2 Key	156563902	5
	Coupling, 8-inch, #416 SS, 1-1/4" Pump Shaft, 5/16 x 5/16 x 2 Key	156563903	5
	Coupling, 8-inch, #416 SS, 1-1/2' Pump Shaft, 3/8 x 3/8 x 2 Key	156563904	5
	Surge Arrestor - Three-Phase - Up to 650 V to Ground	155440902	2
	PT 100 Sensor, 8-inch 40 - 60 HP	305326902	<1
	PT 100 Sensor, 8-inch 75 - 200 HP	305326901	<1

10" REWINDABLE MOTORS - SPECIFICATIONS AND MATERIALS

These 10" rewindable motors, manufactured in ISO 9001 certified facilities, are built for dependable operation in 10" diameter or larger water wells. It is fitted with water lubricated radial and thrust bearings for maintenance-free operation. The motor is filled with a special FES93 fluid, providing frost protection down to -15 °C storage temperature. A special diaphragm ensures pressure compensation inside the motor. The Sand Fighter® SiC seal system is standard. For applications in aggressive media, motors made of 316 SS and 904 L are available.

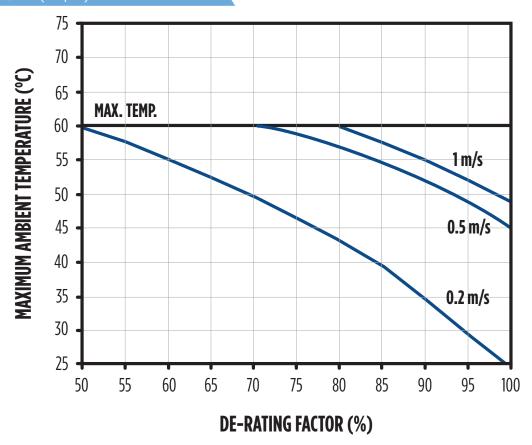
FEATURES & BENEFITS

- Easy to assemble with double flange
- Cable material according to drinking water regulations (VDE/ACS/KTW approved)
- Sand Fighter® SiC seal system for high performance in sand
- High efficiency electrical design for low operation cost
- All motors prefilled and 100% tested
- Maximum storage temperature 5 °F (-15 °C) to 140 °F (60 °C)
- Design for retrofitable PT100 sensor
- Non contaminating FES 93 filled design

OPTIONS

- Other voltages
- Y∆ start (pos. of cables 90°)
- Motors in complete 316 SS and 904 L
- PT 100 temperature sensor (sold separately)
- Lead in different lengths up to 165 ft. (50 m)

TECHNICAL SPECIFICATIONS


- 10" three-phase motors, 2-pole, 3600 RPM
- 130-185 kW / 175-250 hp
- 10" flange
- IP 68 protection
- 10 maximum starts per hour
- Vertical and horizontal installation (excluding 185 kW / 250 hp motors)
- Motor Lead in 20 ft. (6 m) length
- 380-415 V/50 Hz, 460 V/60 Hz, and 575 V/60 Hz standard voltages
- Voltage tolerance (50 Hz): -10% / +6% U_m [380-415 V = (380-10%) (415+6%)]
- Voltage tolerance (60 Hz): ±10% U_M
- PE2/PA winding insulation for maximum ambient temperature of 113 °F (45 °C) at the same cooling conditions as standard

10" REWINDABLE MOTORS - SPECIFICATIONS AND MATERIALS

DE-RATING CURVE (PE2/PA)

10" REWINDABLE MOTORS - SPECIFICATIONS AND MATERIALS

TECHNICAL DATA

	Stator and Rotor (50/60 Hz)										
Stator (incl. winding and 6 m motor lead)											
P _N (kW/HP)	P _n (kW/HP) U _n /f 304/316 904 L 304/316 904 L										
	V	Hz	DOL PE2/PA	DOL PE2/PA	YΔ PE2/PA	YΔ PE2/PA					
130/175	460/380	60/50	326314931	326314921	326314981	326314971	176 379 803K				
130/1/3	575	60	326317931	326317921	326317981	326317971	1/0 3/9 0U3K				
150/200	460/380	60/50	326325931	326325921	326325981	326325971	176 770 00 41/				
150/200	575	60	326327931	326327921	326327981	326327971	176 379 804K				
185/250	460/380	60/50	326448931	326448921	326448981	326448971	176 770 0051/				
185/250	575	60	327534931	327534921	327534981	327534971	176 379 805K				

	PE2/PA Insulation Standard Windings (575 V / 60 Hz)											
P _N (kW/HP)	P _N (kW/HP) Model No. Winding Kits Turns Per Coil Wire Dia. (mm) Isolation Type Group Connection Total Wire Length (m) Resistance Coil (Ω) Resistance YΔ (UI-UI) (Ω) (UI-VI) (Ω)											
130/175	326317999	9+10+9+10	1.8/2.8 DR.II			1067	0.2987	0.1494	0.0996			
150/200	326327999	8+8+8+8	2.7/4.1	PE2/PA	Parallel	495	0.2454	0.1227	0.0818			
185/250	250 327534999 6+7+6+7 2.1/3.3 2DR.II 904 0.1834 0.0917 0.0611											

	PE2/PA Insulation Standard Windings (380-415 V/50 Hz / 460 V/60 Hz)											
P _N (kW/HP) Model No. Winding Kits Turns Per Coil Wire Dia. (mm) Isolation Type Group Connection Total Wire Length (m) Resistance Coil (Ω) Resistance YΔ (U1-U2) (Ω) (U1-V1) (Ω)												
130/175	326314999	7+8+7+8	2.0/3.1 2DR.II			850	0.1910	0.0955	0.0636			
150/200	326325999	6+7+6+7	2.1/3.3 2DR.II	PE2/PA	Parallel	810	0.1647	0.0823	0.0549			
185/250	326448999	5+5+6+5	2.3/3.5 2DR.II			735	0.1240	0.0620	0.0413			

Insulation resistant (20 °C / 500 VDC)							
New Motor w/o Drop Cable	400 >						
Used Motor w/o Drop Cable	20 >	ΜΩ					
New Motor w/ Drop Cable	4>	14177					
Used Motor w/ Drop Cable	1						

10" REWINDABLE MOTORS - ORDERING INFORMATION

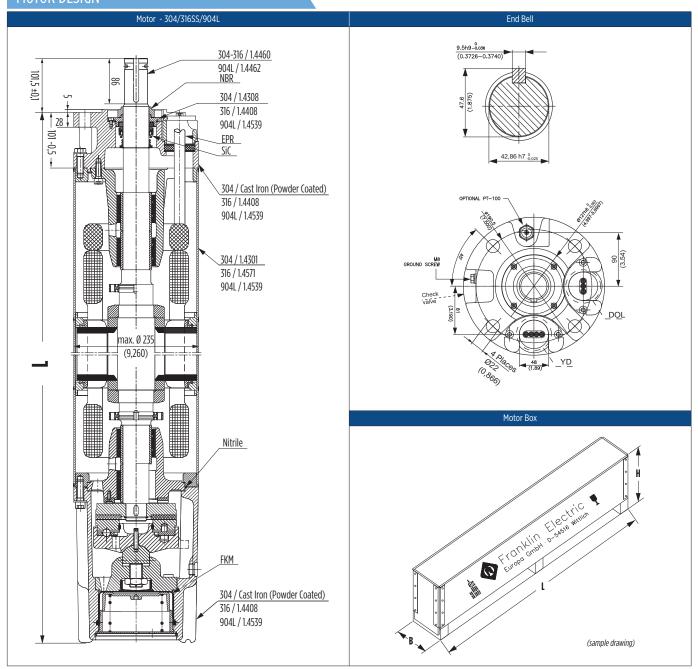
ORDERING INFORMATION

	U _N	/f	Model No.	. Digit 1 – 6		Model No. Digit 7 – 10	
P _N (kW/HP)	V	Hz	DOL	٧٨			
	'	112	DOL	ΥΔ —	304	316 SS	904 L
130/175	460/380	60/50	264 134	264 234			
130/1/3	575	60	264 564	264 864			
150/200	460/380	60/50	264 135	264 235			
150/200	575	60	264 565	264 865			
	460/380	60/50	264 136	264 236	5321	6321	7321
	575	60	264 566	264 866			
185/250	380-415	50	264 136	264 236			
	460/380	60/50	264 136	264 236			
	380	60	-	264 766			

PERFORMANCE (60 HZ)

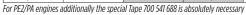
P, (kW/HP)	P(kW/HP)	Thrust Rating	U., (V)	(V) n. (min-1)		I, (A)		(Eff.) % at % lo	oad	cos φ PF at % load			T (Nm)	T, (Nm)
P _N (KW/HP)	Max (KVV/ПР)	(N/lbf)	U _N (V)	11 _N (111111-1)	I _{max} (A)	I _A (A)	50	75	100	50	75	100	max (INIII)	I _A (INIII)
130/175	149/200				254	1308	86	87	87	0.77	0.84	0,87	408	437
150/200	173/232		460		294	1557	85	87	87	0.77	0.84	0,87	469	508
185/250	213/285	60000/13500		3510	377	2130	85	87	87	0.70	0.79	0,84	585	858
130/175	149/200	00000/13300		3310	204	1047	86	87	87	0.77	0.84	0.87	408	437
150/200	173/232		575		236	1246	85	87	87	0.77	0.84	0.87	469	508
185/250	213/285				302	1704	85	87	87	0.70	0.79	0.84	585	858

PERFORMANCE (50 HZ)


D (I-W/UD)	Thrust Rating	11. 40	a (asia 1)	1 (4)	1 (4)	η	(Eff.) % at % lo	ad	СС	os φ PF at % lo	ad	T (No.)	T (Non-)
P _N (kW/HP)	(N/lbf)	U _N (V)	n _N (min-1)	I _N (A)	I _{A.} (A)	50	75	100	50	75	100	T _N (Nm)	T _A (Nm)
		380	2900	266	1271	88	88	87	0.79	0.85	0.87	428	487
130/175		400	2920	256	1344	87	88	88	0.74	0.82	0.86	425	546
		415	2920	255	1400	87	88	87	0.69	0.78	0.83	425	592
		380	2910	307	1502	87	87	86	0.79	0.85	0.88	492	568
		400	2920	298	1590	86	88	87	0.73	0.81	0.85	491	635
150/200		415	2930	296	1655	86	87	87	0.67	0.77	0.83	489	689
130/200		500	2910	233	1142	87	87	86	0.79	0.85	0.88	492	568
	60000/13500	525	2920	227	1211	86	87	87	0.73	0.81	0.85	491	635
		1000	2920	117	636	86	88	87	0.73	0.81	0.85	491	635
		380	2900	390	2030	87	88	87	0.72	0.81	0.85	609	913
		400	2920	384	2148	86	88	88	0.64	0.75	0.81	605	1022
185/250		415	2920	389	2237	84	86	86	0.57	0.70	0.79	605	1109
103/230		500	2900	294	1500	87	88	87	0.72	0.81	0.85	610	888
		525	2910	289	1580	86	87	87	0.65	0.76	0.82	607	988
		1000	2900	148	859	87	88	87	0.72	0.81	0.85	609	913

10" REWINDABLE MOTORS - DIMENSIONS AND WEIGHTS

MOTOR DESIGN


	PN (kW/HP)	Motor Lengths (in/mm)	Motor Weig	ghts (lb/kg)	Motor Shipping Size (in/mm)			
	FIN (KVV/TIF)	Piotoi Lengths (m/mm)	Motor	Incl. Pack	В	Н	L	
ĺ	130/175	65.3/1659	798/362	908/412				
	150/200	69.6/1769	910/413	1021/463	13.4/341	27.1/562	90.4/2296	
	185/250	75.5/1919	990/449	1100/499				

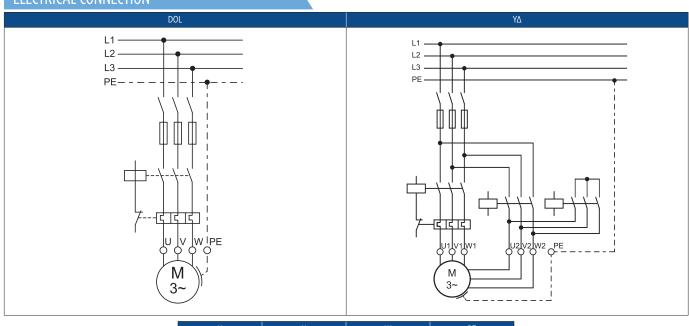
10" REWINDABLE MOTORS - LEADS AND ACCESSORIES

MOTOR LEADS

	DOL											
P _N (kW/HP)	Ø (mm²)	B/H(r	mm/in)	Lengths (m/ft)	Qyt.	Lead Mod Nr.	Lead seal Kit 304/316 Mod Nr.	Lead seal Kit 904 L Mod Nr.				
130/175	AC7E	В	48.5/1.91	6/20	1	308 710 117	308 660 721	308 660 725				
130/1/3	4G35 H		16.5/.65	0/20	ı	300 / 10 11/	300 000 721	300 000 723				
110-150/150-200	3X50	В	46.5/1.83	6/20	1	308 710 113	308 660 712	308 660 726				
(PE2/PA)	3/30	Н	19.5/0.77	0/20	ı	300 / 10 113	300 000 712	300 000 720				
185/250**	1X70	D	20.7/0.82	6/20	3	308 711 000	308 660 732	308 660 733				

				Υ	Δ				
P _N (kW/HP)	Ø (mm²)	B/H(mm/in)	Lengths (m/ft)	Qyt.	Lead Mod Nr.	Lead seal Kit 304/316 Mod Nr.	Lead seal Kit 904 L Mod Nr.	
	3X25	В	37.5/1.48		1				
10-150/150-200	3823	Н	6/0.63	6/20	ļ	308 710 114	308 660 713	308 660 728	
10-150/150-200	4G25	В	44.3/1.74	6/20	1	300 / 10 114	300 000 713	308 000 728	
	4025	Н	14.5/0.57						
	4G35	В	48.5/1.91		1				
185/250	4033	Н	6.5/0.65	6/20	ı	308 710 121	308 660 723	308 660 729	
103/230	3X35	В	38.5/1.52] 6/20	1	300 / 10 121	300 000 723	300 000 729	
	2722	Н	16.5/0.65		l l				

For PE2/PA engines additionally the special Tape 700 541 688 is absolutely necessary


Ground lead* (optional)	Ø (mm²)	D Ø (mm/in)	Lengths (m/ft)	St.	ModNr.
o d	1G25	13.0/0.5	8/26	1	308 053 080
D D	1G35	15.3/0.60	6/20	1	308 056 060

^{*} Only for 304SS and 316SS

Lead Opening Seal Kit							
85 – 185 kW DOL / YΔ	304 / 316	308 660 715					
03 - 103 KW DOL / 1Δ	904L	308 660 730					

NOTE: Cables are designed for submerged operation; For air operation please consult Franklin Electric

ELECTRICAL CONNECTION

10" REWINDABLE MOTORS - LEADS AND ACCESSORIES **SPARE PARTS** Material Order No. Description Fig. No. Kit 1 Thrust Bearing Kit 304/316SS/904L Incl.Pos.: 17; 19; 20; 21; 32; 33 308 750 701 Kit 2 Radial Bearing Kit 304/316SS/904L Incl.Pos.: 15; 34 308 751 701 (1) Kit 3 Incl.Pos.: 1 - 4; 11; 17; 25 304/316SS 308 800 703 Kit 3 Seal Kit -2.0 Kit 3 / 5 904L Incl.Pos.: 1 - 4; 11; 17; 25 308 800 704 (2.1) Kit 3 Kit 4 Up-Thrust Kit 304/316SS/904L Incl Pos · 18 308 751 702 3 Kit 3 304/316SS Incl.Pos.: 2.0; 5; 8; 13; 24; 37; 40 308 660 701 Kit 5 Screw Kit 308 660 702 904L Incl.Pos.: 2.0; 5; 8; 13; 24; 37; 40 4) Kit 3 Kit 6 Lead Seal Kit 304/316SS/904L Incl.Pos.: 5; 6; 7 RFQ (5) Kit 5 / 6 Kit 7 PT100 Kit 304/316SS/904L Incl.Pos.: 9 RFQ 6 Kit 6 Kit 8 Valve Kit 304 Incl.Pos.: 10; 11; 39 308 800 414 7 Kit 6 -(8) Kit 5 304 / Kit 8 (39) (38) 316 / 308 800 416 904L / 308 800 418 Î Kit 5 37 Kit 3 / 8 (11) 9 Kit 7 Kit 5 (40)-304 / Kit 8 DOL - 304 / 177 539 201K (41) (10) 316 -904L / 165 729 802K YD - 304 / 177 539 101K DOL/YD - 316 / 177 554 101K (11) Kit 3 / 8 DOL/YD - 904L / 177 551 201K (12) 304 - 156 356 101 316 - 156 356 102 904L - 156 356 103 Kit 5 (13) (36) 177 538 111K incl.pos. 15 15) Kit 2 Kit 3 (45) 177 537 111K / 85-110kW 177 537 121K / 130-185kW all incl.pos. 15 & 18 Kit 3 (44) 790 056 908 43 17) Kit 3/1 -18 Kit 4 Kit 2 (34) (19) Kit 1 -20 Kit 1 156 549 101 (42) -46 in pos. 31 304 / 177 540 911K (31)-316SS / 177 556 111K -(23) 304 - 156 356 101 904L / 177 606 111K 35 316 - 156 356 102 all incl.pos. 46 904L - 156 356 103 24) Kit 5 (21) Kit 1 156 549 101 (42) (22) 700 521 685 8 Kit 2 (34) 25) Kit 3 Kit 1 33 26) 156 430 101 27) 156 432 101 Kit 1 32 -(28) 156 431 101

-(29) 304-316 / 156 465 301 904L / 156 465 201 -(30) 304-316 / 790 056 865 904L / 156 524 101

12" REWINDABLE MOTORS - SPECIFICATIONS AND MATERIALS

These 12" rewindable motors, manufactured in ISO 9001 certified facilities, are built for dependable operation in 12" diameter or larger water wells. It is fitted with water lubricated radial and thrust bearings for maintenance-free operation. The motor is filled with a special FES93 fluid, providing frost protection down to -15 °C storage temperature. A special diaphragm ensures pressure compensation inside the motor.

FEATURES & BENEFITS

- Easy to assemble with double flange
- Cable material according to drinking water regulations (VDE/ACS/KTW approved)
- Sand Fighter® SiC seal system for high performance in sand
- High efficiency electrical design for low operation cost
- All motors pre-filled and 100% tested
- Max. storage temperature 5 °F (-15 °C) to 140 °F (60 °C)
- Design for retrofitable PT100 sensor
- Non contaminating FES 93 filled design

OPTIONS

- 80 kN thrust load
- Other voltages
- Y∆ start (pos. of cables 90°)
- PT 100 temperature sensor (sold separately)
- Special lead lengths available upon request
- 316 SS construction

TECHNICAL SPECIFICATIONS

- 12" three-phase motors, 2-Pole (3600 RPM) & 4-Pole (1800 RPM)
- 185-400 kW / 150-250 hp
- 12" flange
- IP 68 protection
- 5 maximum starts per hour
- Vertical and horizontal installation
- Motor Lead in 20 ft. (6 m) length
- 460 V/60 Hz, 575 V/60 Hz, and 380 V/50 Hz standard voltages
- Voltage tolerance (50 Hz): -10% / +6% UN [380-415 V = (380-10%) (415+6%)]
- Voltage tolerance (60 Hz): ±10% UN
- 30 °C ambient temperature with a minimum cooling flow: v = 0.5 m/s

12" REWINDABLE MOTORS - SPECIFICATIONS AND ACCESSORIES

TECHNICAL DATA

				304/316 SS Stator and	Rotor			
				Stator (incl. winding	and 6 m motor lead)			
Pole	P _N (kW/HP)	U _N	/f	DOL PVC	DOL PE2/PA	ΥΔ Ρ۷С	YΔ PE2/PA	Rotor
		V	Hz	DOLFVC	DOLFLZ/FA	IAFVC	I A FLZ/FA	KOLOI
	185/250	380-415	50		327 013 902K		326 013 952K	176 381 500K
	103/ 230	460/380	60/50		327 013 302K		320 013 332K	170 301 3001
	220/300 - 250/340 -	380-415	50		326 639 902K		326 639 952K	176 381 501K
		460/380	60/50		320 033 302K		320 033 332K	170 301 3011
		380-415			326 639 902K		326 639 952K	176 381 501K
2-Pole	230/340	460/380	50 60/50	320 033 302K	_	320 033 332K	170 301 3011	
21010	300/400	380-415	80 60/50 115 50		326 640 902K		326 640 952K	176 381 502K
	300/400	460/380	·	50 60/50			320 040 33210	170 301 30210
	350/470	380-415	50				326 696 952K	176 381 504K
	350/470	460/380	60/50		_		320 030 332K	170 301 30410
	400/536	380-415	50				326 641 952K	176 381 503K
	400/330	400/536 380-415 50 460/380 60/50	60/50				320 041 332K	170 301 3031

			304 SS Stator and Rotor		
			Stator (incl. winding and 6 m motor lead	d)	
Pole	P _N (kW/HP)	U _N	/f	DOL PVC	Rotor
		V	Hz	DOLFVC	ROLOI
	110/150	400	50	327633902K	176381701K
	110/150	460	60	327033902K	170301701K
	172 /17E	400 50	327406902K	176381702K	
4-Pole	132/1/3	132/175 460 60	32/400302K	170381702K	
4-P0le	160/200	160/200 400	50	327471902K	176381704K
	160/200	460	60	32/4/1902K	170361704K
	200/250	400	50	327407902K	176381703K
		460	60	32/40/902K	1/0301/U3K

				Insulation Standa	rd Windings (460) V/60 Hz)						
Pole	P _N (kW/HP)	Model No. Winding Kits	Turns Per Coil	Wire Dia. (mm)	Isolation Type	Group Connec- tion	Total Wire Length (m)	Resistance Coil (Ω)	Resistance YΔ (U1-U2) (Ω)	Resistance DOL (U1-V1) (Ω)		
	185/250	327013999	6+6+6+6	2.6/3.9 (2GrII)			794	0.1061				
	220/300	326639999	5+6+5+6	2.7/4.1 (2GrII)			770	0.0901				
2-Pole	250/340	326639999	5+6+5+6	2.7/4.1 (2GrII)	DE3/DA	Darallol Dolta	770	0.0901				
Z-Pole	300/400	326640999	4+5+4+5	3.0/4.5 (2GrII)	PE2/PA	PE2/PA	PE2/PA	Parallel Delta	720	0.0677		-
	350/470	326696999	4+4+4+5	3.0/4.5 (2GrII)				706	0.0664			
	400/536	326641999	4+4+4+4	3.3/4.8 (2GrII)			700	0.0536				

					Insulation Standa	ard Windings (460	V/60 Hz)				
	Pole	P _N (kW/HP)	Model No. Winding Kits	Turns Per Coil	Wire Dia. (mm)	Isolation Type	Group Connec- tion	Total Wire Length (m)	Resistance Coil (Ω)	Resistance YΔ (U1-U2) (Ω)	Resistance DOL (U1-V1) (Ω)
		110/150	327633999	17-17	2.9/4.0/4.3			618	0.1109	0.1109	0.0739
1	4 Dala	132/175	327406999	15-15	3.0/4.2/4.5	DESDA	Davellal Dalka	600	0.1005	0.1005	0.0670
1	4-Pole	160/200	327471999 14-14 3.2/4.4/4.7 PE2PA	PEZPA	Parallel Delta	590	0.0888	0.0888	0.0592		
ı		200/250	327407999	12-12	3.4/4.7/5.0			530	0.0705	0.0705	0.0470

				Insulation Standa	rd Windings (575	V / 60 Hz)				
Pole	P _N (kW/HP)	Model No. Winding Kits	Turns Per Coil	Wire Dia. (mm)	Isolation Type	Group Connec- tion	Total Wire Length (m)	Resistance Coil (Ω)	Resistance YΔ (U1-U2) (Ω)	Resistance DOL (U1-V1) (Ω)
	185/250	327535999	7+8+7+8	2.3/3.5 (2GrII)			1075	0.1694		
	220/300	326701999	7+7+7+7	2.5/3.8 (2GrII)			1000	0.1338		
2-Pole	250/340	326702999	6+7+7+7	2.5/3.8 (2GrII)	PE2/PA	Darallol Dolta	924	0.1290		
2-2016	300/400	326703999	5+6+5+6	2.7/4.1 (2GrII)	PEZ/PA	Parallel Delta	861	0.1021	-	-
	350/470	326697999	5+5+5+6	2.7/4.1 (2GrII)			856	0.1012		
	400/536	326704999	5+5+5+5	2.9/4.3 (2GrII)			848	0.0867		

	Insulation resistant (20 °C/500 VDC)	
New Motor w/o Drop Cable	400 >	
Used Motor w/o Drop Cable	20 >	МО
New Motor w/ Drop Cable	4>	МΩ
Used Motor w/ Drop Cable	1	

12" REWINDABLE MOTORS - ORDERING INFORMATION

ORDERING INFORMATION

Pole P		U _N	/f	Model No.	Digit 1 – 6		Model No. Digit 7 – 10	
Pole	P _N (kW/HP)	V	⊔ ₇	DOI	ΥΔ		PE2/PA21	
	V Hz DOL 185/250 460/380 60/50 265 610		14	304	316 SS	904 L		
	105 /250	460/380	60/50	265 610	265 710		ĺ	
	103/230	575	60	265 690	265 760			
	220/300	460/380	60/50 265 611 265 711					
	220/300	575	60	265 691	265 761		6021	
	250/340	460/380	60/50	265 612	265 712			
2-Pole	230/340	575	60	265 692	265 762	5021		
Z-Pole	300/400	460/380	60/50	265 614	265 714	5021	6021	-
	300/400	575	60	265 694	265 764			
	350/470	460/380	60/50	-	265 716			
	330/4/0	575	60	265 696	265 766			
	400/536	460/380	60/50	-	265 717			
	400/530	575	60	265 697	265 767			

		U _N	/f	Model No.	Digit 1 – 6		Model No. Digit 7 – 10	
Pole	P _N (kW/HP)	V	Hz	DOL	ΥΔ		PE2/PA21	
		'	П	DOL	10	304	316 SS	904 L
	110/150	400	50	265 682				
	110/130	460	60	203 002				
	172 /17E	132/175 400 50		265 604		5021	_	
4-Pole	132/1/3	460	0 60 265 684					_
4-P0le	160/200	400			-	3021	-	-
	160/200	460	60	203 000				
	200/250	400	50	265 687				
	200/250	460	60	203 087				

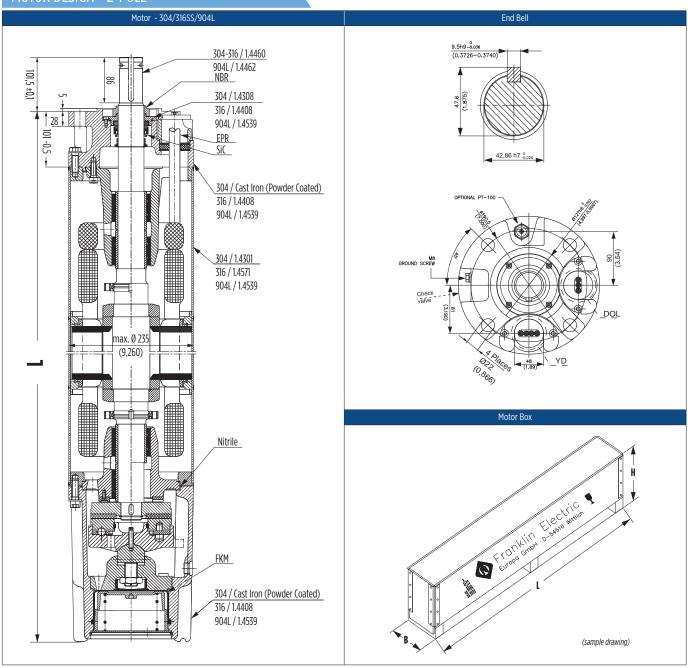
PERFORMANCE (60 HZ)

Pole	P, (kW/HP)	P _{may} (kW/HP)	Thrust Rating	U(V)	n _N	1 (A)	/I (A)	η _{max} ((Eff.) % at 9	6 load	cos c	ф (PF) at %	load	T _{max}	T_A/T_N
Pole	P _N (KW/HP)	P _{max} (KW/ПР)	((N/lbf)	U(V)	(min-1)	I _{max} (A)	$I_A/I_N(A)$	50	75	100	50	75	100	(Nm)	(Nm)
	185/250	212/284		460	3540	339	5.59	83	86	86	0.84	0.87	0.87	723	0.83
	103/230	212/204		575	3540	272	5.59	83	86	86	0.84	0.87	0.87	723	0.83
	220/300	252/338		460	3530	425	5.44	90	91	91	0.81	0.84	0.86	776	0.95
	220/300	232/330		575	3530	340	5.44	90	91	91	0.81	0.84	0.86	776	0.95
2-Pole	250/340	287/385	60000/13500	460	3530	462	5.44	90	91	91	0.81	0.84	0.84	776	0.95
	250/540	287/385		575	3530	370	5.44	90	91	91	0.81	0.84	0.84	776	0.95
2-1016	700/400	7.45 /4.67	00000/13300	460	3530	533	5.85	90	91	91	0.85	0.89	0.89	928	0.94
Z-Pole	300/400 345/463	343/403		575	3530	427	5.85	90	91	91	0.85	0.89	0.89	928	0.94
	750/470	402/570		460	3530	647	5.13	89	90	90	0.83	0.87	0.88	1085	0.90
	350/470 402/	402/539		575	3530	518	5.13	89	90	90	0.83	0.87	0.88	1085	0.90
	400/536	400/536 460/617		460	3520	745	4.79	89	90	90	0.84	0.87	0.87	1243	0.84
	400/556	400/01/		575	3520	596	4.79	89	90	90	0.84	0.87	0.87	1243	0.84

Pole	P.,(kW/HP)	P(kW/HP)	Thrust Rating	U(V)	n _N	I(A)	I, /I, (A)	η _{max}	(Eff.) % at 9	6 load	cos	• (PF) at %	load	T _{max}	T_A/T_N	
ruie	P _N (KVV/IIP)	max (KVV/IIF)	((N/lbf)	0(V)	(min-1)	I _{max} (A)	I _A / I _N (A)	50	75	100	50	75	100	(Nm)	(Nm)	
	110/150					195		85	87	87.5	0.75	0.79	0.80	594		
4 Dolo	132/175		60000/17500	460	1760	225	E 70	86	87.5	88	0.78	0.82	0.83	713	0.90	
4-Pole	160/200	_	60000/13500	460	1760	270	270	270 5.30	86.5	88	88.5	0.81	0.84	0.84	865	0.90
	200/250					340		86.5	88	88.5	0.76	0.82	0.84	1081		

12" REWINDABLE MOTORS - ORDERING INFORMATION

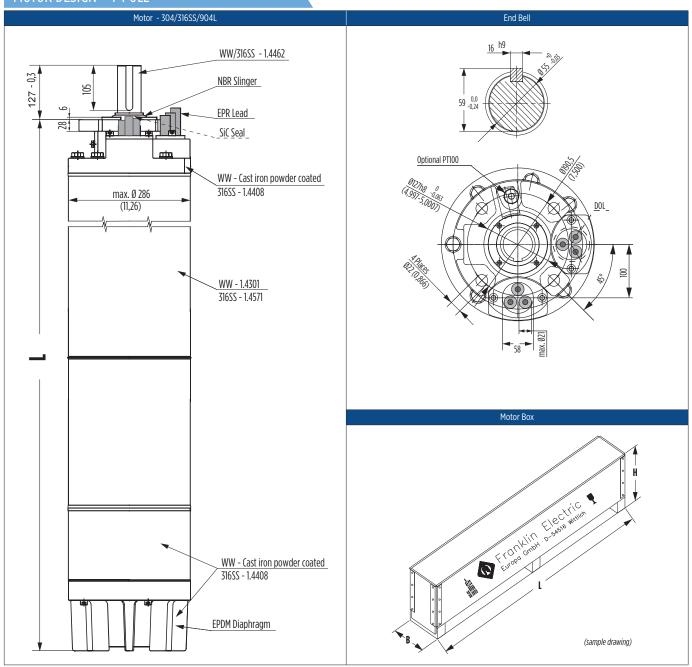
PERFORMANCE (50 HZ)


Pole	P _N (kW/HP)	Thrust Rating	U _N (V)	n _N (min-1)	I _N (A)	I _A /I _N (A)	η _{max}	(Eff.) % at %	load	cos	φ (PF) at %	load	- T _N (Nm)	T_A/T_N									
Fole	P _N (KVV/IIP)	(N/lbf)	0 _N (V)	11 _N (111111-1)	I _N (A)	I _{A.} / I _{N.} (A)	50	75	100	50	75	100	I _N (IVIII)	(Nm)									
	185/250		380	2940	368	4.70	88	88	87	0.82	0.87	0.88	602	0.81									
	103/230		400	2945	351	5.30	87	88	87	0.79	0.85	0.86	600	0.90									
	220/300		415	2950	344	5.76	87	88	88	0.76	0.84	0.84	599	0.97									
	220/300		380	2930	448	4.79	88	88	87	0.83	0.87	0.88	716	0.77									
	250/340		400	2935	430	5.40	88	89	88	0.80	0.86	0.87	714	0.84									
	230/340		415	2940	427	5.85	88	89	88	0.77	0.85	0.84	712	0.94									
	300/400		380	2930	507	4.7	87	87	86	0.85	0.88	0.85	815	0.85									
		<u>'</u>			400	2935	481	5.2	88	89	88	0.80	0.85	0.80	812	0.95							
2-Pole	350/470	60000/13500	415	2940	471	5.6	88	89	88	0.76	0.83	0.76	812	1.02									
Z-P016	330/4/0	00000/13300	380	2940	586	4.9	88	89	87	0.87	0.90	0.88	974	0.83									
	400/536		400	2945	551	5.6	88	89	88	0.85	0.89	0.88	971	0.94									
	400/550		415	2950	532	6.0	88	89	88	0.83	0.88	0.89	970	1.03									
												380	2920	720	4.7	88	88	86	0.85	0.88	0.87	1140	0.80
	350										400	2930	676	5.2	88	88	87	0.82	0.87	0.88	1137	0.90	
	330										415	2935	652	5.4	87	88	87	0.79	0.86	0.87	1135	0.95	
			380	2920	795	4.2	90	90	89	0.85	0.88	0.87	1306	0.73									
	400		400	2930	750	4.8	90	90	90	0.82	0.87	0.87	1301	0.84									
			415	2940	719	5.2	89	90	90	0.80	0.85	0.87	1299	0.92									

Pole	P., (kW/HP)	Thrust Rating	11 (/)	n. (min-1)	I. (A)	I./I. (A)	η _{max} (Eff.) % at % load			cos φ (PF) at % load			T., (Nm)	T _A /T _N	ı
ruie	P _N (KVV/IIP)	(N/lbf)	U _N (V)	11 _N (111111-1)	I _N (A)	I _{A.} / I _{N.} (A)	50	75	100	50	75	100	I _N (INIII)	(Nm)	ı
	110/150				230		86	87	87.5	0.76	0.80	0.81	720		ı
4 Dala	132/175	60000/13500	400	1400	259	F 70	88	88.5	88	0.77	0.82	0.84	864	0.90	ı
4-Pole	160/200	60000/13300	400	1460	5.30	87	88	87	0.78	0.83	0.84	1050	0.90	1	
	200/250]			399	1	88.5	89	88.5	0.78	0.83	0.84	1309		ı

12" REWINDABLE MOTORS - DIMENSIONS AND WEIGHTS

MOTOR DESIGN - 2-POLE


PN (kW/HP)	Motor Lengths (in/mm)	Motor Weig	ghts (lb/kg)	Motor Shipping Size (in/mm)			
PIN (KW/TIP)	Motor Lengths (III/IIIII)	Motor Incl. Pack		В	Н	L	
220/300	74.5/1893	1461/663	1638/743			ĺ	
250/340	74.5/1893	1461/663	1638/743	15.6/396	22.5/572	90.4/2296	
300/400	80.4/2043	1600/726	1776/806				
350/470	84.4/2143	1695/769	1871/849	15.6/396	22.5/572	90.4/2596	
400/536	86.3/2193	1750/794	1926/874	13.0/396	22.3/3/2	90.4/2590	

12" REWINDABLE MOTORS - DIMENSIONS AND WEIGHTS

MOTOR DESIGN - 4-POLE

	P _N (kW/HP) Motor Lengths (in/mm)		Motor Wei	ghts (lb/kg)	Motor Shipping Size (in/mm)			
			Motor	Incl. Pack	В	Н	L	
Ì	110/150	74.5/1893	1461/663	1638/743			90.4/2296	
	132/175	80.4/2043	1600/726	1776/806	15.6/396	22.5/572	90.4/2290	
	160/200	84.4/2143	1695/769	1871/849	13.0/390		102.2/2596	
	200/250 86.3/2193		1750/794	1926/874			102.2/2590	

12" REWINDABLE MOTORS - LEADS AND ACCESSORIES

MOTOR LEADS - 2-POLE

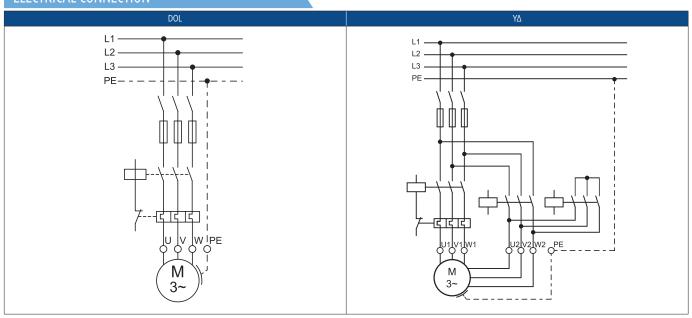
			Lengths		Motor (kW/HP)			Lead Kit	
Lead	Ø (mm²)	D (mm/in)	(m/ft)	380-415 V / 50 Hz 460 V / 60 Hz	500 V / 50 Hz	1000 V / 50 Hz	Qyt.	(3 Single Leads)	Lead Seal Kit.
	1X70	20.7/0.82	6/20	185-300/250-400 DOL 300-400/400-536 YΔ**	185-400/250-536 DOL	-	DOL1 YΔ 2	308 711 100	308 661 120
D.	1X35	15.3/0.60	6/20	185-250/250-340 YΔ**	185-400/250-536 ΥΔ**	185-400/250-536 DOL	DOL1 YΔ2	308 711 101	308 661 121

NOTE: For this standard PEZ/PA motors must additionally ordered the special Tape 700 541 688, is absolutely necessary.
**For YA motors please order two Lead (sealing) kits

Ground Lead* (opt.)	Ø (mm²)	D Ø (mm/in)	Lengths (m/ft)	St.	ModNr.
	1G25	13.0/0.51	8/26	1	308 053 080
D.	1G35	15.3/0.60	6/20	"	308 056 060

* Only for 304 SS and 316 SS

Lead Opening Seal Kit								
Motor (kW/HP) Part No.								
250-400/340-536 DOL/YΔ 308 661 122								


NOTE: Cables are designed for submerged operation; for air operation please consult Franklin Electric

MOTOR LEADS - 4-POLE

Lead	Ø (mm²)	D (mm/in)	Lengths (m/ft)	Motor (kW/HP) 400 V / 50 Hz	Qyt.	Lead Kit (3 Single Leads)	Lead Seal Kit.
	1X70	20.7/0.82	6/20	110/150, 132/175, 160/200, 200/250	DOL1	308 711 100	308 661 120
ø				Groundlead			
	1G35	15.3/0.60	6/20	110/150, 132/175, 160/200, 200/250	DOL1	308 05	6 060
Lead Opeing Seal Kit			All Ratings	DOL1	308 6	61 122	

NOTE: For this standard PEZ/PA motors must additionally ordered the special Tape 700 541 688, is absolutely necessary; cables are designed for submerged operation; for air operation, please consult Franklin Electric

ELECTRICAL CONNECTION

12" REWINDABLE MOTORS - LEADS AND ACCESSORIES

SPARE PARTS Description Fig. No. Order No. 1) Kit 2 Kit 1 Thrust Bearing Kit 60kN Incl.Pos.: 17; 24; 26; 27; 39; 45 308 750 801 37 Kit 2/3 Kit 1 Thrust Bearing Kit 80kN Incl.Pos.: 17; 26; 27; 39; 45 308 750 802 Motor Conversion Kit 80KN Incl.Pos.: 17; 25; 26; 40; 45; 69 308 750 803 2) 156 590 101 Kit 2 Seal Kit - Top Incl.Pos.: 1; 4; 37; 38 308 800 801 (38) Kit 2 Kit 3 Screw Kit Incl.Pos.: 6; 9; 19; 24; 37; 46; 47; 65; 67; 68; 308 656 801 Kit 5 Valve Kit Incl.Pos.: 8; 10 308 800 421 Kit 7 (35 4) Kit 2 Incl.Pos.: 7 Kit 6 Lead Seal Kit RFQ 308 175 Kit 7 PT 100 Kit Incl.Pos.: 35 RFQ (47) Kit 3 Incl.Pos.: 36 308 751 702 Kit 8 Up-Thrust Bearing Kit 308 175 (6) Kit 3 603 Kit 6 (10) Kit 5 Kit 5 (9 Kit 3 177 558 901K 156 356 (34) 101 (46) Kit 3 308 175 305 (50) 162 002 801K incl. 12 (12) 308 175 302 308 126 302 (28) (33) (32) (29) Kit 1 (26 (40) (12) 308 175 302 Kit 1 (17) 177 397 162 002 802K (18) 901 incl. 12 & 36 156 356 (34) Kit 3 (19) (36) Kit 8 27 Kit 1 60kN / 308 176 102 80kN / 308 176 101 308 176 (64 (26) Kit 1 422 308 175 (69) (39) Kit 1 102 308 176 208 (66) 308 176 (63) 70 282 507 109 (45) Kit 1 (68 Kit 3 (61) 308 176 207 Kit 3 (67 65 Kit 3 (24) Kit 1/3 177 398 (23) 901 155 694 (20) 101 156 431 (44) 201 156 465 101 790 056

42)

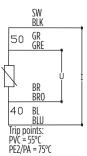
MOTOR ACCESSORIES

MOTOR FILLING LIQUID

Filling Liquid (5 L FES92)									
Description	Part No.								
4" Encapsulated	FES93								
6" Encapsulated Standard	FES91								
6" Encapsulated HighTemp 90	FES92	308353941							
8" Encapsulated Standard	FES91	300333941							
8" Encapsulated HighTemp 75	FES92								
6" / 8" / 10" / 12" Rewindable Motors 6" / 8" Rewindable PM Motors	FES93								

FES91		FES92			FES93		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	H ₂ O		J	Aza	\(\bar{\chi_{\bar{\chi_{\bar{\chi_{\bar{\chi_{\chi_{\bar{\chi_{\chi_{\bar{\chi_{\chi_{\bar{\chi_{\chi}\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tingbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tingbr\chi_{\chi\tingbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tingbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\tinmbr\chi_{\chi_{\chi_{\chi}\tinmbr\chi\ting{\chi_{\chi_{\chi\ti}\chi_{\chi}\chi_{\chi}\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinp\tinmbr\chi\tinmbr\chi\tinpty\tinmbr\chi\tinp\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinmbr\chi\tinmbr\chi\tinmbr\chi\tinpty\tinmbr\chi\tinmbr\chi\tinpty\tinmbr\chi\tinmbr\chi\tinmbr\chi\tinmbr\chi\tinpty\tinmbr\chi\tinmbr\chi\tinmbr\chi\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty\tinmbr\chi\tinpty	J	H ₂ O
+			+			+	

MOTOR FILLING KIT


Motor Filling Kit	
Description	Part No.
This kit contains all necessary tools to check and replenish Franklin Electric submersible motors with FES 91, 92 or 93 filling liquid (fill solution/concentrate must be ordered separately)	308726103

PT100 REWINDABLE MOTORS

- Fitted into the upper end bell flange, all end bells 6",8", 10" and 12" rewindable are prepare for installation PT100
- Measures the temperature of the filling liquid
- Conductor with a resistance proportional to the temperature
- Allows monitoring the temperature continuously

The above-ground equipment is not available from Franklin Electric and is typically part of a custom panel or data acquisition system. PTIOO sensor retrofit kits from Franklin Electric come with complete instructions and allow for easy field installation.

Dimensions			6" Rew Redesign	starting 08.2012	6" (Cast Iron/304SS) / 8" / 10" / 12"		
Ø (mm2)	D (mm)	Lead L (m)	304/316	904L	304/316	904L	
		10	308016501	308016522	308016401	308016422	
4x0.5	8	20	308016502	-	308016402	-	
4x0.5		0	30	308016503	-	308016403	-
			308016505	308016526	308016405	308016426	

CONTROL BOXES

The Quick Disconnect (QD) and Capacitor Run Control (CRC) control boxes are designed for use with Franklin 3-wire, single-phase submersible motors through 1 hp. The Standard and Deluxe control boxes are designed for use with Franklin 3-wire, single-phase submersible motors from 1 through 15 hp, and are recommended for water systems that use pressure switches, level switches, or other pilot devices. Deluxe boxes contain magnetic line contactors carefully matched to the motor rating, eliminating the need for external line connectors.

FEATURES: ALL

- Suitable for outdoor mounting
- Capacitor start/run design (except QD boxes)
- UL Listed for US and Canada (60 Hz models)

FEATURES: STANDARD & DELUXE

- Heavy-duty, box-type terminals accept up to AWG #2 wire
- External access to overload resets
- Multiple-size knockouts
- User-friendly connection diagrams
- Easy access to grounding lugs

SINGLE-PHASE SPECIFICATIONS

Box Type	Hz HP Range		Range kW Range	Enclosure	Terminal Block		Mag Contactor	Agency Approvals
вох туре	П	Terminals Max Wire		Max Wire	ridy Contactor	Agency Approvais		
Quick Disconnect (QD)	60	1/3 - 1	0.25 - 0.75	NEMA 3R, IP23	5	AWG 10	No	UL listed for US and Canada
Quick Disconnect (QD)	50	1/3 - 1	0.25 - 0.75	NEMA 3R, IP23	5	AWG 10	No	CSA Certified
Capacitor Run Control (CRC)	60	1/2 - 1	0.37 - 0.75	NEMA 3R, IP23	5	AWG 10	No	UL listed for US and Canada
Standard (S)	60	1 - 10	0.75 - 7.5	NEMA 3R, IP23	5	AWG 2	No	UL listed for US and Canada
Standard (S)	50	1.5 - 5	1.1 - 3.7	NEMA 3R, IP23	5	AWG 2	No	CSA Certified
Deluxe (D)	60	1 - 15	0.75 - 11	NEMA 3R, IP23	6	AWG 2	Yes	UL listed for US and Canada
Extra Large Deluxe (D-XL)	60	15	11	NEMA 3R, IP23	5	AWG 00	Yes	UL listed for US and Canada

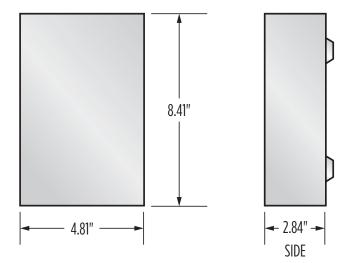
CONTROL BOXES

ORDERING INFORMATION

HP (kW)		Descr	iption		Model No.
nr (kw)	Phase	Volts	Hz	Туре	Model No.
		115	60	Q	2801024915
1/3 / 0.25		220	50	Q	2803532115
		230	60	Q	2801034915
	1	115	60	Q	2801044915
1/2 / 0.37		220	50	Q	2803552115
1/2 / 0.3/		230	60	Q	2801054915
		230	60	CRC	2824055015
		220	50	Q	2803572115
3/4 / 0.55		230	60	Q	2801074915
		230	60	CRC	2824075015
		220	50	Q	2803582115
		230	60	Q	2801084915
1 / 0.75		230	60	CRC	2824085015
		230	60	S	2823008110
		230	60	D	2823008310
		220	50	S	2823508110
1.5 / 1.1	1	230	60	S	2823008110
		230	60	D	2823008310
		220	50	S	2823518110
2 / 1.5		230	60	S	2823018110
		230	60	D	2823018310
		220	50	S	2823528110
3 / 2.2		230	60	S	2823028110
		230	60	D	2823028310
		220	50	S	2822539010
5 / 3.7		230	60	S	2821138110
		230	60	D	2821139310
7.5 / 5.5		230	60	S	2822019210
10 010		230	60	D	2822019310
10 / 7.5		230	60	S	2822029230
10 / 1.3		230	60	D	2822029330
15 / 11		230	60	D	2822039330
	10.000	230	60	D-XL	2822039621

NOTE: Q = Quick Disconnect Control Box; CRC = Capacitor Run Control Box; S = Standard Control Box; D = Deluxe Control Box; D-XL = Extra Large Deluxe Control Box

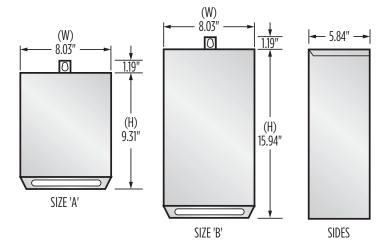
CONTROL BOXES - QUICK DISCONNECT (QD) & CAPACITOR RUN CONTROL (CRC)


SPECIFICATIONS

- Bottom Knockout: Two 0.88" knockouts and one 1.31" knockout
- Side Knockout: One 0.88" knockout and one 1.31" knockout on each side
- Terminal Block: Five terminals provided for wiring up to AWG #10 wire

DIMENSIONS

Box Type	HP/kW	Enclosure Size	Motor Carton Size (in)			Shipping Wt.	
вох туре	∏P/KWV	ETICIOSUTE SIZE	W	Н	L	lbs	kg
	1/3 / 0.25						
Quick	1/2 / 0.37					4	1.8
Disconnect (QD)	3/4 / 0.55						
	1 / 0.75	QD	5.5	3.25	9		
Camaaitan Dun	1/2 / 0.37						
Capacitor Run Control (CRC)	3/4 / 0.55					5	2.3
Control (CRC)	1/0.75						

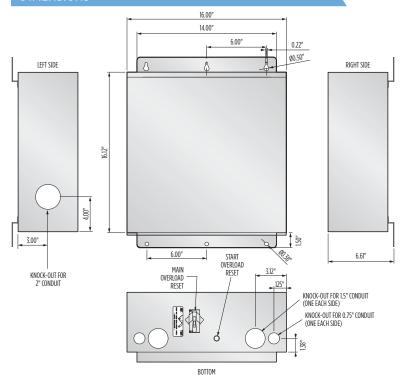

CONTROL BOXES - STANDARD & DELUXE

SPECIFICATIONS

- Knockouts: Two 1.31" diameter holes for 1" conduit connection; One 1.75" knockout for 1.25" conduit; One 0.88" knockout for 0.5" conduit connection
- Terminal Block: Six terminals provided for wiring up to AWG 2 wire

DIMENSIONS

Box Type	HP/kW	Enclosure Size	Motor Carton Size (in)			Shipping Wt.	
вох туре	HP/KW	Enclosure Size	W	Н	L	lbs	kg
	1/0.75	А	8.125	6.25	11.25	7	3.2
	1.5 / 1.1	Α	8.125	6.25	11.25	7	3.2
	2 / 1.5	Α	8.125	6.25	11.25	7	3.2
Standard	3 / 2.2	Α	8.125	6.25	11.25	7	3.2
Stalladia	5 (60 Hz) / 3.7	Α	8.125	6.25	11.25	8	3.6
	5 (50 Hz) / 3.7	В	8.125	6.25	18	8	3.6
	7.5 / 5.5	В	8.125	6.25	18	12	5.5
	10 / 7.5	В	8.125	6.25	18	14	6.4
	1/0.75	Α	8.125	6.25	11.25	7	3.2
	1.5 / 1.1	Α	8.125	6.25	11.25	7	3.2
	2/1.5	А	8.125	6.25	11.25	7.0	3.2
	3 / 2.2	Α	8.125	6.25	11.25	7.3	3.3
Deluxe	5 / 3.7	В	8.125	6.25	18	11.2	5.1
	7.5 / 5.5	В	8.125	6.25	18	13.1	6.0
	10 / 7.5	В	8.125	6.25	18	14.7	6.7
	15 / 11	В	8.125	6.25	18	16.5	7.5
	15 (XL) / 11	С	16	7.125	19	28.0	12.7



CONTROL BOXES - EXTRA LARGE DELUXE (D-XL)

SPECIFICATIONS

- Bottom Knockouts: Two knockouts for 0.75" conduit, and two for 1.5" conduit
- Side Knockouts: One knockout for 2" conduit
- Terminal Block: Two terminals provided for incoming power and three terminals provided for drop cable for conductors from AWG 14 to 00
- Control Switch Terminal Block: Accepts conductors from AWG 20 to 6

DIMENSIONS

CONTROL BOXES - PARTS

QD 60 HZ

HP / Voltage	Model No.	Rating	No. Req.	Component Part No.	Kit Order No.
1/3 / 115	280 102 4915	Start Capacitor 159-191 MFD, 110 V		275 464 125	305 207 925
1/3 / 113	260 102 4915	QD Relay		223 415 905	305 101 905
1/3 / 230	280 103 4915	Start Capacitor 43-53 MFD, 220 V		275 464 126	305 207 926
1/3 / 230	280 103 4915	QD Relay		223 415 901	305 101 901
1/2 / 115	280 104 4915	Start Capacitor 250-300 MFD, 125 V		275 464 201	305 207 951
1/2 / 113	200 104 4915	QD Relay		223 415 906	305 101 906
1/2 / 230	280 105 4915	Start Capacitor 59-71 MFD, 220 V		275 464 105	305 207 905
1/2 / 230	200 103 4913	QD Relay		223 415 902	305 101 902
3/4 / 230	280 107 4915	Start Capacitor 86-103 MFD, 220 V		275 464 118	305 207 918
3/4 / 230	200 107 4915	QD Relay		223 415 903	305 101 903
1/230	280 108 4915	Start Capacitor 105-126 MFD, 220 V	1	275 464 113	305 207 913
1/ 230	200 100 4915	QD Relay		223 415 904	305 101 904
		Start Capacitor 43-53 MFD, 220 V		275 464 126	305 207 926
1/2 / 230	CRC 282 405 5015	Run Capacitor 15 MFD, 370 V		156 362 101	305 203 907
		QD Relay		223 415 912	305 105 901
		Start Capacitor 59-71 MFD, 220 V		275 464 105	305 207 905
3/4 / 230	CRC 282 407 5015	Run Capacitor 23 MFD, 370 V		156 362 102	305 203 908
		QD Relay		223 415 913	305 105 902
		Start Capacitor 86-103 MFD, 220 V		275 464 118	305 207 918
1/230	CRC 282 408 5015	Run Capacitor 23 MFD, 370 V		156 362 102	305 203 908
		QD Relay		223 415 914	305 105 903

QD 50 HZ

HP / Voltage	Model No.	Rating	No. Req.	Component Part No.	Kit Order No.
		Start Capacitor 43-53 MFD, 220 V		275 461 123	305 205 923
1/2 / 220	280 355 2115	Capacitor Overload Assembly		151 033 990	305 218 990
		QD Relay		223 415 915	305 105 904
		Start Capacitor 59-71 MFD, 220 V		275 461 108	305 205 908
3/4 / 220	280 357 2115	Capacitor Overload Assembly]	151 033 989	305 218 989
		QD Relay		223 415 916	305 105 905
		Start Capacitor 86-103 MFD, 220 V		275 461 106	305 205 906
1/220	280 358 2115	Capacitor Overload Assembly		151 033 988	305 218 988
		QD Relay		233 451 917	305 105 906

QD OLD STYLE

Description	Rating	No. Req.	Component Part No.	Kit Order No.
	115 V w/ Bracket and Screws		155 031 901	305 102 901
Voltage Relay Kit	230 V w/ Bracket and Screws]	155 031 902	305 102 902
	208 V w/ Bracket and Screws		155 031 903	305 102 903
	1/3 hp, 115 V		N/A	305 100 901
	1/3 hp, 230 V	1	N/A	305 100 902
Overload Kit	1/2 hp, 115 V		N/A	305 100 903
Overload Kit	1/2 hp, 230 V		N/A	305 100 904
	3/4 hp, 230 V		N/A	305 100 905
	1 hp, 230 V		N/A	305 100 906

NOTE: Some Franklin motors, controls, and parts are non-stock items and may need to be special ordered

CONTROL BOXES - PARTS

STANDARD 60 HZ

HP	Model No.	Rating	No. Req.	Component Part No.	Kit Order No.
		Start Capacitor 105-126 MFD, 220 V		275 464 113	305 207 913
		Run Capacitor 15 MFD, 370 V		155 328 101	305 204 901
1/1.5 - 4"	282 300 8110	Start Overload		275 411 114	305 215 914
		Run Overload		275 411 113	305 215 913
		Relay - 230 V*		155 031 102	305 213 902
		Start Capacitor 105-126 MFD, 220 V		275 464 113	305 207 913
		Run Capacitor 20 MFD, 370 V		155 328 103	305 204 903
2 - 4"	282 301 8110	Start Overload	1 1	275 411 117	305 215 917
		Run Overload] ' [275 411 113	305 215 913
		Relay - 230 V*		155 031 102	305 213 902
		Start Capacitor 208-250 MFD, 220 V		275 463 123	305 206 923
		Run Capacitor 45 MFD, 370 V		155 327 109	305 203 909
3 - 4"	2823028110	Start Overload		275 411 118	305 215 918
		Run Overload		275 411 115	305 215 915
		Relay - 230 V*		155 031 102	305 213 902
		Start Capacitor 216-259 MFD, 330 V		275 468 118	305 208 918
		Run Capacitor 40 MFD, 370 V	2	155 327 114	305 203 914
5 - 4" & 6"	282 113 8110	Start Overload		275 411 119	305 215 919
		Run Overload		275 406 102	305 214 902
		Relay - 230 V*		155 031 601	305 213 961
		Start Capacitor 270-324 MFD, 330 V		275 468 119	305 208 919
		Start Capacitor 130-154 MFD, 330 V	1	275 468 117	305 208 917
7.5 - 6"	282 201 9210	Run Capacitor 45 MFD, 370 V		155 327 109	305 203 909
7.5 - 6	282 201 9210	Start Overload		275 411 102	305 215 902
		Run Overload		275 406 122	305 214 922
		Relay - 230 V*		155 031 601	305 213 961
		Start Capacitor 270-324 MFD, 330 V	2	275 468 119	305 208 919
		Run Capacitor 35 MFD, 370 V		155 327 102	305 203 902
10 - 6"	282 202 9230	Start Overload		275 406 103	305 214 903
		Run Overload		155 409 101	155 409 101
		Relay - 230 V*] 1	155 031 601	305 213 961
All	All	Lightning Arrestor	'	150 814 902	150 814 902
208 V Relay *	208 V Relay *	Relay 1.5-3 hp (replaces 155031102)		155 031 103	305 213 903
208 V Kelay	ZU8 V Kelay	Relay 5-15 hp (replaces 155031601)		155 031 602	305 213 962

STANDARD 50 HZ

HP / Voltage	Model No.	Rating	No. Req.	Component Part No.	Kit Order No.
		Start Capacitor 105-126 MFD, 220 V		275 464 113	305 207 913
1.5 / 220	282 350 8110	Run Capacitor 10 MFD, 370 V		155 328 102	305 204 902
1.5 / 220	282 350 8110	Overload Assembly - Run		275 411 114	305 215 914
		Relay 220 V		155 031 112	305 213 912
		Start Capacitor 189-227 MFD, 220 V		275 468 115	305 208 915
		Run Capacitor 20 MFD, 370 V		155 328 103	305 204 903
2 / 220	282 351 8110	Overload Assembly - Run	1	275 411 102	305 215 902
		Overload Assembly - Start	_ '	275 411 106	305 215 906
		Relay 220 V		155 031 112	305 213 912
	282 352 8110	Start Capacitor 270-324 MFD, 220 V		275 468 119	305 208 919
		Run Capacitor 35 MFD, 370 V		155 327 102	305 203 902
3 / 220		Overload Assembly - Run		275 406 107	305 214 907
		Overload Assembly - Start		275 411 117	305 215 907
		Relay 220 V		155 031 112	305 213 912
		Start Capacitor 189-227 MFD, 220 V	2	275 468 115	305 208 915
		Run Capacitor 30 MFD, 220 V		155 327 101	305 203 901
5 / 220	282 253 9010	Run Capacitor 45 MFD, 220 V		155 327 109	305 203 909
37 220	282 253 9010	Overload Assembly - Run	1	275 406 102	305 214 902
		Overload Assembly - Start		275 411 102	305 215 902
		Relay 220 V		155 031 112	305 213 912

NOTE: Some Franklin motors, controls, and parts are not stock items and may need to be special ordered
*For 208 V systems or where line voltage is between 200 V and 210 V, a low voltage relay and larger cable are required: Use relay part number 305 213 903 in place of 305 213 902 on 1.5 through 3 hp applications; Use relay 305213962 for 5-15 hp applications; use the next size larger cable than is specified in the 230 V table; boost transformers are an alternative to special relay and cable.

CONTROL BOXES - PARTS

HP Size / Model No.	Model No.	Rating	No. Reg.	Component Part No.	Kit Order No.
THE SIZE / Flodel No.	rioderito.	Start Capacitor 105-126 MFD, 220 V	No. Neg.	275 464 113	305 207 913
		Run Capacitor 15 MFD, 370 V	-	155 328 101	305 204 901
		Start Overload	-	275 411 114	305 215 914
1/1.5 - 4"	282 300 8310	Run Overload	-	275 411 113	305 215 913
		Contactor	-	155 325 102	305 226 902
		Relay - 230 V*	-	155 031 102	305 213 902
		Start Capacitor 105-126 MFD, 220 V		275 464 113	305 207 913
			-	155 328 103	305 204 903
		Run Capacitor 20 MFD, 370 V Start Overload		275 411 117	305 215 917
2 - 4"	282 301 8310	Run Overload	1	275 411 113	305 215 917
		Contactor	┦ ' ト	155 325 102	305 226 902
		Relay - 230 V*	-	155 031 102	305 213 923
		Start Capacitor 208-250 MFD, 220 V		275 463 123	305 213 923
			-	155 327 109	305 206 911
		Run Capacitor 45 MFD, 370 V	-		
3 - 4"	282 302 8310	Start Overload Run Overload	-	275 411 118 275 411 115	305 215 918
			-		305 215 915
		Contactor	-	155 325 102	305 226 902
	_	Relay - 230 V*		155 031 102	305 213 902
		Start Capacitor 216-259 MFD, 330 V		275 468 118	305 208 918
		Run Capacitor 40 MFD, 370 V	2	155 327 114	305 203 914
5 - 4" & 6"	282 113 9310	Start Overload	-	275 411 119	305 215 919
		Run Overload		275 406 102	305 214 902
		Contactor	_	155 326 101	305 347 903
		Relay - 230 V*		155 031 601	305 213 961
		Start Capacitor 130-154 MFD, 330 V	1	275 468 117	305 208 917
		Start Capacitor 270-324 MFD, 330 V		275 468 119	305 208 919
		Run Capacitor 45 MFD, 370 V		155 327 109	305 203 909
7.5 - 6"	282 201 9310	Start Overload		275 411 102	305 215 902
		Run Overload		275 406 121	305 214 921
		Contactor		155 326 102	305 347 902
		Relay - 230 V*		155 031 601	305 213 961
		Start Capacitor 270-324 MFD, 330 V	2	275 468 119	305 208 919
		Run Capacitor 35 MFD, 370 V	-	155 327 102	305 203 902
10 - 6"	282 202 9330	Start Overload		275 406 103	305 214 903
10 0	202 202 3000	Run Overload	1	155 409 101	-
		Contactor	_ `	155 326 102	305 347 902
		Relay - 230 V*		155 031 601	305 213 961
		Start Capacitor 270-324 MFD, 330 V	2	275 468 119	305 208 919
		Run Capacitor 45 MFD, 370 V	3	155 327 109	305 203 909
15 - 6"	282 203 9330	Start Overload	<u> </u>	275 406 103	305 214 903
13 0	202 203 3330	Run Overload	1	155 409 102	-
		Contactor	, i	155 429 101	305 347 901
		Relay - 230 V*		155 031 601	305 213 961
		Start Capacitor 270-324 MFD, 330 V	2	275 468 119	305 208 919
		Run Capacitor 45 MFD, 370 V	3	155 327 109	305 203 909
15 - 6"	282 203 9621	Start Overload		275 406 103	305 214 903
15 0	(X-Large Enclosure)	Run Overload	1	155 409 102	-
		Contactor		155 429 101	305 347 901
		Relay - 230 V*	2	155 031 601	305 213 961
All	All	Lightning Arrestor		150 814 902	150 814 902
208 V Relay*	208 V Relay*	Relay 1.5-3 hp (replaces 155 031 102)] 1 [155 031 103	305 213 903
200 V Reldy	ZUO V KEIdy	Relay 5-15 hp (replaces 155 031 601)		155 031 602	305 213 962

NOTE: Some Franklin motors, controls & parts are not stock items and may need to be special ordered
*For 208 V systems or where line voltage is between 200 V and 210 V, a low voltage relay and larger cable are required: Use relay part number 305 213 903 in place of 305 213 902 on 1.5 through 3 hp applications; Use relay 305213962 for 5-15 hp applications; use the next size larger cable than is specified in the 230 V table; boost transformers are an alternative to special relay and cable.

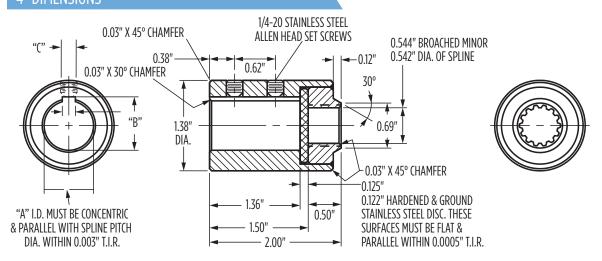
ACCESSORIES & SERVICES - COUPLINGS

Franklin Electric offers this line of motor-to-pump couplings for maximum customer convenience in matching the Franklin motor to a variety of pump shafts. Couplings are designed to transmit the pump thrust to the motor in order to provide maximum benefits from Franklin's internal thrust bearing construction.

Hardened stainless steel spacer discs in the 4" and 6" couplings assure positive bearing between motor and pump shafts, and assure full support for downward thrust created by the pump.

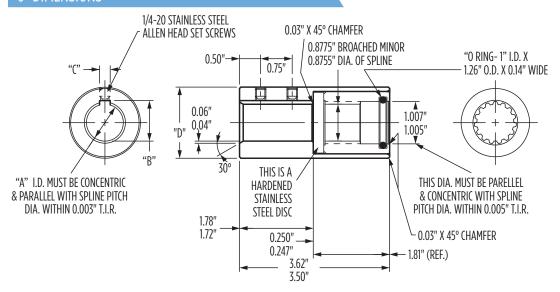
8" couplings DO NOT contain hardened spacer discs since the motor shaft itself is hardened.

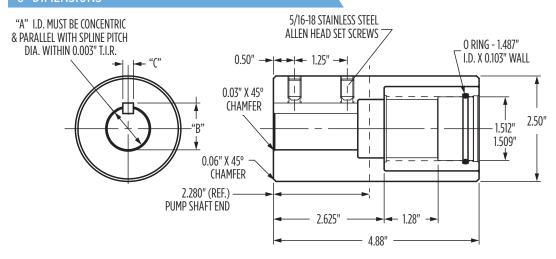
All couplings include Allen head 300 series stainless steel set screws with key included.


2h	ECI	IFI(CAI	10	<i>N</i> 2

Motor Size (in)	Construction	Pump Shaft Dia.	I	Dimensions (in)	Part No.
Motor Size (III)	Construction	Pullip Stidit Did.	W	D	L	Part No.
4	416 SS	3/4	3/16	1/8	13/8	151 551 911
4	316 SS	3/4	3/16	1/8	13/8	151 551 931
		3/4	3/16	1/8	13/4	151 935 902
	416 SS	7/8	1/4	3/16	13/4	151 935 901
6		1	1/4	3/16	13/4	151 935 909
0		3/4	3/16	1/8	13/4	151 935 922
	316 SS	7/8	1/4	3/16	13/4	151 935 921
		1	1/4	3/16	13/4	151 935 929
		1	1/4	1/4	2	151 922 901
		1 3/16	1/4	1/4	2	151 922 906
	416 SS	1 3/16	5/16	5/16	2	151 922 902
		1 1/4	5/16	5/16	2	151 922 903
8		11/2	3/8	3/8	2	151 922 904
		1 3/16	1/4	1/4	2	151 922 926
	316 SS	1 1/4	5/16	5/16	2	151 922 923
	310.22	11/2	3/8	3/8	2	151 922 924
		1 11/16	3/8	3/8	2	151 922 929

8" 151 922 6" 151 935 4" 151 551


4" DIMENSIONS



ACCESSORIES & SERVICES - COUPLINGS

6" DIMENSIONS

8" DIMENSIONS

ACCESSORIES & SERVICES - QD SERVICE BOX & SPECIAL SERVICES

QD SERVICE BOX

- Franklin Electric's QD service box is a service tool that provides capability to measure motor amps and line voltage with the motor running
- Fits between the base and cover of an installed QD control box
- Compatible with any Franklin Electric QD or CRC control box
- Meter jacks for measuring voltage while the motor is running
- Clamp-on ammeter access to all three motor leads for installations with jacketed cable or conduit
- Easy to use

Compatible With	Part No.
All QD & CRC Control Box Ratings	305 510 901

SPECIAL SERVICES

Special testing services are available for motors purchased from Franklin Electric. These services must be specified at the time of order and will result in additional lead time.

Calibrated Motor Performance Test				
HP	Motor Diameter			
1/3-3	4"			
5-10	4"			
5-60	6"			
40-200	8"			

Submergence Performance Test			
HP	Motor Diameter		
1/3-2	4" @ 1000 psi (2W = 500 psi)		
3-10	4" @ 1000 psi		
5-30	6" @ 1000 psi		
40-60	6" @ 1000 psi		
	8" @ 1000 psi		

NOIES		

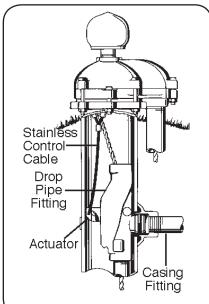
NOTES	

NOTES	

franklinwater.com M1748 03-21

FEATURES of SNAPPY® AND BULLDOG® PITLESS ADAPTERS

To install a Snappy or Bulldog pitless adapter, you must first excavate, per OSHA regulations, around the well casing and cut a hole in the casing below the frost-line. The Snappy or Bulldog casing fitting is then attached to the casing around the hole to provide a sanitary water service connection. The submersible pump and drop pipe are suspended from the Snappy or Bulldog drop pipe fitting. As the pump, drop pipe, and drop fitting are lowered into the well the drop fitting discharge is pointed toward the hole in the casing. When the drop fitting discharge reaches the open hole in the casing, the drop fitting actuator forces the discharge port into the inner machined surface of the casing fitting and locks it in place. Once the discharge port is properly seated within the machined surface of the casing fitting, and the actuator is fully engaged, the submersible pump and drop pipe are fully supported and secured. To remove the submersible pump, the drop fitting must first be supported by a pump hoist. This is accomplished by threading a pull pipe into the threaded pull pipe port located on the top side of the drop fitting and properly supporting the pull pipe with a pump hoist. Mark the pull pipe and top of well casing toward the direction of the water service connection. This will help locate the casing fitting during replacement. The Snappy or Bulldog drop fitting can then be disengaged from the casing fitting by pulling up on the stainless steel release cable. The motion of pulling up on the release cable will remove the drop fitting discharge port from within the casing fitting machine surface. Once the drop fitting is disengaged, the drop fitting, drop pipe, and submersible pump can be removed from the well.


The Snappy is manufactured from lead-free galvanized cast iron and the Bulldog from brass. Snappy and Bulldog pitless adapters are certified under the standards of the Pitless Adapter Division of the Water Systems Council (PAS-I). Snappy pitless adapters are available for well sizes from 4 to 6-1/4 inches I.D. Bulldog pitless adapters are available for well sizes 4", 5" and 6" I.D. Both are for drop and discharge pipe sizes of 1 and 1-1/4 inches. **Conforms to Water System Council PAS-97(04) Standards.**

ECONOMICAL... Regular well casing is used all the way. Extra cost of larger upper well casing used with spool-type units and expensive pit or well house construction are eliminated.

FROSTPROOF . . . No heating required. All water passages are buried below the frostline.

SANITARY . . . No heated pump house or well pit is needed.

PUMP IS EASILY SET . . . by simply lowering pump into well suspended from drop pipe fitting with neck of the latter pointed in the casing fitting direction.

PUMP IS EASILY PULLED . . . by first supporting drop pipe with hoist, and then pulling control cable to free pump.

CORROSION PROTECTION ... The Snappy Clamp-on casing fittings are lead-free galvanized gray iron. All parts within the well casing are either hot-dipped galvanized or constructed of corrosion resistant materials. All cast parts of the Bulldog pitless adapter are of high quality cast brass and conform to ASTM B584 specifications. Remaining parts are of 304 stainless steel or other corrosion resistant material. Springs are of phosphor bronze, O-rings are neoprene.

FULL CASING OPENING ... provided by Snappy and Bulldog when pump is removed facilitates well and pump service, is often required by well codes and ordinarily necessary where a well screen is used.

MONITOR® AT-THE-WELL PITLESS ACCESSORIES. . . Allows for the pressure switch to be located in the well casing. For a description of the Monitor At-The-Well Control and ordering information, check the At-the-Well section of this catalog.

NOTE: Improper chlorination can lead to corrosion problem. SNAPPY AND BULLDOG ADAPTERS WILL SUPPORT 1,000 LBS. PRESSURE RATED AT 250 PSI.

SNAPPY® PITLESS ADAPTER

The Snappy is manufactured from lead-free galvanized cast iron. Snappy pitless adapters are certified under the standards of the Pitless Adapter Division of the Water Systems Council (PAS-I). Snappy pitless adapters are available for well sizes from 4" to 6 1/4" I.D. and is for drop and discharge pipe sizes of 1" and 1-1/4". Snappy adapters conform to Water System Council PAS-97(04) Standards.

SNAPPY® PITLESS ADAPTER

		1" DROP PIPE		1-1/4" DROP PIPE	
Well		& DISCHARGE		& DISCHARGE	
Size I.D.	MinMax. I.D.	<u>Order No.</u>	<u>Wt.</u>	<u>Order No.</u>	<u>Wt.</u>
4"	3.981-4.130"	8PL41U	10	8PL41.2U	11
4"	3.981-4.130"	**8PL41U/3	30	**8PL41.2U/3	33
4-1/2"	4.444-4.607"	8PL4.31U	11	8PL4.31.2U	12
5"	4.991-5.166"	8PL51U	12	8PL51.2U	12
5-3/16"	5.137-5.286"	8PL5.21U	12		
5-3/16"	5.137-5.286"	8PL5.25.61U	10		
6"	5.906-6.201"	8PL61U	14	8PL61.2U	14
6-1/4"	6.189-6.367"	8PL6.21U	14	8PL6.21.2U	14

^{** 3 -} Pack.

Note: To order Snappy Units with TAPPING for AT-THE-WELL controls INSERT the letter "P" after the number indicating the well size. Example: 8PL4P1U.

ILLINOIS & MICHIGAN SNAPPY PITLESS ADAPTERS (PRESSURIZED)

The Pressurized Snappy is equipped with dual o-rings on the casing fitting to insure a watertight seal at the well and to meet Illinois and Michigan code requirements.

Well			Drop Pipe &	
Size I.D.	Min-Max. I.D.	<u>Order No.</u>	<u>Discharge Size</u>	<u>Weight</u>
4"	3.981-4.130"	8PL04P1	1"	12
5"	4.991-5.166"	8PL05P1.2	1-1/4"	13
6"	5.906-6.201"	8PL06P1.2	1-1/4"	15

Note: To order Snappy Pitless adapters with tapping for at-the-well controls, replace the "0" with "T" in the

ordering number. Example: 8PLT4P1.

BULLDOG® PITLESS ADAPTER

The Bulldog is manufactured from brass. Bulldog pitless adapters are certified under the standards of the Pitless Adapter Division of the Water Systems Council (PAS-I). Bulldog pitless adapters are available for well sizes 4", 5" and 6" I.D. and is for drop and discharge pipe sizes of 1 and 1-1/4 inches. Bulldog adapters conform to Water System Council PAS-97(04) Standards.

BULLDOG® PITLESS ADAPTER

Well <u>Size I.D.</u>	MinMax. I.D.	1" DROP PIPE & DISCHARGE <u>Order No.</u>	<u>Wt.</u>	1-1/4" DROP PIPE & DISCHARGE <u>Order No.</u>	
4"	3.981-4.130"	4A0	7	4B0	8
5"	4.991-5.166"	5A0	7	5B0	8
6"	5.906-6.201"	6A0	7	6B0	8

SNAPPY® AND BULLDOG® PITLESS ADAPTERS O-RING SELECTION GUIDE

Description	O-Ring Part No.	O.D. Diameter
1" drop fitting, Std. or Pressurized	PL3	1-5/8"
1-1/4" drop fitting, Std. or Pressurized	PL40	1-7/8"
Std. Discharge fitting, all sizes	PL34	3-5/8"
Pressurized Discharge Fitting,		
4" well size, inner O-ring	PL86	2-7/8"
4" Well size outer O-ring	PL85	4-5/8"
5" & 6 well size, inner O-ring	PL84	3-3/8"
5" & 6" well size, outer O-ring	PL83	5-1/4"

BRASS SLIDE PITLESS ADAPTERS

Monitor® "Slide Type" brass pitless adapters are designed for greater strength and constructed of precision machined valve brass, with many features that provide for easier installation, more convenient servicing and improved sanitation conform to Water System Council PAS-97 (04)Standards.

FEATURES

- All models (including 1 1/4" NPT sizes) are installed with a 1 3/4" diameter hole in the well casing, eliminating the need for several size of holesaws.
- Nipple and nut have fine pitch threads for secure seal.
- · Vertical indicators.
- Generous molded gaskets for a sanitary, secure seal on the well casing.
- Large bevels on the edges of the male slides make it easier to insert the mating parts.
- Pressurized models have a small port in the nipple which allows the sealed area between the gaskets to fill with water under system pressure. The design prevents the entry of contamination as required by the State of Illinois.

BRASS PITLESS ADAPTERS

Well Size I.D.	Drop Pipe Size	Lift Out Pipe Size	Discharge Size	Order No.	Pressurized	Safe Load Limit	WT.
5-8"	1"	1"	1"	1BT	No	1500 lbs	3.5
5-8"	1"	1"	1"	1BTB (boxed	l) No	1500 lbs.	3.5
5-8"	1"	1"	1"	100BT	No	2500 lbs.	3.75
5-8"	1 1/4"	1"	1 1/4"	125BT	No	2500 lbs.	4.5
5-7"	1"	1"	1"	1BPT	Yes	1500 lbs.	3.5
5-7"	1"	1"	1"	100BPT	Yes	2500 lbs.	3.75
5-7"	1 1/4"	1"	1 1/4"	125BPT	Yes	2500 lbs.	4.5
5-7"	1 1/4"	1"	1"	1251BT	No	2500 lbs.	3.8
6-8"	1 1/2"	1 1/4"	1 1/2"	150BT	No	6000 lbs.	8.2
6-8"	1 1/2"	1 1/4"	1 1/2"	150BPT	Yes	6000 lbs.	8.2
6-8"	1 1/2"	1 1/4"	1 1/2"	150BTC	No	6000 lbs.	8.2
6-8"	1 1/2"	1 1/4"	1 1/2"	150BPTC	Yes	6000 lbs.	8.2

NOTE: (C) = Tapped for At-The-Well Control Kits

BRASS PITLESS ADAPTER

BRASS PITLESS ADAPTERS - conform to Water System Council PAS-97(04)Standards.

FEATURES

- All brass construction, reliable O-Ring seal, easy installation & servicing.
- Either a Monitor ventilated, Turtle or watertight cap may be used.
- Unit will support up to a 600' length of Sch. 40 Steel pipe.

BRASS PITLESS ADAPTER

Well Size I.D.	Order No.	Drop Pipe Size	Discharge Size	<u>Weight</u>
8"	130BA	2"	2"	10.5 lbs.

6123BEZ WELD ON PITLESS ADAPTERS

WELD ON PITLESS ADAPTER FOR 4", 5" & 6" I.D. & 7" O.D. WELLS

FEATURES

- 304 Stainless Steel 1" Male NPT Nipple
- 304 Stainless Steel locating support pins
- Steel housing has taper at the bottom to allow for easy bottom side welding
- Positive stop feature on interior of housing assures proper o-ring seal
- C84400 Red Brass 1" drop fitting with female NPT connection
- Maximum safe load rating: 1600 lbs.
- Chamfered 1" pull pipe port
- Large drainage hole in backside of drop fitting to prevent chlorine build-up
- Drop fitting has long sweep 90 degree turn
- Pump is more centrally located within well
- · Large neoprene o-ring seal
- Factory pressure test to 100 lbs.

WELD ON PITLESS ADAPTER

Order No.	Well Size	Drop Pipe Size	<u>Discharge Size</u>	Weight (lbs)
6123BEZ	4", 5" & 6" I.D. & 7" O.D.	1" Female NPT	1" Male NPT	5.4

500 SB Series

CERTIFIED LEAD FREE Check Valve

- Silicon bronze cast body.
- Silicon bronze cast poppet.
- Female threads.

Part No.	Size	Weight Each lbs.	Carton Quantity
501SB	1/2	.6	1
502SB	3/4	.8	1
503SB	1	1.1	1
513SB*	1	1.2	1
504SB	1 1/4	1.6	1
514SB**	1 1/4	1.7	1
505SB	1 1/2	2.1	1
506SB	2	3.7	1
507SB	2 1/2	9.8	1
508SB	3	10.8	1
509SB	4	23.6	1
510SB***	5	25.1	1
511SB	6	41.5	1

513SB* has longer threads.

514SB** has longer threads.

510SB*** has 5" male threads both ends.

2500 SB Series

CERTIFIED LEAD FREE Stemless Check Valve

- Silicon bronze cast body.
- Silicon bronze stemless poppet.
- Female threads.

Part No.	Size	Weight Each lbs.	Carton Quantity
2503SB	1	1.3	1
2504SB	1 1/4	1.8	1
2505SB	1 1/2	2.1	1
2506SB	2	3.7	1

CERTIFIED LEAD FREE Submersible Check Valve

- Silicon bronze cast body.
- Silicon bronze cast poppet.
- Female-Male threads.

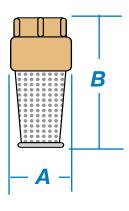
Part No.	Size	Weight	Carton
	FxM	Each lbs.	Quantity
610SB**	1 x 1 Long	1.4	1
611SB**	1 1/4 x 1 1/4 Lon	g 2.0	1
616SB	1 x 1	1.4	1
617SB	1 x 1 1/4	1.4	1
618SB	1 1/4 x 1 1/4	1.8	1
622SB	2 x 2	3.9	1
623SB	3 x 3	10.4	1
624SB	4 x 4	22.6	1
625SB	6 x 6	41.4	1

* * Extended male and female threads

*Silicon bronze components contain less than .05% (1/20 of 1%) Lead.

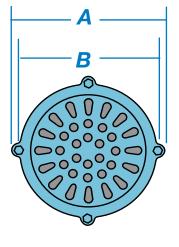
Check Valves furnished with Buna-N O-Ring, stainless steel spring, stainless steel washer, and stainless steel locknut.

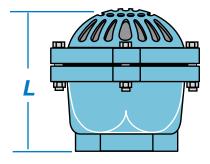
All valves 1/2" through 1-1/2" have a working pressure of 400 psi. All valves 2" and larger have a working pressure of 600 psi.


190° Maximum Temperature Rating

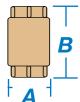
MADE IN U.S.A.

Simmons


Dimensions

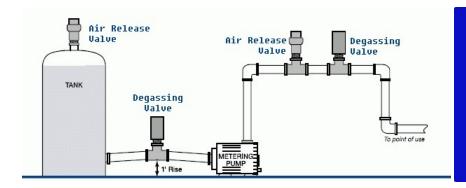

Foot Valves

Part No.	Diameter Inches	Length Inches
404SB	1 15/16	5
452SB	1 3/8	3 3/4
453SB	1 3/4	4 3/4
454SB	2 1/16	5
455SB	2 5/16	5 1/4
456SB	2 5/8	6 5/16
457SB	3 1/2	7 3/16
458SB	4	9 3/8
459SB	4 5/8	9 1/2
460SB	6	13 7/8
461SB	7 1/2	15 3/4
465SB	1 5/16	3 3/4
466SB	1 5/8	5
467SB	1 15/16	5
IMPORT V	ALVES	
7402	1 1/2	3 1/2
7403	1 7/8	4 1/2
7405	2 1/16	4 7/8
7406	2 3/8	6
7407	3 1/16	6 3/8


Cast Iron Foot Valves

Part No.	Size	Α	В	L	Hex Size
471	1 1/4 NPT	3 3/8"	4 5/8"	4 1/8"	2 5/8"
472	1 1/2 NPT	3 3/8"	4 5/8"	4 1/8"	2 5/8"
473	2 NPT	5 1/4"	5 3/4"	5 1/4"	3 5/16"
475	3 NPT	6 1/4"	7 5/8"	7 3/16"	4 9/16"
476	4 NPT	7 11/16"	9 1/16"	8 7/8"	5 9/16"
478	6 NPT	10 1/16"	11 7/16"	12"	7 3/4"
479	8 NPT	13 3/4"	15 1/8"	15 1/2"	10 1/8"

Check Valves


		' A	1
Part No.	Part No.	A Diameter	B Length
501SB		1 7/16	2 5/8
502SB		1 5/8	3 3/8
503SB		1 7/8	3 5/8
504SB		2 1/4	3 3/4
505SB	2505SB	2 5/8	4 1/8
506SB	2506SB	3 1/4	5 1/8
507SB 508SB		4 4 1/16	7 3/8 7 1/4
509SB		5 1/2	10 1/2
510SB		5 5/8	10 5/8
511SB		7 5/8	10 5/8
513SB	2503SB	1 7/8	3 7/8
514SB	2504SB	2 1/4	4 1/8
601SB		2 3/16	3 5/8
602SB		2 1/4	4 1/4
603SB		2 9/16	4 1/16
604SB		3 3/16	5 1/16
610SB		1 15/16	4 3/4
611SB 613SB		2 1/4 1 15/16	4 15/16 4 5/8
616SB		2	3 7/8
617SB		1 7/8	3 3/4
618SB		2 1/4	4 3/8
622SB		3 1/4	5
623SB		4 1/8	7 3/8
624SB		5 9/16	10 1/2
625SB		7 3/4	11
630SB		4 1/16	8 3/4
641SB		1 3/4	4 3/4
653SB	2653SB	1 7/8	3 7/8
654SB	2654SB	2 1/4	4 1/8
655SB	2655SB	2 5/8	4 3/8
658SB		3 1/4	5 7 0 / 9
660SB 661SB		4 1/8 5 9/16	7 3/8 10 1/2
662SB		7 3/4	10 1/2
669SB		4 1/16	8 3/4
670SB	675SB	4 1/16	8 7/8
671SB	2671SB	5 5/8	11 1/2
676SB	2676SB	5 5/8	11 1/2
672SB	677SB	7 5/8	11 1/2
673SB	678SB	9 5/8	12
674SB	2674SB	6 3/4	11 3/4
679SB	2679SB	6 3/4	11
680SB	2680SB	3 3/16	5 1/16
681SB	2681SB	4 7/8	8
685SB 683SB	2685SB	4 7/8	8
687SB	2683SB 2687SB	9 1/4 9 1/4	12 12
689SB	690SB	12 1/8	14
	<i>VALVES</i>	_	_
7501		1 1/4	2 3/8
7502		1 5/8	2 3/4
7503 7504		1 7/8 2 1/8	3 1/8 3 5/8
7504 7505		2 3/8	3 5/8 4 1/16
7506		3 1/16	4 1/10 5
	• • • • • •	,.0	

Call Us: (973) 256-3000

Plast-O-Matic Valves, Inc. 1384 Pompton Avenue Cedar Grove, NJ 07009 USA Email: info@plastomatic.com

Home Page | Product Data | Cut Sheets/PDF Files | CRD Files | Technical Library | Company Info | Distributors | Request for Quote

ARV QUICK LINKS

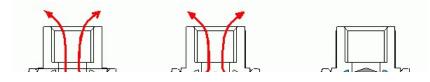
ARV Cut Sheet
ARV DWG file
ARV Installation Instructions

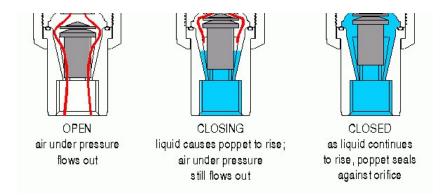
Degassing Valve Info

Series ARV Thermoplastic Air Release Valves...

Self-Guided Poppet Assures Dependable, Repetitive Operation

Features/Benefits:

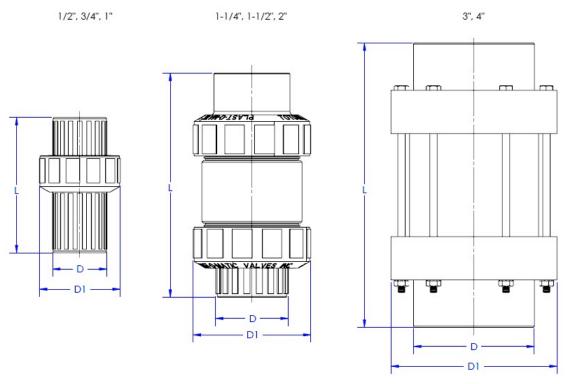

- Safety: Allows safe expulsion of unwanted air in piping systems.
- Dependability: Unique self-guided poppet assures minimal emission of system liquid prior to sealing.
- Convenience: True-union simplifies valve inspection/removal with minimum piping breakdown.
 Optional dust cap available for appropriate installations.
- Minimal Closing Pressure: Closes at 0 PSI, as long as liquid is present. Valve closes as liquid rises, after virtually all unwanted air is forced out. Seals bubble tight at system pressures as low as 10 psi (EPDM seals).
- Cost Efficient: Designed to improve system performance and competitively priced.
- Superior Design: Poppet seals more reliably than ball designs; does not deform under pressure like a hollow ball.
- Corrosion Resistant: Top quality thermoplastics and elastomers resist chemical attack and protect system purity.
 No metal components in Series ARV.



How it Works:

Series ARV is a normally-open valve. Until your system is

pressurized, the valve is simply open, and air is present. As pressure builds within the system, unwanted air is forced to the highest point in the system, i.e., the normally-open Air Release Valve. When pressure within the system exceeds atmospheric pressure, air is expelled. As liquid rises, the poppet becomes buoyant and eventually closes. (Note minimum specific gravity of liquid must be .9 or higher). It is possible that trace amounts of air will remain in the system, depending on the rapidity with which the valve closes. It is also likely that some trace amounts of process liquid will be emitted. At system pressure of 10 psi (with EPDM elastomer), the poppet will seal bubble tight against the orifice. When pressure and liquid level drop, the valve will automatically re-open.¹



The poppet is guided by a series of thermoplastic ribs within the valve. The poppet is a unique design by Plast-O-Matic Valves, Inc. that is engineered to provide a balance of buoyancy and sealability. This balanced poppet is the key to the superior performance of this valve: It is dense enough to permit maximum emission of unwanted system air, yet buoyant enough to affect a quick seal and minimize emission of the process liquid. Historically, competitive air release valves have used ball-type sealing mechanisms that either seal too rapidly or allow excessive liquid to escape.

¹Note that although Series ARV is a normally open valve, it should not be used in lieu of a vacuum breaker due to safety considerations. Under certain conditions, a normally-open air release valve will not perform properly as a vacuum breaker.

Dimensions, Specifications & Ordering Information:

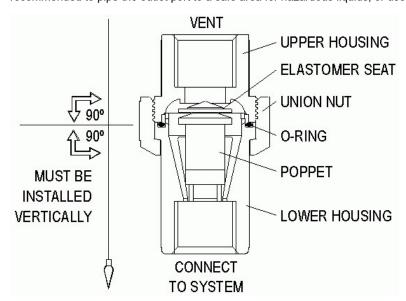
Available in Geon® PVC & Corzan® CPVC							
Series ARV	L		D	D1			
Pipe Size (NPT)	IN.	mm	IN.	mm	IN.	mm	Model Number
1/2"	5.3	130	1.9	48	2.8	72	ARV050EPT-PV
3/4"	5.3	130	1.9	48	2.8	72	ARV075EPT-PV
1"	4.7	120	1.9	48	2.8	72	ARV100EPT-PV
1 1/4"	7.8	197	2.5	64	4.1	103	ARV125EPT-PV

1 1/2"	7.8	197	2.5	64	4.1	103	ARV150EPT-PV
2"	8.4	214	3.0	76	4.1	103	ARV200EPT-PV
3"	9.8	250	4.2	106	5.8	146	ARV300EPT-PV
4"	11.7	298	5.8	146	7.9	200	ARV400EPT-PV

ARV(series) **050**(size) **EP**(seal material) **T**(threaded) - **PV**(body material) Part numbers shown are EPDM seals with PVC bodies.

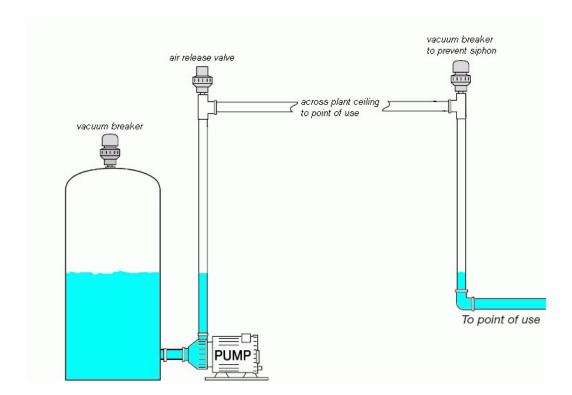
Note that 1/2" and 3/4" are based on the 1" valve; the 1/2" and 3/4" sizes use reducing bushings.

• For Viton seals, change "EP" to "V" (ARV050VT-PV)


- For Corzan CPVC body, change "-PV" to "-CP" (ARV050VT-CP)
- Standard connections are threaded. For socket connection, change "T" to "S" after seal material (ARV050EPS-PV)
- For spigot or other connection types, consult factory.
- · For optional dust cap, consult factory.

	ADD	ITIONAL SP	ECIFICATION	3		
Pressure required for bubble-t	tight seal	EPDM Elas	stomer: 10 PS	I F	FKM Elastomer	15-20 PS
Pressure Rating at 75°F (2	24°C)			150 PSI		
	PIPE SIZE NPT	MODEL PREFIX	MAX. FLOW IN LINE SCFM	MAX. FLO	W	
	1/2"	ARV050	11	82		
	3/4"	ARV075	11	82		
	1"	ARV100	12	89		
	1¼"	ARV125	38	284		
	1½"	ARV150	40	299		
	2"	ARV200	40	299		
	3"	ARV300	75	560		
	4"	ARV400	220	1645		

Note that excess of maximum pipeline GPM, airflow out of the valve will have sufficient force to lift and close the poppet, even though more air may be in the system. Liquid pumping into the system at flow rate exceeding maximum GPM will create air flow in excess of maximum SCFM.


Installation Notes

Series ARV should be installed at the highest possible point in a piping system or vessel, and it must be oriented upright. In most cases, residual liquid and/or vapor in the valve may be expelled from the outlet port just prior to valve shut-off. Therefore, it is recommended to pipe the outlet port to a safe area for hazardous liquids, or use a standpipe for non-hazardous liquids.

For detailed installation instructions, please click here.

Use of Air Release Valve with Vacuum Breakers to Prevent Siphon

Air release valves are used mostly to expel pockets of air at system start-up, but as shown in the diagram above, they are also used in conjunction with <u>vacuum breakers</u> to eliminate siphon in piping systems. First, a vacuum breaker is positioned on top of the supply tank to prevent implosion when the tank is drained. A second vacuum breaker is shown on a tee to prevent siphon in a vertical drop. This creates a pocket of air in the riser, lateral line, and drop to "break" the suction that would otherwise be created in the drop when the pump is turned off. The blue color indicates liquid in the system when the pump is turned off. When the system is re-started, an air release valve positioned along the high point of the pipeline is necessary to expel the air pocket for safe and efficient operation. Additional air release valves may be necessary at other points, depending upon the size and complexity of the pipeline. Placement of degassing valves (not shown) varies from system to system.

Helpful Links:

CAD DRAWING -- ARV (1") 2D CAD drawing in .dwg format.

Catalog Sheet: For specifications and catalog page in .PDF format, please click here.

Self-Training Powerpoint: Specific to Series ARV; please click here.

Degassing Valve: Remember that an Air Release Valve is used to expel a large volume of air at system start up. A Degassing Valve sounds similar, but is different from an Air Release Valve...If your application requires continuous expulsion of trace amounts of outgassing throughout the day, <u>please click here for degassing valve information</u>.

For complete information request Catalog ARV.

Site Map | PDF Files | CAD Files | Technical Library | Company Info | Distributors

Plast-O-Matic Valves, Inc. 1384 Pompton Avenue Cedar Grove, NJ 07009 USA Phone: (973) 256-3000 Fax: (973) 256-4745

California Warehouse 4054 Brewster Way Riverside, CA 92501

USA phone: (951) 686-2852 Fax: (951) 686-6328

brands you trust.

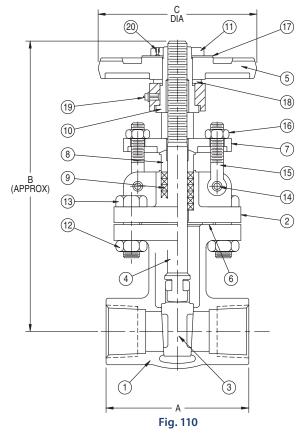
ALOYCO® Corrosion Resistant Stainless Steel Valves

Dimensions Class 150 • OS&Y • Solid or Flexible Wedge Disc

Figure 110

Gate Valve, Raised Face, Threaded Ends, Solid Wedge Disc (½ - 1") Flexible Wedge Disc (1½ - 2")

Figure 114


Gate Valve, Raised Face, Socket Weld Ends, Solid Wedge Disc (½ - 1") Flexible Wedge Disc (1½ - 2")

Size Range:

½ through 2 inches

Design Features:

- Bolted Bonnet
- Rising Stem
- Integral Seat
- MSS SP-42
- API 603 (except for end connections)
- ASME B16.34

Dimensions and Weights

		Dimensions (inches)		
Valve Size	Weight (lbs)	A	B (open)	C
1/2	6.8	2.76	8.1	3.9
3/4	7.2	3.15	8.5	3.9
1	9.8	3.54	9.1	3.9
1 ½	14.9	4.13	11.0	5.5
2	20.1	4.72	12.6	6.3

Please refer to page 28 for Pressure-Temperature Ratings.

Industry Standards

Pipe Threads	ASME B1.20.1
Wall Section	ASME B16.34
Socket Weld Ends	ASME B16.11
End-to-End	Manufacturer's Standard
Pressure-Temp Rating	ASME B16.34
Testing	API 598

Materials of Construction

1	Body	ASTM A351 CF3M
2	Bonnet	ASTM A351 CF8M
3	Disc	ASTM A351 CF8M
4	Stem	ASTM A276 T316
5	Handwheel	ASTM A536
6	Gasket	PTFE
7	Gland Flange	ASTM A351 CF8
8	Gland	ASTM A276 T316
9	Packing	PTFE
10	Stem Nut	ASTM A439, D2
11	Handwheel Nut	ASTM A276 T316
12	Bonnet Bolt Nut	ASTM A194 GR 8
13	Bonnet Bolt	ASTM A193 GR B8
14	Eyebolt Pin	ASTM A276 T304
15	Eyebolt	ASTM A193 GR B8
16	Eyebolt Nut	ASTM A194 GR 8
17	ID Tag	304 Stainless
18	Washer	ASTM A536
19	Grease Fitting	Nickel-plated Copper
20	Set Screw	Steel

GATE VALVES

Bronze Gate Valves - Class 125

NIBCO

Nonrising Stem

Pipe		Screw-in Bonnet									
Size (In.)	Mfr's #	Threaded Order #	Price Ea.	Mfr's#	Solder Order #	Price Ea.					
1/4 3/8 1/2 3/4 1	T113-1/4 T113-3/8 T113-1/2 T113-3/4 T113-1	81452708 81452757 81452690 81452740 81452666	\$53.57 53.57 38.28 46.13 59.11	S113-3/8 S113-1/2 S113-3/4 S113-1	80017361 80017312 80017353 80017288	\$43.83 38.28 43.83 63.16					

Pipe		Screw-in Bonnet								
Size (In.)	Mfr's#	Threaded Order #	Price Ea.	Mfr's#	Solder Order #	Price Ea.				
1½ 2 2½	S113-11/2 T113-2	81452682 81452674 81452716 81452724 81452732	130.93 157.39 356.21	S113-1½ S113-2 S113-2½	80017304 80017296 80017320 80017338 80017346	106.86 149.63 375.81				

- WOG: 200 psi WSP rating:
- 125 psi
 Solid wedge Drain option available on some styles, contact Sales

Screw-in Bonnet Screw-in Bonnet Nonrising Stem Rising Stem

Union Bonnet Rising Stem

Rising Stem

Pipe			Screw-in Bonnet				Union Bonnet		
Size (In.)	Threaded Mfr's # Order # Price Ea.			Mfr's#	Solder Mfr's # Order # Price Ea.		Threaded Mfr's # Order #		Price Ea.
1/4 3/8 1/2 3/4 1	T111-3/8	81451130 81451189 81451122 81451171 81451098	\$46.13 69.43 41.49 51.46 85.95	S111- 1/2 S111-1	76616432 76616440	\$41.85 69.26	T124- 1/2	81453177 81453110 81453169 81453086	\$57.01 52.90 62.80 79.96

Pipe			Screw-	in Bonnet	n Bonnet			Union Bonnet		
Size (In.)	Mfr's#	Threaded Order #	Price Ea.	Mfr's #	Solder Order #	Price Ea.	Mfr's#	Threaded Order #	Price Ea.	
11/2	T111-11/2 T111-2	81451114 81451106 81451148 81451155 81451163	117.56 166.51 444.56	\$111-11/2 \$111-2 \$111-21/2	76616416 76616457 76616465	172.74	T124-11/2 T124-2	81453102 81453094 81453136	138.91	

Bronze Gate Valves - Class 150

Rising Stem

Pine			Screw-in Bonnet Threaded						
Pipe Size	Solder Threaded					D: E			
(In.)	Mfr's #	Order #	Price Ea.	Mfr's #	Order #	Price Ea.	Mfr's #	Order #	Price Ea.
1/4				T134-1/4	81928798	\$58.97			
3/8			00	T134-3/8	81928848	58.97	T131-3/8	81928640	\$56.45
1/2	S134-1/2	80017486	\$64.98	T134-1/2	81928780	74.07	T131-1/2	81453219	52.72
3/4	S134-3/4	80017528	75.16	T134-3/4	81928830	85.95	T131-34	81928632	62.32

Pine		Union Bonnet						Screw-in Bonnet		
Pipe Size	The state of the s				Threaded	Threaded Thread			aded	
(ln.)	Mfr's #	Order #	Price Ea.	Mfr's#	Order #	Price Ea.	Mfr's #	Order #	Price Ea.	
1	S134-1	80017452	\$103.29	T134-1	81928756	\$107.78	T131-1	81453185	\$83.01	
					81928772	166.63	T131-11/4	81453201	112.18	
	S134-11/2	80017460	174.47	T134-11/2						
2				T134-2	81928806	199.45	T131-2	81453235	190.56	

Nonrising Stem

11/2

82029364

Pipe Size (In.)	Pipe Union Bonnet Size Threaded In.) Mfr's # Order #		Price Ea.	Mfr's#	Screw-in Bonne Threaded Order #	Price Ea.
1/4	T136-1/4	81929093	\$80.49			
3/8		81929143		T133-3/6	81928749	\$79.35
		81929085 81929135			81928681 81928731	59.49 85.95

Pipe Size (In.)	Threaded		Mfr's#	Screw-in Bonne Threaded Order #	eaded • Steam der # Price Ea. (to 36		
11/4 11/2	T136-11/2 T136-11/2	81929051 81929077 81929069 81929101	220.21 192.34	T133-11/4 T133-11/2	81928657 81928673 81928665 81928707	115.75 146.04	Solid wedge

Union Bonnet Rising Stem

Union Bonnet Nonrising Stem

NIBC

AHEAD OF THE FLOW

Screw-in Bonnet

Bronze Gate Valves - Class 300

Pipe	Rising S	Stem	Nonrising Stem		
Size (In.)	e (In.) Order# Price Ea.		Order#	Price Ea.	
Bronze	Seat				
	Series 1	174A	Series T176A		
1/4	82029398	\$100.97	82029539	\$128.43	
3/8	82029422	113.99	82029562	125.94	
1/2	82029380	92.04	82029521	174.58	
3/4	82029414	110.56	82029554	149.63	
1	82029356	151.47	82029497	208.39	
11/4	82029372	220.85	82029513	277.85	

233.76

82029505

354.04

NIBCC

· Threaded end connections WOG: 600 psi Steam: 300 psi Union bonnet · Block pattern · Alloy solid wedge

Iron Body Gate Valves -Bronze Mounted - Class 250

Pipe Sz. (In.)	Mfr's#	Order #	Price Ea.
21/2	F6670-21/2	75962134	\$1184.73
3	F6670-3	75962142	1296.16
4	F6670-4	75962159	1786.30
5	F6670-5	75962167	3335.67
6	F6670-6	75962175	3313.55

- · Outside screw and yoke End connections: flanged
 WOG: 500 psi; WSP: 250 psi
 Solid wedge

- · Bolted bonnet

Stainless Steel Gate Valves -Class 125

2	82029406	347.30	82029547	537.86
Stainl	ess Steel Seat			
	Series T1	7488	Series T1	76SS
1/2	82029463	115.25	82029604	131.32
3/4	82029489	132.65	82029620	159.85
1	82029430	176.26	82029570	221.65
11/4	82029455	231.53	82029596	297.91
11/2	82029448	273.42	82029588	372.38
2	82029471	395.40	82029612	588.19

Flanged Cast Iron Gate Valves - Class 125

T-303/T301

IBBM gate valves are made of ASTM A-126. Class B cast iron with bronze trim. Designed with bolted bonnets.

• Pressure Rating: 200 WOG • Pressure Rating: 125 WSP to 450°F

Size	Ou	rtside Screw & Yo	oke	Non-Rising Stem			
(In.)	Mfr's #	Order #	Price Ea.	Mfr's #	Order #	Price Ea.	
21/2	116-122 116-123	03492311 03492329 03492337 03492345	443.34 410.32	116-102 116-103	03492386 03492394 03492402 03492410	\$359.90 446.30 498.19 531.53	
5 6 8	116-126	03492352 03492360 03492378	941.00	116-106	03492428 03492436 03492444	672.34 817.09 1361.78	

- · Replaceable seat rings
- Solid wedge
 Flanged ends
 Meets MSS-SP-70

- Mfr's # Thread Size Order # Price Fa 03492451 03492469 113-403 \$131.53 1/2 113-404 3/4 150.04 113-405 1 03492477 194.98 113-406 113-407 113-408 11/4 11/2 256.13 03492485 03492493 361.86 67309039 433.92
- Pressure rating: 600 W0G/125 WSP
- Solid wedge
- Stainless steel seats
- PTFE packing

Iron Body Gate Valves - Class 125

Nonrising Stem

- End connections: flangedWOG: 200 psiBolted bonnet

- Solid wedge
- Conform to MSS SP-70
- Additional sizes available. contact Sales

Pipe	Rising Stem	Rising Stem - Outside Screw & Yoke			Nonrising Stem - Inside Screw		
Size (In.)	Mfr's #	Order #	Price Ea.	Mfr's #	Order #	Price Ea.	
2 2½ 3	F6170N-2 F6170N-2½ F6170N-3	75512533 75512541 75512574	\$611.68 668.61 705.85	F619N-2 F619N-2½ F619N-3	75951830 75951848 75951855	\$614.59 668.61 717.31	
4 6 8	F6170N-4 F6170N-6 F6170N-8	75512582 75512608 75512616	982.16 1613.17 2967.03				

READY TO ORDER? - mscdirect.com

3989

STAINLESS STEEL GATE VALVES

200 WOG NON-RISING STEM GATE VALVE

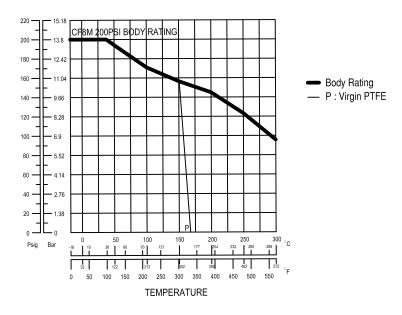
Features:

- 200 WOG
- · Non-Rising Stem
- Inside Screw
- Temperature: -4°F to 356°F
- Investment Cast Components
- · Stainless Steel Body and Trim
- · Solid Wedge Disc
- · Threaded NPT Ends
- Adjustable Packing

Standards:

- Pressure Test: API 598
- Material: ASTM/ASME B16.34
- Connections: ANSI B1.20.1 (NPT)

Figure Number Matrix


FNW 15B 200 <u>Size</u>

SIZE CODE 1/2 = D 1-1/4 = H 3/4 = F 1-1/2 = J 1 = G 2 = K

Cv & Weights

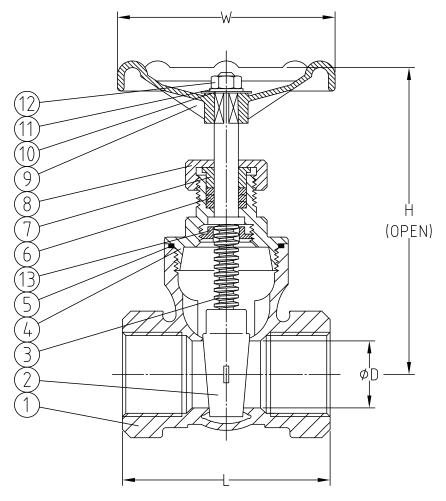

Size Cv		Wt. (lbs.)
1/2	22.4	1.0
3/4	41.5	1.2
1	67.5	1.5
1-1/4	113.1	2.1
1-1/2	180.9	3.2
2	297.2	4.5

Figure 15B-200 STAINLESS STEEL GATE VALVES

200 WOG NON-RISING STEM **GATE VALVE**

Dimensions (inches)

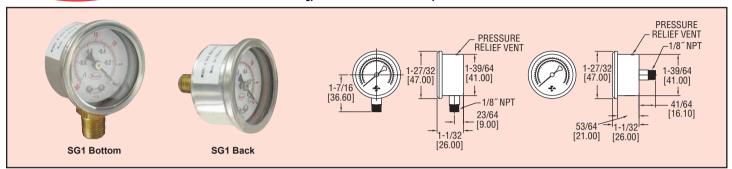
Size	ØD	L	Н	W
1/2	0.59	2.17	3.62	2.76
3/4	0.79	2.38	3.82	2.76
1	0.98	2.58	4.27	3.15
1-1/4	1.26	3.01	4.86	3.15
1-1/2	1.57	3.37	5.75	3.54
2	1.98	3.76	6.38	3.94

Standard Materials

Ref. No.	Description	Material	Qty
1	Body	ASTM A351 Gr. CF8M	1
2	Disc	ASTM A351 Gr. CF8M	1
3	Stem	316SS	1
4	Bonnet	ASTM A351 Gr. CF8M	1
5	Body Seal	PTFE	1
6	Stem Packing	PTFE	1 Set
7	Gland	304SS	1
8	Gland Nut	ASTM A351 Gr. CF8M	1
9	Hand Wheel	DIE CAST ZINC ALLOY	1
10	Name Plate	ALUMINUM	1
11	Hand Wheel Washer	304SS	1
12	Hand Wheel Nut	304SS	1
13	Stop Ring	304SS	1

DOC: FNW15B06 Ver. 03/2017

© 2017 - FNW. All rights reserved.


The FNW logo is a trademark of Ferguson Enterprises, Inc., PL Sourcing, PO Box 2778, Newport News, VA 23609

The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, expressed or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice. Always verify that you have the most recent product specifications or other documentation prior to the installation of these products.

series sg1 1.5" Stainless Steel Industrial Pressure Gage

2.5% FS Accuracy, Brass Wetted Parts, Dual PSI/Bar x100 kPa Scales

The Series SG1 Gages are perfect for applications where resistance to corrosion is necessary. The stainless steel case and ring offer excellent protection from harsh processes. The SG1 gages are an economical choice where ambient corrosion and vibration are a concern. Gages are suitable for all fluids that are compatible with brass and bronze, and are available with bottom or back connections.

Model	Range
SG1-B10121N	0 to 30" Hg
SG1-B10321N	0 to 30 psi
SG1-B10421N	0 to 60 psi
SG1-B10521N	0 to 100 psi
SG1-B10621N	0 to 160 psi
SG1-B10721N	0 to 200 psi
SG1-B11021N	0 to 300 psi

Note: Change ending 21N to 41N for back connection

OPTION

For NIST traceable calibration certificate, use order code NISTCAL-PG1.

SPECIFICATIONS

Service: Compatible gases and liquids.

Wetted Materials: Brass connector, bronze tube.

Housing: 304 SS. Lens: Polycarbonate. Accuracy: ±2.5% FS. Pressure Limit: FS range.

Temperature Limits: -4 to 140°F (-20 to 60°C).

Size: 1.5" (40 mm).

Process Connections: 1/8" NPT

Weight: 2.2 oz (63 g) bottom, 2.3 oz (65 g) back.

ACCESSORY

A-445B, U-Bracket Mounting Kit for 1.5" Gage

SoftR® Duct Wrap White PSK

Enhanced Product Now Available

The SoftR® Duct Wrap product line is providing consistent enhancements that will further meet your needs. Read below for details on SoftR® Duct Wrap with white PSK facing:

Features/Benefits:

- Light reflectance
- Professional appearance with white vinyl facing
- Excellent water vapor permanence
- Extremely resistant to water and inorganic chemical environments
- Easy to clean surface
- Highly resistant to deterioration by exposure to UV light
- Tough and highly resistant to damage such as punctures
- Dimensional stability helps resist wrinkling and sagging
- Durable to help resist environmental stress-cracking or yellowing

Uses:

- External insulation on heating and air conditioning ducts
- Surfaces where temperature or condensation needs to be controlled.
- Professional appearance makes it suited for exposed applications, boiler and equipment rooms, and high humidity applications.
- Offered in R4.2, R6 and R8 in either 4' or 5' wide rolls.

This isn't all. We will continue bringing you new and innovative products.

Look what's coming Next!

To learn more about Owens Corning™ SoftR® Duct Wrap go to www.owenscorningcommercial.com or call I-800-GET-PINK®

SUBMERSIBLE CABLE

SUBMERSIBLE LEVEL TRANSMITTERS Perfect for Ground Water and Wells, Lightning Protected, Standard 72 Hour Lead Time

SRI TX (ATEX option available)

NOW WITH 72 HOUR OUT OF STOCK LEAD TIME!

The Series SBLT2 & SBLTX Submersible Level Transmitters are manufactured for years of trouble free service. These series measure the height of liquid above the position in the tank referenced to atmospheric pressure. The transmitter consists of a piezoresistive sensing element, encased in a 316 SS housing.

BENEFITS/FEATURES

- · Slim design for tight applications with bullet nose design which protects the diaphragm from damage
- Incorporates lightning and surge protection utilizing dual arrestor technology, grounded to case, eliminating both power supply surges and lightning ground strike transients (surge protection is not guaranteed and is not covered by warranty) on SBLT2 models
- Maintenance free filter eliminates particulate or water droplets from entering the transducer
- UL approved intrinsically safe on SBLTX models for use in hazardous locations when used with proper barrier
- · 270 lb tensile strength shielded and vented cable
- · Excellent chemical compatibility
- NPT connection allows the unit to be rigidly installed in a pipe/conduit, or the addition
- of a A-625 hanging loop for attaching a chain for pulling out of the installation
- · Standard 72 hour lead time ensures minimal downtime

APPLICATIONS

- · Well monitoring
- · Ground water monitoring
- Environmental remediation
- · Surface water monitoring
- · Down hole
- · Water tanks MODEL CHART

SPECIFICATIONS

Service: Compatible liquids.

Wetted Materials: Body: 316 SS, 316L SS; Bullet nose: PVC; Cable: Polyether polyurethane or ETFE; Seals: Fluoroelastomer.

1/2 NPT

7-3/16 [182.75]

Ø1 [Ø25.40]

BREATHER TUBE-

Accuracy: ±0.25% FS

Temperature Limit: SBLT2: Polyurethane: 0 to 150°F (-18 to 66°C); ETFE: 0 to 200°F (-18 to 93°C); SBLTX -4 to 176°F (-20 to 80°C); Polyurethane: -4 to 149°F (-20 to 65°C)

Compensated Temperature Range: SBLT2: 0 to 140°F (-18 to 60°C); SBLTX: 0 to

176°F (-18 to 80°C).

Thermal Effect: ±0.02% FS/°F.

Pressure Limit: 2X FS

Power Requirement: SBLT2: 10-30 VDC (≤ 1000 ft (305 m) of cable); SBLTX:

10-28 VDC

Output Signal: 4-20 mA DC, 2-wire.

Response Time: 50 ms.

Max. Loop Resistance: 900 Ω at 30 VDC. Electrical Connections: Wire pigtail.

Mounting Orientation: Suspended in tank below level being measured.

Electrical Protection: SBLT2: Lightning and surge protection; SBLTX: None.

Weight: 2.2 lb (1.0 kg).

Agency Approvals: SBLT2: CE; SBLTX: CE, cULus intrinsically safe for Class I, Div. 1, Groups A, B, C, D; Class II, Div. 1, Groups E, F, G; Class III Div. 1; ATEX: II 1 G Ex ia IIC T4 Ga and II 1 D Ex ia IIIC T135C Da (according to control drawing

001833-43)*

**Up to 275' (83.8 m) for ETFE cable; Up to 470' (143.3 m) for polyurethane cable.

MODEL CHART			
	Range psi*		
Model	(ft w.c.) [m w.c.]	Length ft (m)	Cable Type
SBLT2-5-40-ETFE	5 (11.54) [3.52]	40 (12.2)	ETFE
SBLT2-10-40-ETFE	10 (23.09) [7.04]	40 (12.2)	ETFE
SBLT2-15-60-ETFE	15 (34.63) [10.56]	60 (18.3)	ETFE
SBLT2-20-60-ETFE	20 (46.18) [14.08]	60 (18.3)	ETFE
SBLT2-5-40	5 (11.54) [3.52]	40 (12.2)	Polyurethane
SBLT2-10-40	10 (23.09) [7.04]	40 (12.2)	Polyurethane
SBLT2-15-60	15 (34.63) [10.56]	60 (18.3)	Polyurethane
SBLT2-20-60	20 (46.18) [14.08]	60 (18.3)	Polyurethane
SBLT2-3.5M-5M	4.97 (11.48) [3.5]	16.40 (5)	Polyurethane
SBLT2-5M-10M	14.21 (32.81) [10]	32.81 (10)	Polyurethane
SBLT2-10M-18M	25.58 (59.06) [18]	59.06 (18)	Polyurethane

*Configured ranges below 5 psi (11.54′ w.c.) (3.52 m w.c.) ±1% FS accuracy.

Note: For intrinsically safe approval, change model number from SBLT2 to SBLTX. For custom ranges or cable lengths, contact factory.

OPTIONS						
Model	Description					
-ATEX	ATEX intrinsically safe					
-P1	1/4" NPT male					
-P2	1/4" NPT female					
-P3	1/4" BSPT male ISO 228 R					
-P4	1/4" BSPT female ISO 228 RC					
-P11	3/4" clean-out type					

ACCESS	ORIES							
Model	Description							
A-297	Dessicant filter for vent tube. Removes							
	humidity for protection of the sensor.							
	Changes color to show saturation							
A-625	316 SS cable hanger use with NPT option							
	for attaching chain for easy pulling out of							
	application							
MTL5541	Galvanic barrier							
MTL7706	Intrinsically safe zener barrier							

Transmitters,

Multi-Jet Pulse Water Meters

- . Works well in low-quality water applications
- · Dry top multi-jet design for enhanced reliability
- · Dry contact output meters interface with external data loggers or chemical feed equipment

Multi-jet flowmeters offer a wide flow range, simplicity and accuracy, even in low-quality water applications. Use them for a variety of applications including industrial water treatment, cooling tower chemical control and general water metering.

Choose from three body materials: traditional bronze for non-potable industrial applications, NSF 61 lead-free eco-brass suitable for potable water applications, or economical NSF 61 lightweight plastic. All models feature a register that totalizes

Includes: two straight meter installation couplings and gaskets.

Accuracy: 98.5 to 101.5% Max operating pressure: 150 psi Max operating temp: 105°F

Materials

cast bronze or eco-brass alloy* or Body:

engineered plastic*

Internals: thermoplastic with alnico magnet

Dry contact output models

Cable length: 12'L standard (2000'L maximum run; can be extended in field)

24 VAC or VDC Maximum voltage:

Maximum current: 20 mA

Direct-Read Meters (Gallons)

SIZE	BRONZE STOCK #	EACH	PLASTIC (NSF 61) STOCK #	EACH	(NSF 61) STOCK #	EACH
1/2"	53151	\$ 117.95	21561	\$ 90.95	53156	\$ 127.95
3/4"	53152	127.95	21562	106.95	53157	151.95
1"	53153	211.95	21671	184.95	53158	263.95
11/2"	53154	409.95	21672	394.95	53159	524.95
2"	53155	599.95	_	_	53160	799.95

Meters with Dry Contact Output (Gallons)

SIZE	GALLONS/ CONTACT CLOSURE	BRONZE STOCK #	EACH	PLASTIC (NSF 61) STOCK #	EACH	(NSF 61) STOCK #	EACH
1/2"	1	53161	\$ 125.95	21722	\$ 103.95	53166	\$ 145.95
3/4"	1	53162	147.95	21723	136.95	53167	158.95
1"	1	53163	240.95	22098	213.95	53168	278.95
11/2"	100	53164	434.95	22099**	419.95	53169	539.95
2"	100	53165	614.95	l —	_	53170	804.95

^{**}Gallons/Contact (GPC) Closure=1

Accessories

DESCRIPTION	STOCK #	EACH
Replacement Dry Contact Reed Switch	68497	\$ 57.00
LCD Flow Totalizer/Display for Dry Contact Models	78009	165.95
External Pulse Splitter	51274	283.00

Eco-Brass & Plastic Meters only

Flow Rannes for Multi-Jet Pulse Water Meters

naliyes lul iviulu	-Jel Puise	water mete	15
Flow Range (gpm)		Lay Length	Lay Length
Min-Max	Connection	(Meter Only)	(w/ Incl. Couplings)
e & Plastic Meters			
¹/₄ to 13	Threaded	61/2"	101/4"
1/4 to 20	Threaded	71/2"	115/8"
³ / ₄ to 50	Threaded	101/4"	15"
1 ¹ / ₂ to 100	Threaded	113/4"	17"
2 to 160	Threaded	113/4"	175/8"
rass Meters			
1/4 to 13	Threaded	61/2"	101/4"
1/4 to 20	Threaded	71/2"	115/8"
³ / ₄ to 50	Threaded	103/4"	151/2"
1 ¹ / ₂ to 100	Threaded	125/8"	173/4"
2 to 160	Threaded	15¹/₄"	21"
	Flow Range (gpm) Min-Max e & Plastic Meters 1/4 to 13 1/4 to 20 3/4 to 50 11/2 to 100 2 to 160 rass Meters 1/4 to 13 1/4 to 20 3/4 to 50 11/2 to 100	Flow Range (gpm) Min-Max Connection e & Plastic Meters 1/4 to 13 Threaded 1/4 to 20 Threaded 3/4 to 50 Threaded 2 to 160 Threaded rass Meters 1/4 to 13 Threaded 7/4 to 13 Threaded 1/4 to 20 Threaded 1/4 to 50 Threaded 1/4 to 10 Threaded Threaded Threaded 1/4 to 10 Threaded 1/4 to 10 Threaded Threaded Threaded Threaded Threaded	Min-Max Connection (Meter Only) e & Plastic Meters 1/4 to 13 Threaded 6¹/₂" ¹/₄ to 13 Threaded 7¹/₂" ³/₄ to 20 Threaded 10¹/₄" 1¹/₂ to 100 Threaded 11³/₄" 2 to 160 Threaded 11³/₄" rass Meters ¹/₄ to 13 Threaded 6¹/₂" ¹/₄ to 20 Threaded 7¹/₂" ³/₄ to 50 Threaded 10³/₄" 1¹/₂ to 100 Threaded 12⁵/₅"

Models with Dry Contact Output Features

Select models feature a dry contact pulse output reed switch for interfacing with PLCs, counters or data loggers, or to pace chemical feed pumps. This externally-mounted switch fastens to the register lens with a single screw.

Pulse output rates come factory configured, but you can change them in the field with no special tools. Simply remove the lens and top ring to access the magnetic dial pointer, and reposition it to change gallons per contact (GPC) output. Refer to manual for GPC rates versus dial pointer positions for your meter.

Fax 847.689.3030 Phone 800.548.1234 usabluebook.com 387

^{*} NSF/ANSI 61 certified for potable water use.

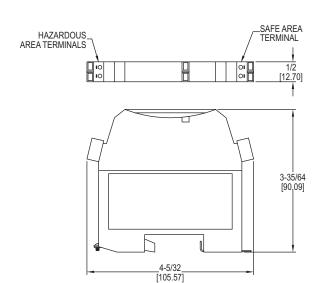
ZENER BARRIERS

Intrinsically Safe Barriers for Hazardous Locations

MTL7787 The Series MTL7706/7787 Zener Barriers are an intrinsically safe shunt-diode barrier that can be used to communicate with and provide isolations for certain Dwyer® transmitters approved for use in hazardous areas. These barriers limit the amount of energy allowed to pass into the hazardous area, which inhibit ignition in flammable atmospheres.

FEATURES/BENEFITS

· Approved for use in hazardous areas


APPLICATIONS

• Electrically isolates pressure and level transmitters from unregulated circuits for intrinsically safe applications

COMPATIBLE MODELS: 637, 608, SBLTX, PBLTX, IS626							
Model	Approval	Dwyer Series					
MTL7706	UL for class I; div. 1 groups A, B, C, D	IS626, SBLTX,					
	CL II; div. 1 groups E, F, G; CL III div. 1	PBLTX					
MTL7706	FM for class I, II, III; div. 1 groups B, C, D, E, F, G	637					
MTL7706	FM for class I, II, III; div. 1 groups A, B, C, D, E, F, G	608					
Note: Compatible models: 637, 608, SBLTX, PBLTX, IS626							

MODEL CHART									
	FM			BASEEFA (ATEX)					
Model	Group	μF	mH	Group	μF	mH			
MTL7706					0.083				
MTL7787	A & B	0.083	3.05	IIC	0.083	3.05			

Region (Authority)	Standard	Approved For	Certificate/File no.
USA (FM) (UL)	3600,	AIS/I,II,III/1/Entity ABCDEFG-	3010737
	3610 entity	SCI-942; NI/I/@/ABCD/T4	
	3611, 3810	[I/0] AEx[ia]IIC-SCI-942	
	UL698,	Entity; NI/1/2/IIC/T4;	
	UL913	Ta=140°F (60°C)	
	UL1604		
Canada (CSA)	CAN/CSA	Class I, Div.2, Gps A, B, C, D;	1345550
	E60070,	Ex nA [iA] IIC T4	
	IEC60079,	Class I, Xone 2, Aex nA IIC	
	C22.2	T4	
UK (BASEEFA)	EN 50014,	EEx ia IIC	BAS01ATEX7217
	EN 50020		
UK (BASEEFA) Systems	EN 50039	EEx ia IIC	Ex01E2219

SPECIFICATIONS

Transmitter Voltage: 16.2 V at 20 mA with 250 Ω load (negative w.r.t. earth); 11.0

V at 20 mA with 500 Ω load (negative w.r.t. earth). Safe Area Output: 4-20 mA.

Load Resistance: 0 to 500 Ω .

Power Requirement: 20-35 VDC w.r.t. earth. Accuracy: ±2 µA under all conditions.

LED Indicator: Green: Power indication.

Temperature Limits: Operating: -4 to 140°F (-20 to 60°C); Storage: -40 to 176°F

(-40 to 80°C).

Humidity: 5 to 95% RH.

Terminals: Accommodate up to 2.5 mm² stranded or single-core.

Safety Description: 28 μ V, 300 Ω , 93 mA.

Weight: 4.9 oz (140 g). Agency Approvals: See table.

MODEL CHART					
Model	Description				
MTL7706	Zener barrier				
MTL7787	Zener barrier				

ACCESSORIES					
	Description				
A-360	Aluminum DIN rail 1 m				

60 MM INTRINSICALLY SAFE BARRIER RELAYS

ISDUR4

- Approved for use in these Hazardous Locations: Class I, Div 1 (Zones 0 and 1 Canada), Groups A, B, C, D Class II, Div 1 (Zones 20 and 21 Canada), Group E, F, G Class III. Div 1
- 4-Channel
- Terminals support 2-wire inputs
- Isolated 5A relay outputs
- Pluggable terminals offer easy installation & replacement
- Universal input voltage of 102-132V AC & 10-125V DC
- Compact 60mm wide enclosure for both DIN-rail or panel-mount
- Standard & inverse logic
- Instantaneous & delayed response times
- LED status indicator

Better. By Design.

800.238.7474 WWW.MACROMATIC.COM SALES@MACROMATIC.COM The ISD Series of Intrinsically Safe Barrier Relays provide a safe and reliable method to control up to four loads (motor starters, relays, etc.) with up to four input devices (switches, sensors, etc.) located in a hazardous area.

The ISD Series relays utilize a compact 60mm wide enclosure that can be both mounted on 35mm DIN rail or panel-mounted with two screws. Terminals for the input devices from the hazardous area are on the bottom of the unit for easy access in the enclosure to incoming field wiring from the hazardous area. Pluggable terminal blocks on both the input and output sides allow for easy initial wiring of the unit as well as replacement without having to remove any wires.

Each input has two terminals supporting direct connection of 2-wire input devices eliminating the need to mount a separate terminal block. Each output relay is isolated with two wiring terminals providing a true normally-open contact. This allows the output contacts to be used in complex control circuits and allows for each output to switch different voltages with respect to other outputs and the input voltage. A universal input voltage of 102-132V AC & 10-125V DC covers a variety of applications with one device

Operation

Each ISD Series product consists of 4 intrinsically safe inputs and four corresponding normally-open relay outputs. With input voltage applied, the V LED will be ON (GREEN) to indicate power is applied. When the input device is closed, the input LED is ON (GREEN). When the output relay is closed, the output LED is ON (ORANGE). The ISD series offers four user-selectable configurations built in.

ISDUR4 has a two-position DIP-switch that selects a single configuration for all channels.

ISDUM4 has an eight-position DIP-switch that selects a configuration for each channel, independently.

Configurations

Standard Logic (DIP Switch set to "STD"):

When the input device is closed, the corresponding output contact is closed. When the input device is open, the corresponding output contact is open.

Inverse Logic (DIP Switch set to "INV"):

When the input device is open, the corresponding output contact is closed. When the input device is closed, the corresponding output contact is open.

No Time Delay (DIP Switch set to "0 S"):

The output contact changes state immediately in response to a change in input device state.

2 Second Delay (DIP Switch set to "2 S"):

The output contact will delay 2 seconds before changing state in response to a change in input device state.

	PUT TAGE	NUMBER OF CHANNELS	CONFIGURATION	CATALOG NUMBER	WIRING
A	102-132V AC (50/60Hz) and 10-125V DC	SELECTED FOR ALL CHANNELS	ISDUR4	FVF CH1 CH2 CH3 CH4 102345678900 11441444	
10-		4	SELECTED FOR EACH CHANNEL	ISDUM4	349997899 SAFE 3499 SAFE 1

60 MM INTRINSICALLY SAFE BARRIER RELAYS

ISD SERIES

APPLICATION DATA

Input Voltage: 102-132V AC (50/60Hz.) & 10-125V DC

Load (Burden): 5VA Maximum

Input Switch Open Circuit Voltage: 10V DC

Output Contacts:

SPST-NO (Form A) 3A Resistive @ 125V AC @60°C &

30V DC Resistive, Pilot Duty Rating D300

SPST-NO (Form A) 5A Resistive @ 125V AC @40°C &

30V DC Resistive, Pilot Duty Rating D300

Life:

Electrical: 50,000 Closures @ Full Load AC Mechanical: 5 Million Closures @ No Load

Response Times:

Standard (DIP Switch set to "0S"): < 50ms Delay (DIP Switch set to "2S"): Fixed 2 Seconds

Temperature:

Operating: -28° to + 60° C (-18° F to +140° F) Storage: -55° to +85° C (-67° to 185° F)

LED Indication:

V: ON (Green); Inputs: ON (Green); Outputs: ON (Orange)

Insulation Voltage:

1500 V AC between coil & contacts 750 V AC between open contacts

1500 V AC between contacts of different output channels

1500 V AC between hazardous and safe circuits

Wire Sizes:

One #14-24 AWG Conductor or Two #16 or 18 AWG Conductors

Mounting:

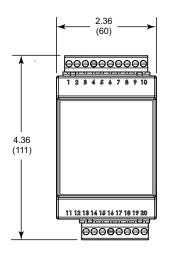
Mounts on 35mm DIN-rail or panel-mounted with two #8 screws when DIN-rail clips are fully extended from under the enclosure.

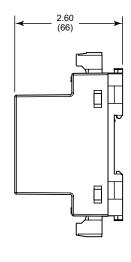
Control Drawing:

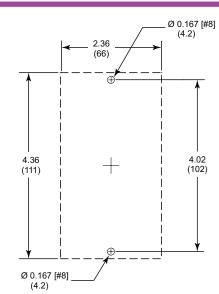
See Instruction Sheet 901-0000-328, which includes Control Drawing ISD1A04.

Approvals:

ACCESSORIES


Terminal Kit Part # 70700: Replacement kit for Intrinsically Safe Barrier Relay plugable terminals, includes 1 black and 1 blue block.


Input Voltage: 102-132V AC and 10-125V DC


Output: 5A

DIMENSIONS

Panel Mount Template

All Dimensions in Inches (Millimeters)

P.01

ISCO

Jan 9 2004 13:54 P.01

FLEXIBILITY The flexibility of polyethylene pipe allows it to be curved over, under, and around obstacles as well as make elevation and directional changes. In some instances, the pipe's flexibility can eliminate the need for fittings and reduce installation costs.

Driscopipe HDPE pipe can be bent to a minimum radius between 20 to 40 times the pipe diameter.

TABLE 2: MINIMUM ALLOWABLE BEND RADIUS @ 73.4°F

SDR	Minimum Allowable Bend Radius, Ra
32.5 26 21 19 17 15.5	> 40 times outside diameter > 35 times outside diameter > 28 times outside diameter > 27 times outside diameter
13.5 11 9 7	 > 25 times outside diameter > 25 times outside diameter > 20 times outside diameter > 20 times outside diameter

Example: Assume a 24" diameter DR 21 pipe was to be bent. The minimum bend radius can be calculated as follows:

 $R_{\mu} > 28 \times D$

 $R_{\rm o} > 28 \times 24^{\circ}$

 $R_a > 672$ "

Where:

Ra is the radius of curvature of the bend in the pipe, in.

D is the outside diameter of the pipe, in.

The radius of the circular sector (bend) must be greater than 672" (56 ft).

- **FLOW FACTORS** Driscopipe polyethylene pipe has a smooth inside surface. A "C" factor of 150 is recommended in the Hazen-Williams Formula. Polyethylene pipe has a recommended Manning's "n" value of 0.009. The smoothness factor, s, is equal to 7x10s ft. Smooth walls and the non-wetting characteristic of polyethylene allow higher flow capacity and reduced friction loss with polyethylene pipe.
- LIFE EXPECTANCY The hydrostatic design basis for Driscopipe pipe is based on extensive hydrostatic testing data evaluated by standardized industry methods. Based on ASTM D2837, regression curves project a life expectancy of approximately 50 years when transporting water at 73,4°F, Internal and external environmental conditions may alter the expected life or change the recommended design basis for a given application.
- LIGHTWEIGHT Polyethylene pipe is much lighter than concrete, cast iron, or steel pipe. It is easier to handle and install. Reduced manpower and equipment requirements may result in installation savings.
- PRESSURE RATINGS Phillips Driscopipe manufactures polyethylene pipe for gravity flow and pressure service through 267 psi at 73.4° F. Some applications or design codes require that the pipe be derated, resulting in lower design pressure ratings. The formulas used to design polyethylene piping systems include a 2:1 safety factor in hydrostatic stress and a greater than 2:1 safety factor in surge fatigue.

HDPE Product Catalog

- > Pipe
- > Fittings
- > Fusion Equipment
- > Electrofusion
- > Mechanical Connections
- > Accessories

800-345-ISCO

www.isco-pipe.com

Coming through.

Version 2.2 2007

www.isco-pipe.com

High-Density Polyethylene Pipe

Introduction

ISCO Industries, LLC is the largest high-density polyethylene pipe distributor in North America. ISCO can serve your needs anywhere in the USA and internationally. ISCO offers a complete package of HDPE piping products. Butt fusion machines are offered for sale or rental. Fusion technicians are available to provide on-site training or assistance to your project. Please call 1-800-345-ISCO for all your HDPE piping needs.

Some of The Characteristics of HDPE Pipe are:

Flexible and Coilable **Economical**

Corrosion Resistant **Heat Fused**

Mechanically Joined (As Needed) Zero Leak-Rate

Hydraulically Smooth Strong and Ductile

Fatigue and Surge Resistant Weather Resistant

Long Design Life Impact Resistant

Freeze Resistant **Tappable**

Chemically Resistant

Easily Installed Abrasion Resistant

Small to Large Diameters

Self Restrained Pipe (Monolithic) Non-Toxic, Non-Tasting

Durable

Lightweight Listed and Approved

Reliable

Important Standards for High Density Polyethylene (HDPE) Pipe

Standards important for HDPE pipe relate to the resin the pipe is made from and the standards related to manufacturing sizes and tolerances. The American Society of Testing Materials (ASTM) standard for resin from which the pipe is made is **ASTM D 3350-05**, Standard Specification for Polyethylene Plastics Pipe and Fittings Materials. This standard defines the physical properties of the resin that the pipe is made from.

Pipe dimensions and manufacturing requirements:

ASTM F 714-05 Standard Specification for Polyethylene (PE) Pipe (SDR-PR) Based on Outside Diameter. This standard is used for most large diameter HDPE pipe (4" to 63") applications other than gas pipe.

ASTM D 2513-05 Standard Specification for Thermoplastic Gas Pressure Pipe, Tubing and Fittings. Polyethylene pipe and other plastic for natural gas distribution are described in great detail in this standard.

ASTM D 3035-03a Standard Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter. Most HDPE water tubing (1/2 inch to 3") is made to the dimensions in this standard. While pipe sizes up to 24" are provided, very little large diameter pipe is made to this standard.

Intallation Standards:

ASTM D 2321-05 Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity Flow Applications

ASTM D 2774-04 Standard Practice for Underground Installation of Thermoplastic Pressure Piping

ASTM F 1962 Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit under Obstacles, Including River Crossings

 ${f ASTM}\ {f F}\ {f 585\text{-}94}$ Standard Practice for Insertion of Flexible Polyethylene Pipe into Existing Sewers

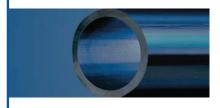
American Water Works Association Standards

ANSI/AWWA C 901-2005 Polyethylene Pressure Pipe and Tubing, .5 in (13 mm) Through 3 in. (76 mm) for Water Services

ANSI/AWWA C **906-2006** Polyethylene Pipe and Fittings, 4 in (100 mm) Through 63 In (1,575 mm) for Water Distribution

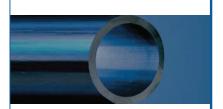
Pipe Joining Standards:

ASTM F 2620 - Standard Practice for Heat Fusion of Polyethylene Pipe and Fittings


ASTM D 2657 - Standard Practice of Heat Fusion Joining of Polyolefin Pipe and Fittings

ASTM F 1290 - Standard Practice for Electrofusion Joining Polyolefin Pipe and Fittings

Fitting Standards


ASTM D 3261 Standard Specification for Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Butt Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (PE) Plastic Pipe and Tubing

ASTM F 1055 Standard Specification for Electrofusion Fittings for Outside Diameter Controlled Polyethylene Pipe and Tubing

HDPE Pipe

1-800-345-ISCO

HDPE Pipe

Specifications for HDPE Pipe

The physical properties of high-density polyethylene pipe are described using ASTM D 3350-05, "Standard Specification for Polyethylene Plastic Pipe and Fittings Materials". Recently this standard was changed. The two key areas changed are, density and slow crack growth. In the 05 version, the cell classifications for density were increased from four cells to seven cells defining the density ranges for various resins.

New high performance bimodal resins, PE 4710 resins, have higher PENT test values. Slow crack grow properties can now be defined using eight cells.

As of December 2006, most HDPE pipe is made from resin with a cell classification of PE 345464C. The pipe is labeled as PE3408/3608. The physical properties for PE 345464C are:

PROPERTY VALUE	S	PECIFICATION	UNIT	NOMINAL VALUE
Material Designation		PPI / ASTM		PE3408
Material Designation		PPI / ASTM		PE 3408/3608
Cell Classification		ASTM D 3350		345464C
Density	(3)	ASTM D 1505	g/cm3	0.941-943
Melt Index	(4)	ASTM D 1238	gm/ 10 min	0.0511
Flexural Modulus	(5)	ASTM D 790	psi	110,000 to 140,000
Tensile Strength	(4)	ASTM D 638	psi	3,200
Slow Crack Growth				
ESCR		ASTM D 1693	hours in 100% igepal	>5,000
PENT	(6)	ASTM F 1473	hours	>100
HDB @ 73 deg F	(4)	ASTM D 2837	psi	1,600
UV Stabilizer		ASTM D 1603	%C	2 to 2.5%

 $The \ density \ provided \ is \ without \ carbon \ black. \ Typical \ HDPE \ pipe \ has \ a \ density \ of .955 \ to .957 \ with \ carbon \ black. \ Typical \ HDPE \ pipe \ has \ a \ density \ of .955 \ to .957 \ with \ carbon \ black.$

Types of Polyethylene Pipe

All polyethylene (PE) is not the same. In ASTM D 3350-05, low density PE is defined as having a density range of 0.919 to 0.925 g/cc; medium density has a range of 0.926 to 0.940 g/cc and high density is defined with a range from 0.941 to 0.955. All densities are without carbon black.

Density influences key properties in polyethylene materials. As the density increases, the tensile strength increases; also chemical resistance increases.

Medium density PE resins have been used for gas distribution. This original selection was made based on superior slow crack growth properties of medium density resins. Medium density pipe is designated as PE 2406 and PE 2708.

Today new bimodal resins are being used in gas distribution because of higher pressure ratings plus superior slow crack growth. These resins are designated PE 3408, PE 3608, PE 3708, PE 3710 and PE 4710.

1-800-345-ISCO

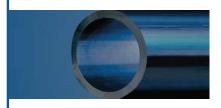
ISCO HDPE Product Catalog

Slow Crack Growth

The Pent test is used to determine stress crack resistance for PE resins. The PENT test is conducted in accordance with ASTM F 1473, "Standard Test Method for Notch Tensile Test to Measure the Resistance to Slow Crack Growth of Polyethylene Pipes and Resins". This test uses a solid sample of material which is notched and tested.

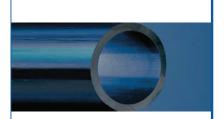
The PENT test is a good test of slow crack growth. Scratches and gouges can cause crack propagation. Materials with high PENT numbers are less likely to fail because of slow crack growth.

Traditional PE 3408/3608 resins have PENT test values of about 100 hours. New bimodal resins used to make PE 3710 and PE 4710 pipes have values ranging from 600 hours to several thousand hours.


Physical Properties of PE 4710

HDPE pipe with a designation of PE 4710 is made from resin with a cell classification of PE 445474C or PE 445574C. We suggest using a specification calling for a minimum cell classification of PE 445474 C or higher. Both cell classifications can be used if specified in this way. The pipe is labeled as PE 4710. The physical properties for PE 445474C are provided below:

PROPERTY VALUE	S	PECIFICATION	UNIT	NOMINAL VALUE
Material Designation		PPI / ASTM		PE 4710
Cell Classification	(1)	ASTM D 3350		445474 C
Density	(4)	ASTM D 1505	g/cm3	0.947 - 955
Melt Index	(4)	ASTM D 1238	gm/ 10 min	<.15
Flexural Modulus	(5)	ASTM D 790	psi	110,000 to 160,000
Tensile Strength	(5)	ASTM D 638	psi	3500-4000
Slow Crack Growth				
ESCR		ASTM D 1693	hours in 100% igepal	>5,000
PENT	(7)	ASTM F 1473	hours	>500
HDB @ 73 deg F	(4)	ASTM D 2837	psi	1,600
UV Stabilizer	(C)	${\rm ASTM}\;{\rm D}\;1603$	%C	2 to 2.5 %


The density provided is without carbon black. Typical PE 4710 HDPE pipe has a density of 0.956 to 0.964 with carbon black.

To be called a PE 4710, the pipe and resin has substantiation at 50 years.

HDPE Pipe

1-800-345-ISCO

HDPE Pipe

- Items highlighted in Blue indicates standard stocking items that are more readily available.
- Pressures are based on using water at 23°C (73°F).
- Average inside diameter calculated using nominal OD and minimum wall plus 6% for use in estimating fluid flows.
 Actual ID will vary.
- Other piping sizes or DR's may be available upon request.
- Standard Lengths: 40' for 2"-24" 50' for 26" and larger Coils available for 3/4"-6"(8" by special order)

PE 3608/3408 IPS HDPE Pipe Sizes

Pressure	Nominal Size	3/4"	1"	1 1/4"	1 1/2"	2"	3"	4"	5"	5"	6"	7"	8"	10"	12"	14"	16"	18"
Rating	Actual O.D.	1.05"	1.315"	1.66"	1.90"	2.375"	3.50"	4.50"	5.375"	5.563"	6.625"	7.125"	8.625"	10.75"	12.75"	14.00"	16.00"	18.00"
	Min. wall	0.150"	0.188"	0.237"	0.271*	0.339"	0.500"	0.643"	0.768"	0.795"	0.946"	1.018"	1.232"	1.536"	1.821"	2.000"	2.286"	2.571"
DR 7	Average I.D.	0.732"	0.917"	1.157"	1.325"	1.656"	2.440"	3.137"	3.747"	3.878"	4.619"	4.967"	6.013"	7.494"	8.889"	9.760"	11.154"	12.549"
(267psi)	Weight Ib/lf	0.184	0.289	0.460	0.603	0.943	2.047	3.384	4.830	5.172	7.336	8.195	12.433	19.314	27.170	32.758	42.786	54.151
	Min. wall	0.144"	0.180"	0.227"	0.260"	0.325"	0.479"	0.616"	0.736"	0.762"	0.908"	0.976"	1.182"	1.473"	1.747"	1.918"	2.192"	2.466"
DR 7.3	Average I.D.	0.745"	0.933"	1.178"	1.348"	1.685"	2.484"	3.193"	3.814"	3.947"	4.701"	5.056"	6.120"	7.628"	9.047"	9.934"	11.353"	12.773"
(254psi)	Weight lb/lf	0.178	0.279	0.444	0.582	0.762	1.656	2.737	4.663	4.182	5.932	8.200	10.054	15.618	21.970	26.489	34.598	43.788
	Min. wall	0.117"	0.146"	0.184"	0.211"	0.264"	0.389"	0.500"	0.597"	0.618"	0.736"	0.792"	0.958"	1.194"	1.417"	1.556"	1.778"	2.000"
DR 9	Average I.D.	0.803"	1.005"	1.269"	1.452"	1.816"	2.676"	3.440"	4.109"	4.253"	5.064"	5.447"	6.593"	8.218"	9.747"	10.702"	12.231"	13.760"
(200psi)	Weight lb/lf	0.150	0.234	0.372	0.488	0.762	1.656	2.737	3.903	4.182	5.932	6.863	10.054	15.618	21.970	26.489	34.598	43.788
	Min. wall	0.095"	0.120"	0.151"	0.173"	0.216"	0.318"	0.409"	0.489*	0.506"	0.602"	0.648"	0.784"	0.977"	1.159"	1.273"	1.455"	1.636"
DR 11	Average I.D.	0.848"	1.062"	1.340"	1.534"	1.917"	2.825"	3.633"	4.339"	4.491"	5.348"	5.752"	6.963"	8.678"	10.293"	11.302"	12.916"	14.531"
(160psi)	Weight lb/lf	0.125	0.197	0.312	0.409	0.639	1.387	2.294	3.272	3.505	4.971	5.750	8.425	13.089	18.412	22.199	28.994	36.696
	Min. wall					0.176"	0.259"	0.333"	0.398"	0.412"	0.491"	0.528"	0.639"	0.796"	0.944"	1.037"	1.185"	1.333"
DR 13.5	Average I.D.					2.002"	2.950"	3.793"	4.531"	4.689"	5.585"	6.006"	7.271"	9.062"	10.748"	11.801"	13.487"	15.173"
(128psi)	Weight lb/lf					0.531	1.153	1.906	2.718	2.912	4.130	4.779	7.001	10.875	15.298	18.445	24.092	30.491
-	Min. wall					0.153"	0.226"	0.290"	0.347"	0.359"	0.427"	0.460"	0.556"	0.694"	0.823"	0.903"	1.032"	1.161"
DR 15.5	Average I.D.					2.050"	3.021"	3.885"	4.640"	4.802"	5.719"	6.150"	7.445"	9.280"	11.006"	12.085"	13.812"	15.538"
(110psi)	Weight lb/lf					0.467	1.015	1.678	2.396	2.564	3.637	3.985	6.164	9.576	13.471	16.242	21.214	26.849
	Min. wall					0.140"	0.206"	0.265"	0.316"	0.327"	0.390"	0.419"	0.507"	0.632"	0.750"	0.824"	0.941"	1.059"
DR 17	Average I.D.					2.079"	3.064"	3.939"	4.705"	4.869"	5.799"	6.236"	7.549"	9.409"	11.160"	12.254"	14.005"	15.755"
(100psi)	Weight lb/lf					0.429	0.932	1.540	2.197	2.353	3.338	3.860	5.657	8.788	12.362	14.905	19.467	24.638
	Min. wall							0.237"	0.283"	0.293"	0.349"	0.375"	0.454"	0.566"	0.671"	0.737"	0.842"	0.947"
DR 19	Average I.D.							3.998"	4.775"	4.942"	5.886"	6.330"	7.663"	9.551"	11.327"	12.438"	14.215"	15.992"
(89psi)	Weight lb/lf							1.387	1.980	2.120	3.007	3.478	5.097	7.918	11.138	13.429	17.540	22.199
	Min. wall							0.214"	0.256"	0.265"	0.315"	0.339"	0.411"	0.512"	0.607"	0.667"	0.762"	0.857"
DR 21	Average I.D.							4.046"	4.832"	5.001"	5.956"	6.406"	7.754"	9.665"	11.463"	12.587"	14.385"	16.183"
(80psi)	Weight lb/lf							1.262	1.801	1.929	2.736	3.165	4.637	7.204	10.134	12.218	15.959	20.198
	Min. wall							0.173"	0.207"	0.214"	0.255"	0.274"	0.332"	0.413"	0.490"	0.538"	0.615"	0.692"
DR 26	Average I.D.							4.133"	4.937"	5.109"	6.085"	6.544"	7.922"	9.873"	11.710"	12.858"	14.695"	16.532"
(64 psi)	Weight lb/lf							1.030	1.470	1.574	2.233	2.582	3.784	5.878	8.269	9.970	13.022	16.480
	Min. wall							0.138"	0.165"	0.171"	0.204"	0.219"	0.265"	0.331"	0.392"	0.431"	0.492"	0.554"
DR 32.5	Average I.D.							4.206"	5.024"	5.200"	6.193"	6.660"	8.062"	10.049"	11.918"	13.087"	14.956"	16.826"
(51 psi)	Weight lb/lf			-				0.831	1.186	1.270	1.801	2.083	3.053	4.742	6.671	8.044	10.506	13.296

1-800-345-ISCO

www.isco-pipe.com

HDPE Fabricated and Molded Fittings

Pressure Ratings for Molded and Fabricated Fittings

Fittings serve the purpose of creating a change in direction in a short distance. There are two basic types of fittings, molded and fabricated. Molded fittings are made by injection molding. These fittings are fully pressure rated. The body of a molded fitting is thicker (greater OD except at ends) than pipe to maintain the pressure rating.

Fabricated fittings have reduced pressure rating because miter cuts create a change in the diameter of the fitting at this point. Stress is increased because of changes in flow direction. The larger the angle of the miter cut, the greater the stress and the greater the need to decrease the pressure rating to maintain a 2 to 1 safety factor.

In this Fitting Section, mitered fittings are shown with traditional three-piece 45 degree and five-piece 90 degree ells. Newly added are two-piece 45 degree ells and three-piece 90 degree ells. To maintain a 2 to 1 safety factor, the two-piece 45 degree ells and the three-piece 90 degree ells have a lower pressure rating for the same wall thickness (DR) than do the three-piece 45 degree and five-piece 90 degree ells.

The pressure ratings are based on standards for design established by the American Society of Mechanical Engineers (ASME). These standards are in ASME B31.3 paragraph number 304.2. Equations 4a and 4b are used to determine pressure ratings.

For five-piece mitered 90 degree and three-piece 45 degree ells based on 22.5 degree miter joints, the derating factor is 25% of the pressure rating of the pipe. A DR 11 wall thickness has a pressure rating of 160 psi. Fittings made from DR 11 pipe have a pressure rating of 120 psi. The 25% derating factor is based on a 2 to 1 safety factor.

For three-piece mitered 90 degree and two-piece 45 degree ells based 45 degree miter cuts, the derating factor is 38%. Fittings made from DR 11 pipe have a pressure rating of 100 psi. The 38% derating factor is based on a 2 to 1 safety factor.

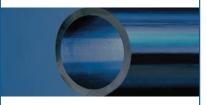
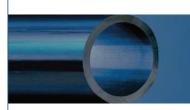

Derating factors for fittings are provided in Table 1, Derating Factors for HDPE Fittings. This table can assist in the selection of the correct fitting for a given application based on pressure rating requirements. Derating factor is the percentage that the pressure rating is lowered.

Table 1: Derating Factors For HDPE Fittings

Description	Industry Practice	Derating ASME B31.3
Fabricated 90 degree Ell - Five Segment	25%	25%
Fabricated 90 degree Ell Three	25%	38%
Fabricated 45 degree Ell Three	25%	25%
Fabricated 45 degree Ell Two	25%	38%
Fabricated 22.5 degree Ell Two	25%	25%
Fabricated Tees, Three Piece	25%	25%
Fabricated Tees, Two Piece	50%	25%
Fabricated Cross	50%	50%
Fabricated Wye, Three piece	40%	40%
Fabricated Wye, Two piece	50%	50%
Reducing Tee	none	none
Fabricated Cleanouts	*see note	*see note
Concentric Reducers	none	none
Transition Fittings	none	none
MJ Adapters	none	none
Bell MJ Adapters	none	none
Flange Adapters	none	none
Stub Ends	none	none
Molded Caps	none	none
Wall Anchors	none	none
Blind Flanges	*see note	*see note


Molded fittings such as 90 degree ells, 45 degree ells, tees, reducers, and end caps are normally not derated. These fittings have been designed and made with the needed radius and material in critical areas to handle the pressure for the thickness of the fitting. These fittings do not require derating when used at 73 degrees F with water or approved chemical service.

*NOTE: Plastic blind flanges are normally used for gravity or low pressure applications. Fabricated caps are typically designed to handle the required pressure. Blind Flanges and fabricated caps pressure ratings vary with size, type of material and thickness. Please indicate pressure requirements when ordering.

HDPE Fabricated and Molded Fittings

1-800-345-ISCO

HDPE Fabricated and Molded Fittings

ASME B 31.3 provides calculations to estimate derating factors for metal fittings. These values are applied to HDPE fittings in the table (refer to table 1). These ratings result in a 2 to 1 safety factor.

New three-piece miter 90 degree ells and two-piece 45 degree ells have been derated differently than ASME calculations by some HDPE fabricators. Using the BSME 31.3 method, its appears that the safety factor is less than 2 to 1.

ISCO Industries recognizes that these fittings are satisfactory for many applications using a lower derating factor and lower safety factor. This note has been provided to make you aware that critical applications may be better handled with five-piece mitered 90 degree ells. Critical applications are those that have high flow velocity (above 5 fps), higher temperature and those that may endanger people or the environment. Use good engineering judgment in the selection of fittings for your application.

Please call ISCO at 1-800-345-ISCO or go to our web site (www.isco-pipe.com) and use "Ask an Engineer" to answer your questions and get additional information.

TRANSITION FITTINGS

Transition fittings are mechanical connections between metal pipe and HDPE pipe. These fittings are used in a large number of applications. A common use is in natural gas systems to change from HDPE pipe to steel pipe where the pipe goes above ground.

Transition fittings for natural gas service are required to meet the requirements of ASTM D 2513, "Standard Specifications for Thermoplastic Gas Pressure Pipe, Tubing, and Fittings". Within this specification there are provisions for mechanical joints. The specification indicates that the mechanical connection must: 1) provide a seal plus resistance to force on the pipe which will cause permanent deformation of the pipe, 2) provide a seal only, and 3) provide a seal plus a pipe restraint.

Not all transition fittings will meet the requirements of ASTM 2513. If you need transitions that meet ASTM 2513, ask for this requirement.

Central Plastics test their products using ASTM D 638 tensile test. This testing qualifies their fittings as providing a seal plus resistance to force which will cause permanent deformation.

Quick burst test per ASTM D1599 are used to proof that the transition fittings provide a seal and resist axial pullout forces.

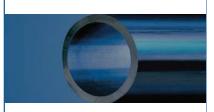
Transition fittings are made from different metals. Carbon steel is the standard. If you need greater corrosion resistance, please request stainless steel transition fittings.

1-800-345-ISCO

ISCO HDPE Product Catalog

Carbon Steel Transition Fittings

Features:

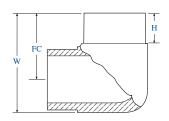

Compression design effectively resists creep and pullout Carbon steel per ASTM A-53, Sch. 40 steel pipe O-Ring design for added protection Meets ASTM 2513 No Weld Design Size range 3/4" through 12" No shear points Available with AWWA pipe

Stainless Steel Transition Fittings

Features:

Compression design effectively resists creep and pullout Stainless Steel 304 Body (316 Available) O-Ring design for added protection Meets ASTM 2513 No Weld Design Size range 3/4" through 2" No shear points Available with AWWA pipe

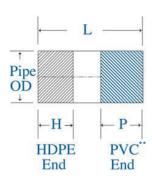
Threads per ANSI B1.20.1



HDPE Fabricated and Molded Fittings

1-800-345-ISCO

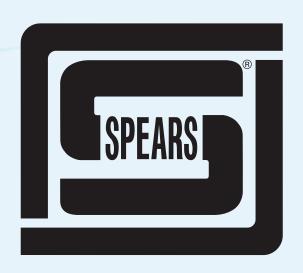
IPS Fittings Molded 90° Ell


I۲	25	
Н	DPE	
F	ittings	

Nominal	•	DR	Pressure	Part #	Dimensions			Weight	Shipping	
Size(in)	OD(in)		Rating		H (in)	FC (in) W (in)		Lbs.	Method	
3/4	1.05	11	160	ISMF9007511IPS	2.05	2.68	3.2	0.05	UPS	
1	1.315	11	160	ISMF900111IPS	2.17	2.91	3.57	0.1	UPS	
1-1/4	1.66	11	160	ISMF9012511IPS	2.44	3.35	4.18	0.15	UPS	
1-1/2	1.9	11	160	ISMF901511IPS	2.64	3.7	4.65	0.22	UPS	
2	2.375	09	200	ISMF900209IPS	2.5	4.25	5.815	0.5	UPS	
		11	160	ISMF900211IPS	"	44	"	0.43	"	
3	3.5	09	200	ISMF900309IPS	3	5.25	7.4	1.5	UPS	
		11	160	ISMF900311IPS	"	"	"	1.2	"	
		17	100	ISMF900317IPS	"	44	"	0.8	"	
4	4.5	09	200	ISMF900409IPS	3	5.875	8.25	3	UPS	
		11	160	ISMF900411IPS	"	44	"	2.4	"	
		17	100	ISMF900417IPS	"	"	"	1.6	"	
6	6.625	09	200	ISMF900609IPS	4.125	8	12.5	7	UPS	
		11	160	ISMF900611IPS	"	44	"	6.7	"	
		17	100	ISMF900617IPS	"	44	"	4.8	"	
8	8.625	11	160	ISMF900811IPS	6	12	16.5	15	UPS	
		17	100	ISMF900817IPS	"	"	66	10	"	
10	0.75	11	160	ISMF901011IPS	6	13.25	18.875	27	UPS	
		17	100	ISMF901017IPS	"	"	"	18	"	
12	2.75	11	160	ISMF901211IPS	7.5	15.88	22.555	41	UPS	
		17	100	ISMF901217IPS	"	"	"	27	"	

1-800-345-ISCO

IPS HDPE to PVC Transition Fitting


IPS HDPE	To PVC Trai	nsition Fitting						
Nominal Size (in)	Pipe OD (in)	Material	Part #	Dimensions H (in) L (in) P (in)			Weight Lbs.	Shipping Method
3/4	1.05	Steel Stainless Steel	ISFFTF003/4PVC ISFFTF003/4PVCS	3	8 "	3	0.7	UPS "
1	1.315	Steel Stainless Steel	SFFTF0111PVC ISFFTF0111PVCSS	3	8.5	3	0.8	UPS "
1 1/4	1.66	Steel Stainless Steel	ISFFTF01.25PVC ISFFTF01.25PVCS	4	11.5	4 "	1 "	UPS "
1 1/2	1.9	Steel Stainless Steel	ISFFTF01.5PVC ISFFTF01.50PVCS	4	12	4 "	1.25	UPS "
2	2.375	Steel Stainless Steel	ISFFTF0211PVC ISFFTF0211PVCSS	4	12.5	4 "	1.5	UPS "
3	3.5	Steel Stainless Steel	ISFFTF0311PVC ISFFTF0311PVCSS	4.5	14	4.5	3	UPS "
4	4.5	Steel Stainless Steel	ISFFTF0411PVC ISFFTF0411PVCSS	4.5	15	4.5	5	UPS "

** PVC available as SCH 40 or SCH 80.

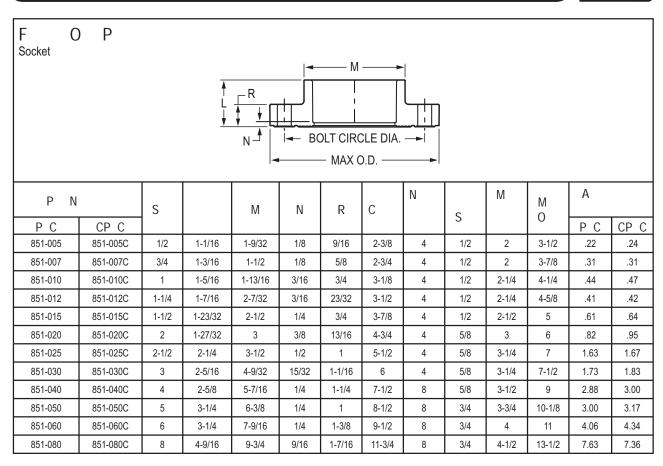
IPS HDPE Fittings

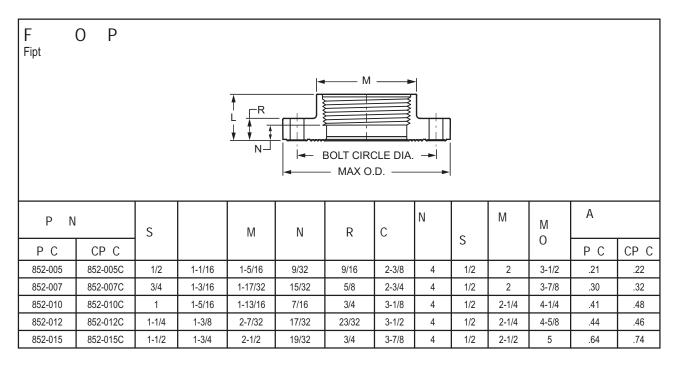
1-800-345-ISCO

THERMOPLASTIC FLANGES

TECHNICAL INFORMATION WEIGHTS & DIMENSIONS

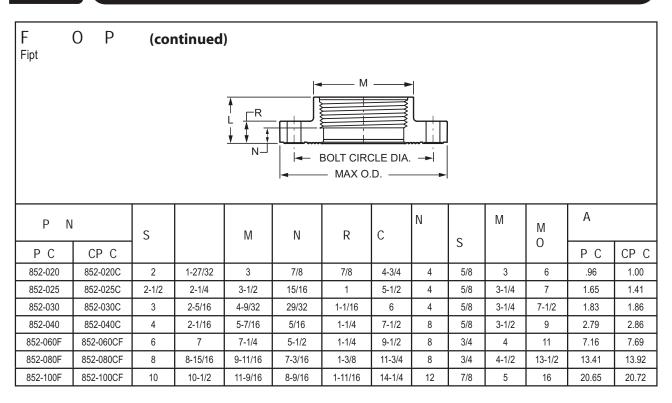
January 1, 2009
SUPERSEDES ALL PREVIOUS EDITIONS

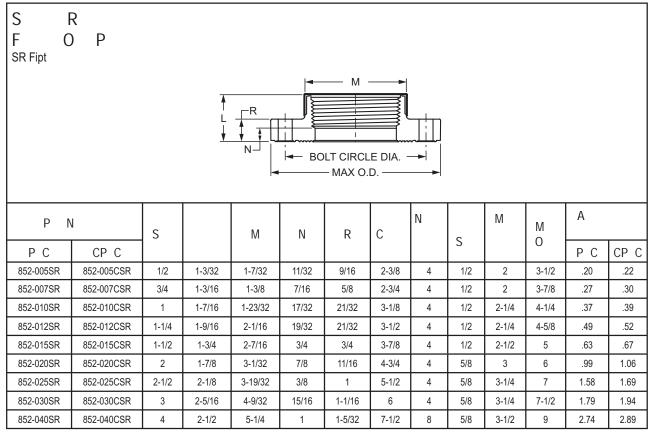



Visit our web site www.spearsmfg.com

FL-4-0109

PVC & CPVC INJECTION MOLDED CLASS 150 FLANGES



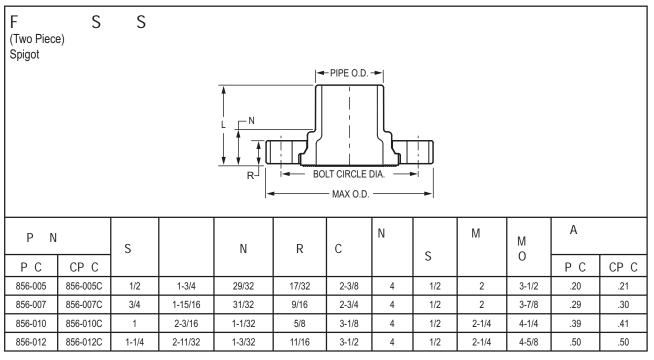


MADE IN THE U.S.A. 4

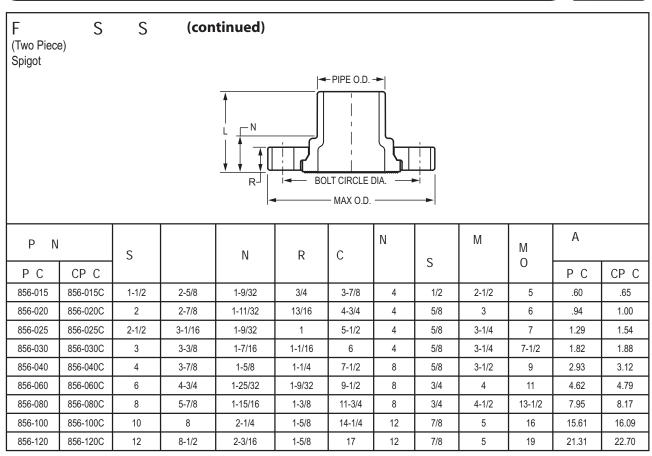
PVC & CPVC INJECTION MOLDED CLASS 150 FLANGES

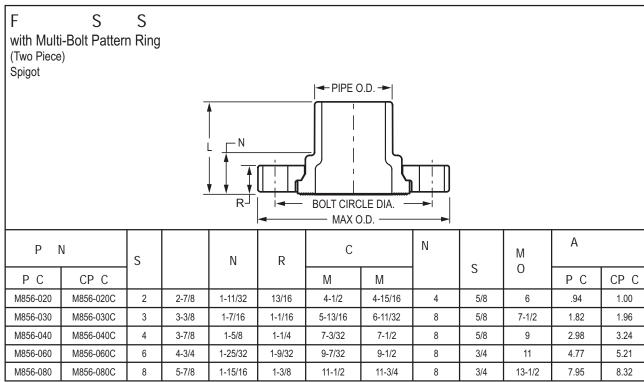
PVC & CPVC INJECTION MOLDED CLASS 150 FLANGES

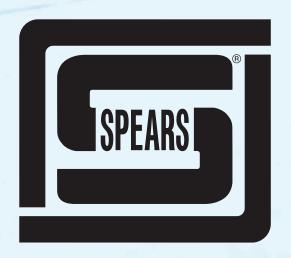
IN F	ANCE									
IN F	ANGE									
BOLT CIRCLE DIA. MAX O.D.										
P N	P N		R	С	N	6	М	M	А	
P C	CP C	S				S		0	PС	CP C
853-005	853-005C	1/2	9/16	2-3/8	4	1/2	2	3-1/2	.21	.21
853-007	853-007C	3/4	5/8	2-3/4	4	1/2	2	3-7/8	.28	.30
853-010	853-010C	1	3/4	3-1/8	4	1/2	2-1/4	4-1/4	.41	.47
853-012	853-012C	1-1/4	23/32	3-1/2	4	1/2	2-1/4	4-5/8	.37	.40
853-015	853-015C	1-1/2	3/4	3-7/8	4	1/2	2-1/2	5	.62	.64
853-020	853-020C	2	13/16	4-3/4	4	5/8	3	5-15/16	.83	.88
853-025	853-025C	2-1/2	1	5-1/2	4	5/8	3-1/4	7	1.61	1.63
853-030	853-030C	3	1-1/16	6	4	5/8	3-1/4	7-5/8	1.56	1.64
853-040	853-040C	4	1-1/4	7-1/2	8	5/8	3-1/2	9	2.84	2.98
853-060	853-060C	6	1-3/8	9-1/2	8	3/4	4	11	4.36	4.45
853-080	853-080C	8	1-7/16	11-3/4	8	3/4	4-1/2	13-1/2	6.83	7.20
853-100	853-100C	10	1-11/16	14-1/4	12	7/8	5	16	11.32	11.80
853-120	853-120C	12	1-11/16	17	12	7/8	5	19	15.49	17.58



MADE IN THE U.S.A.


PVC & CPVC INJECTION MOLDED CLASS 150 FLANGES


F (Two Piece Fipt	S e)	S											
				L R-J	N 1		CIRCLE DIAX O.D. —	DIA.	<u>+</u>				
P N	I	S		M	N	R	С	N	S	М	M O	А	
РС	CP C								3			РС	CP C
855-005	855-005C	1/2	1-1/32	1-7/32	9/32	17/32	2-3/8	4	1/2	2	3-1/2	.19	.20
855-007	855-007C	3/4	1-5/32	1-3/8	13/32	9/16	2-3/4	4	1/2	2	3-7/8	.27	.28
855-010	855-010C	1	1-1/4	1-3/4	5/16	5/8	3-1/8	4	1/2	2-1/4	4-1/4	.36	.39
855-012	855-012C	1-1/4	1-3/8	2-1/8	13/32	11/16	3-1/2	4	1/2	2-1/4	4-5/8	.46	.47
855-015	855-015C	1-1/2	1-15/32	2-7/16	13/32	3/4	3-7/8	4	1/2	2-1/2	5	.55	.61
855-020	855-020C	2	1-9/16	2-31/32	1/2	13/16	4-3/4	4	5/8	3	6	.87	.94
855-025	855-025C	2-1/2	2	3-9/16	7/16	1	5-1/2	4	5/8	3-1/4	7	1.22	1.50
855-030	855-030C	3	2-1/8	4-1/4	1/2	1-1/16	6	4	5/8	3-1/4	7-1/2	1.73	1.79
855-040	855-040C	4	2-1/16	5-1/4	3/8	1-1/4	7-1/2	8	5/8	3-1/2	9	2.61	2.78
855-060F	855-060CF	6	7	7-1/4	5-1/2	1-1/4	9-1/2	8	3/4	4	11	7.62	7.69
855-080F	855-080CF	8	8-15/16	9-11/16	7-3/16	1-3/8	11-3/4	8	3/4	4-1/2	13-1/2	12.84	13.92
855-100F	855-100CF	10	10-1/2	11-9/16	8-9/16	1-11/16	14-1/4	12	7/8	5	16	20.65	20.72


PVC & CPVC INJECTION MOLDED CLASS 150 FLANGES

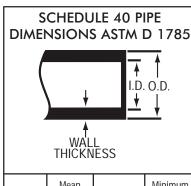
MADE IN THE U.S.A.

PVC White Schedule 40 Fittings, Unions, & Saddles

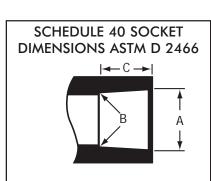
TECHNICAL INFORMATION WEIGHTS & DIMENSIONS

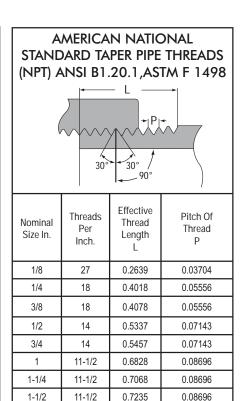
May 1, 2009

SUPERSEDES ALL PREVIOUS EDITIONS



Visit our web site www.spearsmfg.com


40-4-0509


ASTM STANDARD DIMENSIONS

Nominal Pipe Size In.	Mean Outside Diameter In.	O. D. Tolerance In.	Minimum Wall Thickness In.
1/8	0.405	± 0.004	0.068
1/4	0.540	± 0.004	0.088
3/8	0.675	± 0.004	0.091
1/2	0.840	± 0.004	0.109
3/4	1.050	± 0.004	0.113
1	1.315	± 0.005	0.133
1-1/4	1.660	± 0.005	0.140
1-1/2	1.900	± 0.006	0.145
2	2.375	± 0.006	0.154
2-1/2	2.875	± 0.007	0.203
3	3.500	± 0.008	0.216
4	4.500	± 0.009	0.237
5	5.563	± 0.010	0.258
6	6.625	± 0.011	0.280
8	8.625	± 0.015	0.322
10	10.750	± 0.015	0.365
12	12.750	± 0.015	0.408

		Diamete	r	Socket
Nominal Size In.	Entrance A	Bottom B	Tolerance A	Length Minimum C
1/8	0.417	0.401	± 0.004	0.500
1/4	0.552	0.536	± 0.004	0.500
3/8	0.687	0.671	± 0.004	0.594
1/2	0.848	0.836	± 0.004	0.688
3/4	1.058	1.046	± 0.004	0.719
1	1.325	1.310	± 0.005	0.875
1-1/4	1.670	1.655	± 0.005	0.938
1-1/2	1.912	1.894	± 0.006	1.094
2	2.387	2.369	± 0.006	1.156
2-1/2	2.889	2.868	± 0.007	1.750
3	3.516	3.492	± 0.008	1.875
4	4.518	4.491	± 0.009	2.000
5	5.583	5.553	± 0.010	3.000
6	6.647	6.614	± 0.011	3.000
8	8.655	8.610	± 0.015	4.000
10	10.780	10.735	± 0.015	5.000
12	12.780	12.735	± 0.015	6.000

0.7565

1.1375

1.2000

1.3000

1.4063

1.5125

1.7125

0.08696

0.12500

0.12500

0.12500

0.12500

0.12500

0.12500

2

2-1/2

3

4

5

6

8

11-1/2

8

8

8

8

8

8

Molded Schedule 40 products are manufactured to ASTMD 2466 for use with pipe manufactured to ASTM D1785. Certain products carry reduced pressure handling capability and have maximum internal pressure ratings at 73° F noted.

Fabricated Schedule 40 pressure fittings (part numbers ending with "F") are manufactured to Spears® specifications for use with pipe manufactured to ASTM D1785. See publication FAB-7, General Specifications for Standard Fabricated Fittings for additional information.

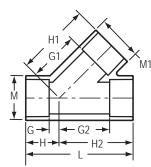
All specified Schedule 40 products are manufactured from materials certified by NSF for use in potable water service.

REDUCING TEE Socket x Socket x Socket

(continued)

		1	- ' '	VI I		
		\square	\Box			<u>†</u>
+		וני	٦	\equiv	1	₩ H1
M	<u> </u>	-	-		M2	* *
Į.				acksquare	<u></u>	G1
	G-	++	→	-G2		
	← н	-	← ⊦	12 →		
	┥	— L	. —	-		

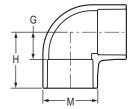
Part Number	Size	G	G1	G2	Н	H1	H2	L	M	M1	M2	Approx. Wt. (Lbs.)
401-527¹	6x6x1-1/2	1-3/8	3-7/8	1-3/8	4-27/32	5-3/16	4-27/32	9-11/16	7-1/4	2-11/16	7-1/4	3.60
401-528	6x6x2	1-3/8	3-19/32	1-3/8	4-27/32	4-31/32	4-27/32	9-11/16	7-3/16	2-11/16	7-3/16	3.39
401-529	6x6x2-1/2	2	3-15/16	2	5-1/2	5-15/16	5-1/2	10-15/16	7-3/16	3-15/16	7-3/16	4.29
401-530	6x6x3	2	3-23/32	2	5	5-19/32	5	10	7-1/4	4	7-1/4	3.89
401-532	6x6x4	2-17/32	3-5/8	2-17/32	6	5-5/8	6	12-1/16	7-3/16	5	7-3/16	4.54
401-533¹	6x6x5	3-1/2	4-1/2	3-1/2	7	7-1/2	7	14	7-3/16	7-3/16	7-3/8	8.46
401-535 ¹	6x6x8	5-3/8	5-1/2	5-3/8	8-7/8	9-1/2	8-7/8	17-3/4	9-1/2	9-3/4	9-1/2	19.21
401-537¹	6x6x10	8	5-13/16	8	11-3/8	10-13/16	11-3/8	22-3/4	11-1/2	11-9/16	11-1/2	38.30
401-578 ¹	8x8x2	2	5-7/8	2	6	7	6	12	9-1/4	4	9-1/4	11.71
401-579 ¹	8x8x2-1/2	2	5-5/16	2	6	7-5/16	6	12	9-5/16	4	9-5/16	6.62
401-580	8x8x3	1-31/32	4-3/4	1-31/32	6-1/32	6-3/4	6-1/32	12-1/16	9-11/32	4	9-11/32	6.44
401-582	8x8x4	2-17/32	4-11/16	2-17/32	6-17/32	6-11/16	6-17/32	13-1/16	9-9/32	4-31/32	9-9/32	7.02
401-583 ¹	8x8x5	3-21/32	5-1/4	3-21/32	7-21/32	8-1/4	7-21/32	15-5/16	9-5/16	7-1/4	9-5/16	10.60
401-585	8x8x6	3-5/8	4-3/4	3-5/8	7-21/32	7-25/32	7-21/32	15-11/32	9-11/32	7-1/4	9-11/32	8.90
401-589 ¹	8x8x10	6-23/32	5-11/16	6-23/32	11-7/32	10-1/2	11-7/32	22-7/16	11-9/16	11-9/16	11-9/16	34.76
401-621F	10x10x2	4-7/8	7-1/4	4-7/8	10-1/8	9	10-1/8	20-1/4	11-1/2	2-11/16	11-1/2	19.60
401-623 ¹	10x10x3	3-13/16	7	3-13/16	9-3/8	9	9-3/8	18-3/4	12	7-1/2	12	25.54
401-624 ¹	10x10x4	3-27/32	7-3/8	3-27/32	9-11/32	9-3/8	9-11/32	18-11/16	12	7-1/2	12	25.63
401-628 ¹	10x10x8	5-3/4	7-3/16	5-3/4	10-7/8	11-1/4	10-7/8	21-11/16	11-11/16	11-11/16	11-1/2	29.85
401-661F	12x12x2	5-1/4	8-1/4	5-1/4	11-1/2	10	11-1/2	23	13-1/2	2-11/16	13-1/2	25.00
401-663F	12x12x3	5-3/4	9	5-3/4	12	11-1/4	12	23	13-1/2	3-15/16	13-1/2	31.41
401-664F	12x12x4	7	9-5/16	7	13-1/4	11-9/16	13-1/4	26-1/2	13-9/16	5	13-9/16	32.40
401-666¹	12x12x6	4-7/8	8-5/16	4-7/8	11-7/16	11-3/4	11-7/16	22-13/16	14-1/4	9-3/4	14-1/4	44.02
401-668	12x12x8	4-27/32	7-1/8	4-27/32	11-13/32	11-1/8	11-13/32	22-13/16	14-1/4	9-3/4	14-1/4	40.00
401-670	12x12x10	6-13/16	7-3/8	6-13/16	12-13/16	13-1/4	12-13/16	25-5/8	13-3/4	13-3/4	13-3/4	50.00
401-670F	12x12x10	10-1/4	10-3/8	10-1/4	16-1/2	15-5/8	16-1/2	33	13-9/16	11-1/2	13-9/16	50.00
401-676F	12x12x16	18-1/2	12-3/4	18-1/2	30-1/4	20-3/4	30-1/4	60-1/2	14-1/8	17	14-1/8	144.87
401-678F	12x12x18	14-1/4	13	17-7/8	23-1/4	22	23-7/8	47-3/4	19-1/8	19-1/8	19-1/8	252.00
401-691F	14x14x2	6	9-1/4	6	13	11	13	26	14-7/8	2-3/4	14-7/8	35.53
401-693F	14x14x3	6-1/2	9-9/16	6-1/2	13-1/2	11-13/16	13-1/2	27	14-7/8	3-15/16	14-7/8	38.35
401-694F	14x14x4	7-1/2	10	7-1/2	14-1/2	12-1/4	14-1/2	29	14-7/8	5	14-7/8	38.58
401-696F	14x14x6	8	10-1/4	8	15	13-1/2	15	30	14-7/8	7-1/8	14-7/8	45.70
401-698F	14x14x8	9-1/8	10-1/2	9-3/32	16-1/8	14-3/4	16-3/32	32-3/16	14-7/8	9-3/8	14-7/8	51.99


Made in the U.S.A.

WYE

Socket x Socket x Socket

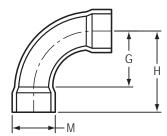
Pressure Rating 1/2" - 2" 235 psi @ 73°F 2-1/2" - 6" 200 psi @ 73°F 8" & Up 100 psi @ 73°F



Part Number	Size	G	G1	G2	Н	H1	H2	L	M	M1	Approx. Wt. (Lbs.)
							-			<u> </u>	```
475-005	1/2	1/4	1-3/16	1-3/16	1-1/8	2-1/16	2-1/16	3-3/16	1-5/32	1-5/32	.12
475-007	3/4	1/8	1-9/16	1-9/16	1-1/8	2-9/16	2-9/16	3-11/16	1-3/8	1-3/8	.18
475-010	1	9/32	1-13/16	1-13/16	1-13/32	2-15/16	2-15/16	4-11/32	1-23/32	1-23/32	.31
475-012	1-1/4	3/8	2-1/4	2-1/4	1-5/8	3-1/2	3-1/2	5-1/8	2-1/16	2-1/16	.50
475-015	1-1/2	1/2	2-19/32	2-9/16	1-7/8	3-31/32	3-15/16	5-13/16	2-11/32	2-11/32	.69
475-020	2	19/32	3-7/32	3-7/32	2-1/8	4-3/4	4-3/4	6-7/8	2-7/8	2-7/8	1.20
475-025	2-1/2	1	5-1/4	4-3/4	3	7-1/4	6-3/4	9-3/4	4-1/8	4-1/8	2.59
475-030	3	11/16	4-5/8	4-3/16	2-19/32	6-17/32	6-3/32	8-11/16	4-5/32	4-5/32	2.68
475-040	4	7/8	6	5-3/8	3-1/8	8-1/4	7-5/8	10-3/4	5-9/32	5-9/32	4.76
475-050F	5	3-3/4	10-1/8	9-5/16	6-3/4	13-1/8	12-5/16	19-1/8	6-1/16	6-1/16	13.26
475-060	6	1-5/16	8-21/32	8-1/16	4-5/16	11-21/32	11-1/16	15-3/8	7-9/16	7-9/16	12.09
475-080	8	1-3/4	11-1/2	11-9/16	5-3/4	15-17/32	15-19/32	21-5/16	9-3/4	9-3/4	25.76
475-080F	8	5-1/2	13-1/2	13-1/2	9-3/4	17-3/4	17-3/4	27-1/2	9-1/4	9-1/4	25.46
475-100	10	2-1/2	16-7/8	13-31/32	7-1/2	22-1/8	18-31/32	26-15/32	11-9/16	11-9/16	26.92
475-100F	10	6-7/8	16-7/8	16-7/8	12-1/8	22-1/8	22-1/8	34-1/4	11-1/2	11-1/2	45.11
475-120	12	2-11/16	16-1/8	16-7/32	8-3/4	22-7/32	22-9/32	31-1/32	13-21/32	13-21/32	41.85
475-120F	12	6-3/4	19-3/4	19-3/4	13	26	26	39	13-9/16	13-9/16	63.02
475-140F	14	6-7/8	21-1/8	21-1/8	13-7/8	28-1/8	28-1/8	42	14-7/8	14-7/8	90.24
475-160F	16	8-1/2	26-1/4	24-1/2	16-1/2	34-1/4	32-1/2	49	17	17	93.06
475-180F	18	9	28	27-3/4	18	37	36-3/4	54-3/4	19-1/8	19-1/8	151.20
475-200F	20	11-7/16	30-5/16	30-5/16	21-7/16	40-5/16	40-5/16	61-3/4	21-3/16	21-3/16	191.78
475-240F	24	11-3/4	34-3/4	34-3/4	25-3/4	46-3/4	46-3/4	70-1/2	25-3/8	25-3/8	420.00

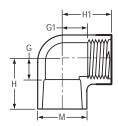
90° ELBOW

Socket x Socket

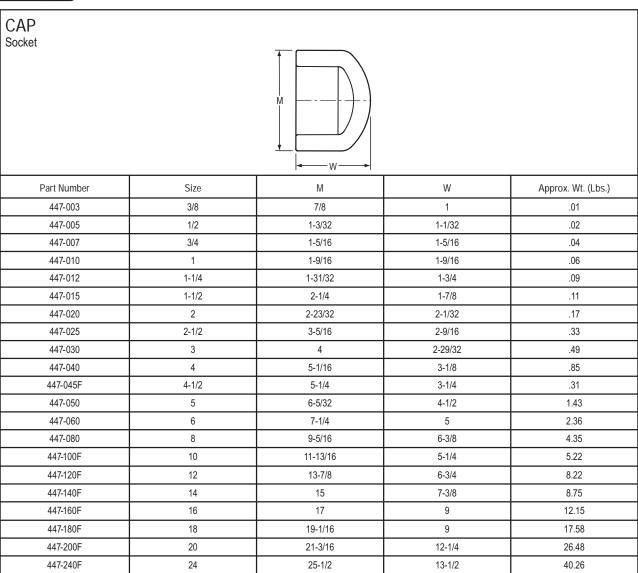


Part Number	Size	G	Н	M	Approx. Wt. (Lbs.)
406-003	3/8	3/8	1-1/8	7/8	.03
406-005	1/2	1/2	1-1/4	1-1/16	.05
406-007	3/4	9/16	1-1/2	1-5/16	.07
406-010	1	11/16	1-13/16	1-5/8	.12
406-012	1-1/4	31/32	2-5/32	2	.20
406-015	1-1/2	1-1/16	2-3/8	2-7/32	.25
406-020	2	1-9/32	2-21/32	2-3/4	.37
406-025	2-1/2	1-15/16	3-7/32	3-5/16	.71
406-030	3	1-7/8	3-25/32	3-31/32	1.04
406-040	4	2-1/2	4-1/2	5	1.71
406-045F	4-1/2	7-1/8	9-5/8	5-1/2	3.13
406-050	5	3-1/16	6-1/8	6-5/32	3.58
406-060	6	3-1/2	6-29/32	7-9/32	5.03
406-080	8	4-7/16	8-15/32	9-5/16	8.75
406-100	10	5-29/32	10-7/8	11-5/8	17.82
406-100F	10	9-1/2	14-3/4	11-1/2	17.40
406-120	12	7-1/16	13-9/16	14-1/4	27.98
406-120F	12	10-1/2	16-3/4	13-9/16	25.94
406-140F	14	12-1/4	19-1/4	14-7/8	47.26
406-160F	16	14-1/8	22-1/8	17	69.70
406-180F	18	17-1/4	26-1/4	19-1/8	104.20
406-200F	20	18-3/4	28-3/4	21-3/16	131.93
406-240F	24	22-1/4	34-1/4	25-3/8	216.00

LONG SWEEP ELBOW


Socket x Socket

Part Number	Size	G	Н	М	Approx. Wt. (Lbs.)
406-025LSF	2-1/2	5-7/16	7-7/16	3-1/4	1.26
406-030LSF	3	6-5/8	8-5/8	3-15/16	1.87
406-040LSF	4	8-3/8	10-5/8	5	2.69
406-060LSF	6	12-5/8	15-7/8	7-3/16	6.92
406-080LSF	8	22-9/16	26-13/16	9-1/4	19.43


90° ELBOW

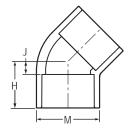
Socket x SR Fipt

Part Nu	ımber	Size	G	G1	Н	H1	М	Approx. Wt. (Lbs.)
407-005	407-005SR	1/2	1/2	9/16	1-1/4	1-1/4	1-1/16	.06
407-007	407-007SR	3/4	9/16	17/32	1-9/16	1-9/32	1-5/16	.08
407-010		1	11/16	21/32	1-13/16	1-9/16	1-5/8	.14
407-012		1-1/4	15/16	1-1/4	2-1/4	2-1/4	2	.25
407-015		1-1/2	1	1-1/16	2-5/16	2	2-1/4	.25
407-020		2	1-3/16	1-5/16	2-3/8	2-3/8	2-23/32	.46
407-025		2-1/2	1-1/2	1-1/2	3-1/2	3-1/16	3-5/16	.94
407-030		3	1-13/16	1-31/32	3-11/16	3-21/32	4	1.14
407-040		4	2-5/16	2-15/32	4-5/16	3-15/16	5-1/16	1.85



Made in the U.S.A.

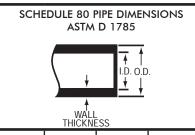
22-1/2° STREET ELBOW


Spigot x Socket

Part Number	Size	Н	H1	J	J1	M1	Approx. Wt. (Lbs.)
442-005	1/2	1-1/16	1	1/4	1/4	1-5/32	.05
442-010	1	1-15/32	1-3/8	11/32	9/32	1-11/16	.13
442-012	1-1/4	1-1/2	1-3/8	3/16	1-11/16	2-1/16	.20
442-015	1-1/2	1-7/8	1-11/16	15/32	11/32	2-5/16	.26
442-020	2	1-15/16	1-19/32	9/16	1/4	2-7/8	.39
442-025F	2-1/2	4-1/8	2-3/4	1-3/4	3/4	3-1/4	.81
442-030	3	2-1/2	2-5/16	21/32	7/16	4-5/32	.95
442-040	4	4-3/8	2-7/8	1-7/8	5/8	5-1/4	2.14
442-060	6	5-11/16	3-15/16	2-3/8	7/8	7-5/8	5.87
442-080	8	7-3/8	5-1/8	3-1/8	1-1/8	9-3/4	11.34

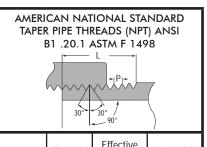
45° ELBOW

Socket x Socket



Part Number	Size	Н	J	М	Approx. Wt. (Lbs.)
417-005	1/2	1	7/32	1-1/8	.04
417-007	3/4	1-1/4	5/16	1-5/16	.06
417-010	1	1-3/8	5/16	1-5/8	.10
417-012	1-1/4	1-5/8	3/8	1-31/32	.14
417-015	1-1/2	1-3/4	7/16	2-7/32	.19
417-020	2	2	5/8	2-3/4	.30
417-025	2-1/2	2-7/16	11/16	3-11/32	.56
417-030	3	2-27/32	27/32	4	.80
417-040	4	3-3/32	1-3/32	5-1/32	1.22
417-045F	4-1/2	4-3/8	1-7/8	5-1/2	1.59
417-050	5	4-3/8	1-3/8	6-1/16	2.41
417-060	6	5-7/8	1-13/16	7-5/16	3.45
417-080	8	6-7/16	2	9-9/32	6.56
417-100	10	8-1/8	3-1/8	11-1/2	20.72

PVC & CPVC SCHEDULE 80 FITTINGS, UNIONS, TANK ADAPTERS, EXPANSION JOINTS & SADDLES


ASTM STANDARD DIMENSIONS

THICKNESS								
Nominal Pipe Size In.	Mean Outside Diameter In.	O. D. Tolerance In.	Minimum Wall Thickness In.					
1/8	0.405	± 0.004	0.095					
1/4	0.540	± 0.004	0.119					
3/8	0.675	± 0.004	0.126					
1/2	0.840	± 0.004	0.147					
3/4	1.050	± 0.004	0.154					
1	1.315	± 0.005	0.179					
1-1/4	1.660	± 0.005	0.191					
1-1/2	1.900	± 0.006	0.200					
2	2.375	± 0.006	0.218					
2-1/2	2.875	± 0.007	0.276					
3	3.500	± 0.008	0.300					
4	4.500	± 0.009	0.337					
5	5.563	± 0.010	0.375					
6	6.625	± 0.011	0.432					
8	8.625	± 0.015	0.500					
10	10.750	± 0.015	0.593					
12	12.750	± 0.015	0.687					

		Socket		
Nominal Size In.	Entrance A	Bottom B	Tolerance A	Length Minimum C
1/8	0.417	0.401	± 0.004	0.500
1/4	0.552	0.536	± 0.004	0.625
3/8	0.687	0.671	± 0.004	0.750
1/2	0.848	0.836	± 0.004	0.875
3/4	1.058	1.046	± 0.004	1.000
1	1.325	1.310	± 0.005	1.125
1-1/4	1.670	1.655	± 0.005	1.250
1-1/2	1.912	1.894	± 0.006	1.375
2	2.387	2.369	± 0.006	1.500
2-1/2	2.889 2.868		± 0.007	1.750
3	3.516	3.492	± 0.008	1.875
4	4.518	4.491	± 0.009	2.250
5	5.583	5.553	± 0.010	2.625
6	6.647	6.614	± 0.011	3.000
8	8.655	8.610	± 0.015	4.000
10	10.780	10.735	± 0.015	5.000
12	12.780	12.735	± 0.015	6.000

	Nominal Size In.	Threads Per Inch	Thread Length L	Pitch Of Thread P
1	1/8	27	0.2639	0.03704
1	1/4	18	0.4018	0.05556
1	3/8	18	0.4078	0.05556
1	1/2	14	0.5337	0.07143
1	3/4	14	0.5457	0.07143
1	1	11-1/2	0.6828	0.08696
	1-1/4	11-1/2	0.7068	0.08696
1	1-1/2	11-1/2	0.7235	0.08696
1	2	11-1/2	0.7565	0.08696
1	2-1/2	8	1.1375	0.12500
1	3	8	1.2000	0.12500
1	4	8	1.3000	0.12500
1	5	8	1.4063	0.12500
ĺ	6	8	1.5125	0.12500
1	8	8	1.7125	0.12500

1

STANDARD COMPARISONS

SPEARS® IPS-to-Metric transition unions are listed by nominal size. The chart below compares nominal and actual* pipe O.D. for each size according to the designated standard.

	<6741 nm)		8062 nm)	ASTM D1785 (in.)		NPT—ANSI B1.20.1** Tapered Thread		BSP—BS21,DIN 2999,ISO 7/1 Thread	
Nominal	Actual*	O.D.	Actual*	Nominal	Actual*	Designation	Threads/in.	Designation	Threads/ 25.4mm
16	22	20	20	1/2	.840	1/2	14	1/2	14
20	26	25	25	3/4	1.050	3/4	14	3/4	14
25	32	32	32	1	1.315	1	11.5	1	11
30	38	40	40	1-1/4	1.660	1-1/4	11.5	1-1/4	11
40	48	50	50	1-1/2	1.900	1-1/2	11.5	1-1/2	11
50	60	63	63	2	2.375	2	11.5	2	11
75	89	90	90	3	3.500	3	8	3	11
100	114	110	110	4	4.500	4	8	4	11

^{*}Specified dimension, certain tolerances apply

^{**}NPT and BSP have different thread angles and not compatible.

Model 9545

Features and Benefits

- o Simple to operate
- o Accurate air velocity measurement
- o Simultaneously measure temperature and velocity
- o Displays up to three measurements simultaneously
- o Measures humidity (Model 9545 and 9545-A)
- o Calculates volumetric flow and actual/standard velocity
- Data log 12,700+ samples and 100 test IDs
- LogDat2[™] downloading software included
- Articulated probe versions available (9535-A and 9545-A)

Applications

- o HVAC system performance
- Commissioning
- o Plant maintenance
- o Critical environment certification
- Duct traverses

VELOCICALC® Air Velocity Meters

Models 9535, 9535-A, 9545 and 9545-A

The Models 9535 and 9545 air velocity meters are like having multiple meters—for the price of just one. These meters simultaneously measure and data log several ventilation parameters using a single probe with multiple sensors. Both models measure velocity, temperature and calculate flow. The Model 9545 also measures relative humidity, and calculates dew point, and wet bulb temperature. Models 9535 and 9545 have telescopic straight probes; Models 9535-A and 9545-A have telescopic articulated probes.

Ventilation Test Instruments

Specifications

VELOCICALC Models 9535 and 9545

Velocity

0 to 6,000 ft/min (0 to 30 m/s) Range

Accuracy^{1&2} \pm 3% of reading or \pm 3 ft/min (\pm 0.015 m/s),

whichever is greater

Resolution 1 ft/min (0.01 m/s)

Duct Size

Dimensions 1 to 250 inches in increments of 0.1 in.

(1 to 635 cm in increments of 0.1 cm)

Volumetric Flow Rate

Range Actual range is a function of velocity and duct

Temperature

Range (9535 and 9535-A)

0 to 200 °F (.18 to 93°C)

Range (9545 and 9545-A)

14 to 140°F (-10 to 60°C)

±0.5°F (±0.3°C) Accuracy³

Resolution 0.1°F (0.1°C)

Relative Humidity (9545 only)

0 to 95% RH Range Accuracy⁴ ±3% RH 0.1% RH Range

Instrument Temperature Range

Operating (Electronics)

40 to 113°F (5 to 45°C)

Model 9535 Operating (Probe)

0 to 200°F (-18 to 93°C)

Model 9545 Operating (Probe)

14 to 140°F (-10 to 60°C)

-4 to 140°F (-20 to 60°C) Storage

Data Storage Capabilities

12,700+ samples and 100 test IDs Range

Logging Interval

1 second to 1 hour

Time Constant

User selectable

External Meter Dimensions

3.3 in. x 7.0 in. x 1.8 in. (8.4 cm x 17.8 cm x 4.4 cm)

Meter Weight with Batteries

0.6 lbs. (0.27 kg)

Meter Probe Dimensions

Probe Length 40 in (101.6 cm)

Probe Diameter of Tip

0.28 in. (7.0 mm)

Probe Diameter of Base

0.51 in. (13.0 mm)

Articulating Probe Dimensions

Articulating Section Length

7.8 in. (19.7 cm)

Diameter of Articulating Knuckle

0.38 in. (9.5 mm)

Power Requirements

Four AA-size batteries or AC adapter

	9535, 9535-A	9545, 9545-A
Velocity	•	•
Temperature	•	•
Flow	•	•
Humidity, wet bulb, dew point		•
Probe	Straight or -A articulated	Straight or -A articulated
Variable time constant	•	•
Manual data logging	•	•
Auto save data logging		•
Statistics	•	•
Review data	•	•
LogDat2 downloading software	•	•
Certificate of Calibration	•	•

Temperature compensated over an air temperature range of 40 to 150°F (5 to 65°C).
 The accuracy statement begins at 30 ft/min through 6,000 ft/min (0.15 m/s through 30 m/s).

Specifications are subject to change without notice.

TSI Incorporated - 500 Cardigan Road, Shoreview, MN 55126-3996 USA

USA Tel: +1 800 874 2811 UK

Tel: +46 8 595 13230

Tel: +91 80 41132470

Tel: +86 10 8260 1595

E-mail: info@tsi.com Tel: +44 149 4 459200 E-mail: tsiuk@tsi.com E-mail: tsifrance@tsi.com Tel: +33 491 95 21 90 Tel: +49 241 523030

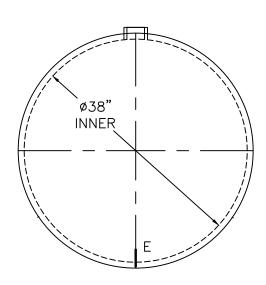
E-mail: tsigmbh@tsi.com E-mail: tsiab@tsi.com E-mail: tsi-india@tsi.com E-mail: tsibeijing@tsi.com

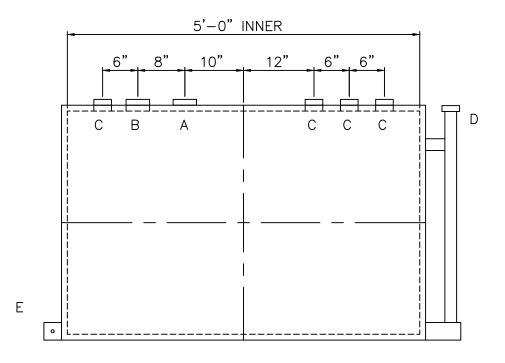
Website: www.tsi.com Website: www.tsiinc.co.uk Website: www.tsiinc.fr Website: www.tsiinc.de Website: www.tsi.se

France Germany

Sweden

India


China


Accuracy with instrument case at 77°F (25°C), add uncertainty of 0.05°F/°F (0.03°C/°C) for change in instrument temperature.

Accuracy with probe at 77°F (25°C). Add uncertainty of 0.1% RH/°F (0.2% RH/°C) for change in probe temperature. Includes 1% hysteresis

NOTE: ALL RIGHTS RESERVED. THIS
DRAWING MUST NOT BE REPRODUCED IN
ANY FORM WITHOUT THE WRITTEN
PERMISSION OF HIGHLAND TANK®.
HIGHLAND TANK® SHALL BE RESPONSIBLE
ONLY FOR ITEMS INDICATED ON THIS
FABRICATION DRAWING UNLESS OTHERWISE
NOTED. CUSTOMER IS RESPONSIBLE FOR
VERIFYING CORRECTNESS OF SIZE AND
LOCATION OF FITTINGS, ACCESSORIES, AND
COATINGS SHOWN ON THIS DRAWING.

TOUCH UP OF FINISHED PAINT IS REQUIRED BY INSTALLATION CONTRACTOR. TOUCH UP PAINT SHIPPED WITH TANK.

DESIGN DATA
CAPACITY - 300 GALLONS
TYPE - DOUBLE WALL - TYPE I
NO. REQ. — —
OPERATING PRESSURE — ATMOSPHERIC
SPECIFIC GRAVITY = 1.0
TANK MATERIAL — MILD CARBON STEEL
THICKNESS — INNER— HEADS: 12 GA SHELL: 12 GA THICKNESS — OUTER— HEADS: 10 GA SHELL:10 GA
CONSTRUCTION — INNER — LAP WELD OUTSIDE ONLY OUTER — LAP WELD OUTSIDE ONLY
TANK TEST — INNER — 5 PSIG OUTER — +3 PSIG OR 13"hg VACUUM
INT. FINISH — NONE —
EXT. FINISH — SHOP PRIMER —
LABEL - UL 142

	<u>LEGEND</u>
Α	3" FITTING THROUGH OUTER SHELL ONLY — MARK WITH LABEL — SECONDARY EMERGENCY VENT USE ONLY
В	3" FITTING — PRIMARY EMERGENCY VENT USE
С	2" FITTING
D	2" INTERSTITIAL MONITOR PIPE
Ε	3" FLAT BAR GROUNDING LUG WITH 1/2"Ø HOLE ON CL
F	_

Appendix F Technical Specifications

Table of Contents

Specification

Number Description

TOC Table of Contents

Division 11: Equipment

11 54 00.01	Soil Vapor Extraction System
11 54 00.02	Groundwater Treatment System
11 07 00	XX 11 D

11 97 00 Well Pumps

Division 22: Plumbing

22 05 03.02 PVC Pipe 22 05 19 Gauges and Sensors 22 05 23 General Duty Valves 22 07 00 Plumbing Insulation 22 30 10 High Density Polyethylene Tanks	22 05 03.01	High Density Polyethylene Pipe
22 05 23 General Duty Valves 22 07 00 Plumbing Insulation	22 05 03.02	PVC Pipe
22 07 00 Plumbing Insulation	22 05 19	Gauges and Sensors
0, 00	22 05 23	General Duty Valves
22 30 10 High Density Polyethylene Tanks	22 07 00	Plumbing Insulation
	22 30 10	High Density Polyethylene Tanks

Division 31: Earthwork

31 15 00	Site Clearing
31 23 17	Trenching, Backfilling, and Compaction
31 70 00	Boring and Tunneling Conduits

Division 33: Utilities

33 56 13 Aboveground Hydrocarbon Storage Tanks

SECTION 11 54 00.01

SOIL VAPOR EXTRACTION SYSTEM

PART 1 GENERAL

1.1 SUMMARY

- A. This Section includes the equipment and installation of a Soil Vapor Extraction (SVE) System.
- B. Related Sections:
 - 1. Section 22 05 23 General Duty Valves
 - 2. Section 22 05 03.02 PVC Piping
 - 3. Section 22 30 10 High Density Polyethylene Tanks

1.2 Acronym Definitions

- A. scfm standard cubic feet per minute
- B. ppmv parts per million by volume
- C. VOC volatile organic compound
- D. TPH total petroleum hydrocarbons
- E. in. inch
- F. HP horsepower
- G. SVE soil vapor extraction
- H. VFD variable frequency drive

1.3 PERFORMANCE REQUIREMENTS

A. The system shall remove 1,000 scfm of soil vapor using a positive displacement blower. A thermal oxidizer shall be used for vapor treatment, with an option for operation using a catalyst. The oxidizer uses natural gas to supplement destruction of hydrocarbons. The system shall have a minimum of 98% destruction efficiency of incoming vapor concentrations. TPH vapor concentrations from SVE pilot testing in 2012 were as high as 56,000 micrograms per liter. Under no circumstances shall the discharge to the atmosphere, from all vapor streams, exceed the New Mexico Environment Department limits of 10 lbs/hr and 10 tons/year of a regulated air contaminant, using average hourly flow rates and data from laboratory samples collected by the OWNER, analyzed using

standard EPA methods. Based on these discharge limits and the expected vapor stream concentrations, the system shall also have a direct discharge option.

1.4 SUBMITTALS

- A. The Manufacturer shall submit the following:
 - 1. Shop Drawings: Provide equipment dimensions, process connections, electrical diagrams, piping and instrumentation diagram, and all information necessary to relate the equipment to the specifications.
 - 2. Product Data: Submit system performance, noise data, and removal rates for benzene and gasoline range organics.
 - 3. Design Data: Provide basis of design to include flow rates and removal rates. Include calculations for removal rates.
 - 4. Test Reports: Indicate flow rates, power consumption, and removal rate.
 - 5. Manufacturer's Installation Instructions and Operation Manuals: Submit 1 copy of each equipment's installation instruction and operation manual
 - 6. Manufacturer's Field Reports: Provide data from installed systems with removal rates, operating costs, and length of operation.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. The Contractor will be responsible for safe and timely transportation of all necessary equipment and appurtenances to the site. The Contractor's representative on site will inspect for damage and assumes the responsibility for any issues which may arise from equipment transportation.
- B. The Contractor will be responsible for providing any equipment required for system unloading and temporary storage.

1.6 ENVIRONMENTAL REQUIREMENTS

- A. All equipment supplied should be manufactured to perform in the anticipated weather conditions at the site, which may include low temperatures of -10°F and high temperatures of 110°F.
- B. The equipment should be designed to operate at an elevation of 4,280 feet without adverse effect to performance and operation.

1.7 SCHEDULING

A. Schedule for construction, delivery, and startup to be coordinated with the Engineer. The Manufacturer is to provide the initial schedule and any changes.

1.8 COORDINATION

A. Coordinate work with the Engineer and other Contractors as required.

PART 2 PRODUCTS

2.1 VAPOR EXTRACTION EQUIPMENT

A. Suppliers:

1. Intellishare Environmental, Inc.

E4803 395th Avenue

Menomonie, WI 54751 USA

Contact: John Strey
Phone: 1.715.233.6115
Fax: 1.715.232.0669

Email: jstrey@intellishare-env.com

2.2 COMPONENTS

A. SVE System

- 1. Equipment assemblies:
 - a. SVE treatment equipment in an equipment enclosure
 - b. Moisture separator with 55 gallon holding capacity and condensate pump
 - c. Skid-mounted thermal oxidizer with option to run in catalytic mode
- 2. Skids: constructed of a welded steel frame covered by a welded steel plate.
- 3. Control panels and local instrumentation and controls with the ability to be remotely accessed
- 4. Interconnected process piping
- 5. Electrical power connections
- 6. Natural gas feed connections

B. Equipment Enclosure

- 1. SVE blower, vapor-liquid separator, and associated equipment and controls will be located within a modified shipping container. This enclosure will be used to reduce noise and mitigate vandalism and theft of remediation equipment.
- 2. Noise restriction: Manufacturer to coat walls, ceiling, and floor with noise-reducing materials to minimize noise from equipment such as blowers and motors.
 - a. Equipment to be located in the parking lot of a grocery store, within a primary commercial corridor, adjacent to a highly-trafficked roadway. Closest residence is approximately 200 feet to the southeast from the equipment compound.
- 3. Interior
 - a. Floor sealed with non-skid bed liner
 - b. Insulated floor, walls, ceiling, and steel access door
 - c. Overhead lighting
 - d. Wall-mounted electric heater
- C. Vent fan, sound-insulated inlet/outlet louvers, and thermostat
- D. SVE Blowers
 - 1. Blowers:

- a. The SVE blower shall be a Sutorbilt Legend 7L rotary positive displacement blower driven by a 40-hp TEFC variable speed motor and a VFD located at the main control panel. The blower will be rated for 1,000 scfm at an applied vacuum of 85 inches water column.
- 2. Filter, Discharge Silencer, Gauges and Sampling Port: A particulate filter shall be located on the inlet of the blower and the discharge of the blower will include a premium chamber discharge silencer, pressure gauge, temperature gauge, and sample port.
- 3. Moisture Separator: A moisture separator shall be located on the inlet of the system and provide sufficient storage for 55 gallons of accumulated condensate. The vapor liquid separator shall include a polypropylene demister element and acquiescence plate to isolate condensate water from turbulent flow internal to the separator and external devices will include three-point liquid level switches mounted inside a clear PVC site glass. The separator shall have a condensate pump and bottom drain.

E. Thermal Oxidizer w/ Optional Catalytic Mode

- 1. Oxidizer Reactor: The reactor housing will be constructed of 7 gauge rolled steel. The Inlet and outlet connections are flanged. The reactor will be painted ISE standard grey two component paint.
- 2. Gas Pre-Heater: The unit will come equipped as standard with a direct gas fired air burner with combustion air blower and 2-hp TEFC motor.
- 3. Flame Arrestor: A flame arrestor will be supplied and mounted to the inlet of the oxidizer and utilized to prevent flame propagation to the source. A spiral crimped aluminum element shall be removable for inspection and cleaning.
- 4. Exhaust Stack: The stack for the discharge of cleaned gases shall be self-supporting and made of stainless steel. The stack shall terminate at approximately 15' AGL and is supplied with sampling ports that can be accessed from ground surface without a ladder.

F. Control System

- 1. Main Control System: A NEMA 4 control panel shall be completely assembled, wired and mounted at eye level. Control panel components shall include, power distribution circuit with solid state PID temperature controller, flame safety programmer with built in purge timer, Allen Bradley programmable logic controller with Ethernet card, operator and alarm lights and an hour meter to record system run time. The control panel shall be UL 508 approved as an assembly. All wiring shall be consistent with standards set forth in the NEC.
- 2. Automatic Purge Control: The oxidizer shall be purged with fresh air prior to the introduction of contaminated vapors per NFPA 86. To accomplish this, the combustion air blower will be enabled for a specified time. Once complete, the system shall enable the pre-heat mode.
- 3. Temperature Control: Combustion chamber temperature shall be continuously monitored via thermocouple. The thermocouple and digital indicating temperature controller enable a 4-20ma PID loop with the variable frequency tertiary air fan to maintain the combustion chamber set-point temperature.
- 4. The control panel shall contain an illuminated selector switch indicating power Hand/Off/Auto, status/alarm lights, motor starter, control relays, and terminal

blocks factory assembled and tested. The enclosure shall be rated NEMA 4 and constructed of steel.

G. Telemetry

1. A cellular modem will be provided to allow remote access to system controls. The telemetry system will provide data access, remote-start capability, and the ability to be notified of alarm conditions via text or email.

2.3 ELECTRICAL CHARACTERISTICS AND COMPONENTS

- A. Electrical Characteristics: In accordance with the components described above, including all motors and controls.
- B. Disconnect Switch: Factory mounted disconnect switches on all individual pieces of equipment.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify existing conditions before starting work.

3.2 INSTALLATION

A. Contractor to install in accordance with the approved project plans, including all piping and ancillary equipment, and manufacturer's instructions. Contractor shall be responsible for unloading all equipment delivered to the site prior to installation.

3.3 FIELD QUALITY CONTROL

A. All field inspecting, testing, adjusting, and balancing shall be performed by the Supplier for the equipment to function as designed.

3.4 SUPPLIER'S FIELD SERVICES

- A. Supplier to coordinate delivery of all vapor extraction and treatment equipment.
- B. Start-up training to include a minimum of 3 days on-site, including inspection of system installation, verification of safety controls, and staff training to optimize the system operation.

END OF SECTION

SECTION 11 54 00

GROUNDWATER TREATMENT SYSTEM

PART 1 GENERAL

1.1 Summary

- A. Section includes:
 - 1. Containerized treatment equipment
 - 2. Control system
 - 3. Telemetry
- B. Related Sections

1.	11 97 00	Well Pumps
2.	22 05 03.02	PVC Pipe
3.	22 05 23	General Duty Valves
4.	22 07 00	Plumbing Insulation
5.	33 70 00	High Density Polyethylene Pipe

1.2 References

- A. Air Movement and Control Association, Inc. (AMCA):
 - 1. AMCA Publication 211 Product Rating Manual for Fan Air Performance
- B. American National Standards Institute (ANSI):
 - 1. ANSI/NFPA 70 National Electric Code (NEC)
 - 2. ANSI Z358.1 Emergency Eyewash and Shower Equipment
- C. American Society of Mechanical Engineers (ASME)
 - 1. ASME B31.3 Process Piping Design
- D. American Society for Testing and Materials
 - 1. ASTM D 1785 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120

1.3 Performance Requirements

A. The system shall be a fully automatic, integrated, and containerized treatment system capable of meeting the discharge standards designated in Table 1 for the effluent water. For design purposes, the flow rate through the system shall be 20 gpm of groundwater with approximate concentrations of contaminants in raw water as defined in Table 1. This represents average contaminant concentrations from the proposed extraction wells using laboratory data from March 2021. Approximate depth to water is 330 feet bgs. Four existing wells were constructed with 4-inch-diameter SCH 80 PVC, and five existing wells were constructed with 5-inch-diameter SCH 80 PVC. Treated water will

be discharged to the sanitary sewer through an existing manhole as shown on the Drawings.

- B. In addition to all tanks, pumps, and controls needed for a completely integrated package, the containerized treatment system shall have three treatment processes, at a minimum, to meet the target concentrations listed in Table 1:
 - 1. Oil-water separation to remove nonaqueous-phase liquid.
 - 2. Diffused aeration for removal of volatile organics.
 - 3. Clarification to remove solid particulates or suspended solids that are generated during aeration of extracted groundwater.
- C. The system shall meet or be below the effluent concentrations given in Table 1 given the following operational parameters:
 - 1. The altitude of the site is 4,280 feet above mean sea level.
 - 2. The average groundwater temperature is 68°F.
 - 3. The ambient air temperature at the site varies from approximately -10° F to 110° F.
 - 4. Engineer will provide additional data upon request, if it is available.

Table 1. Discharge Groundwater Standard and Assumed Groundwater Concentration

Concentration (μg/L)				
Parameter	Expected Influent	Discharge Standard		
Benzene	2,000	5		
Toluene	1,000	1,000		
Ethylbenzene	200	700		
Total Xylenes	400	620		
Ethylene dibromide (EDB)	5	0.05		
1,2-dichloroethane (EDC)	100	5		
Total Naphthalenes	60	30		

μg/L = Micrograms per liter

BTEX = Benzene + toluene + ethylbenzene + total xylenes

1.4 Submittals

- A. The following Manufacturer information shall be submitted with the Bid to evaluate conformance with the Contract Documents prior to award of the Contract:
 - 1. Product data for the selected diffused aeration tank, including manufacturer and model, rated flow capacity, dimensions, weights (dry and operating), accessories, and warranty coverage.
 - 2. Product data for selected diffused aeration blower, including manufacturer and model, rated output capacity, electrical requirements, and warranty coverage.
 - 3. Shop drawings and/or product data containing all information necessary to correlate the equipment to the specifications.

4. List of all instrumentation to be provided, with descriptive information for each component and an overall controls strategy. Include a process and instrumentation diagram for the containerized treatment system.

1.5 Closeout Submittals

- A. Project Record Documents: Record actual location of process, power, and electrical connections on the Record Drawings.
- B. Operation and Maintenance Manual to include:
 - 1. Operating instructions for all treatment system components.
 - 2. Three copies of the operation and maintenance manual for each piece of equipment.
 - 3. Summary of system components.
 - 4. Summary of system operation principles.
 - 5. Summary of operation controls and fail safes.
 - 6. Summary of maintenance requirements for each piece of equipment.

1.6 Qualifications

- A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum 10 years documented experience, including design, fabrication, and assembly of containerized treatment equipment. Installation contractor shall have at least five (5) treatment system installations in New Mexico.
- B. Installer: Company specializing in performing work of this section and approved by Engineer.

1.7 Warranty

A. Furnish a minimum 1-year Manufacturer's warranty for the containerized treatment system, including process equipment, vessels, blowers, pumps, and all other ancillary equipment. Warranty period shall begin upon completion and acceptance of the Functional Demonstration Test during startup. Warranty shall cover materials, shipping, and appurtenances required to remove and replace defective equipment.

PART 2 PRODUCTS

- 2.1 Containerized Treatment Equipment
 - B. Manufacturer:
 - 1. H2K Technologies, Inc.
 - 2. Substitutions: Substitutions permitted with Engineer's Approval.

- C. Containerized treatment system: Self-contained and fully constructed and functional prior to delivery at the site, including installation of all plumbing, valves, treatment equipment, tanks, flow meters, and other ancillary equipment.
 - 1. Manufacturer to provide all labor, materials, equipment, tools, shipping, startup services, testing, training, superintendence, and incidental items necessary for a complete installation.
 - 2. Contractor to install containerized treatment system in accordance with Manufacturer's written instructions.
- D. Treatment processes are specified below based on performance characteristics.
 - 1. Major treatment components will include at a minimum:
 - a. Oil-water separator.
 - b. Diffused aeration tank.
 - c. Clarifier.
 - d. Water storage tanks.
 - e. Chemical feed modules.
 - f. Monitoring devices.
 - g. Tanks, pumps, and controls.

E. Additional components:

- 1. Provide all appurtenances required to facilitate an automatically controlled, fully functioning treatment system, including actuated control valves, flow meters, pressure gauges, and transfer and chemical feed pumps appropriately sized for the prescribed flow rate and contaminants listed in Table 1.
- 2. Manual isolation valves shall be provided on the upstream and downstream side of all process pumps and equipment to facilitate easy isolation for maintenance and repair.
- 3. Appropriately sized pressure gauges shall be installed on the upstream and downstream side of each process pump to monitor performance of the major process components.
- 4. Engineering controls shall be provided to minimize scaling and improve performance period intervals between maintenance/replacement, including but not limited to, the use of chemicals and cartridge filters. Any such chemicals or cartridge filters shall be readily available.
- 5. Sample ports shall be provided at key locations in the treatment system. At a minimum: raw water influent, post-diffused aeration, and treated water effluent. A sample port shall be provided on the diffused aeration discharge stack for collection of effluent air samples. Final locations shall be as directed by Engineer.
- 6. Chemical storage tanks: Compatible for long-term use with the chemicals they are storing. Each tank must have appropriate venting. Minimum chemical storage for 30 days of normal operation shall be provided, unless a shorter duration is approved in writing by the Engineer. Containers shall have secondary containment.
- 7. Manufacturer's plumbers working with PVC/CPVC shall be certified to applicable ASTM and ASME training requirements for PVC and CPVC materials.

- 8. The effluent flow rate and totalizer volume in gallons shall be displayed on the control panel.
- F. Equipment Design Requirements.
 - 1. Oil/Water Separator
 - a. 304 stainless steel construction
 - b. Capable of 100% removal of 20 micro or larger droplets at 25 gpm
 - c. PVC site glass with ss low, high, and high-high pump out level switch assembly
 - 2. Diffused Aeration Tank
 - a. Unit shall remove 94% BTEX compounds and 50% of Napthalene at 20 gpm
 - b. (3) Aeration chambers
 - c. (15) Non-fouling 304 Stainless Steel aeration diffusers
 - d. 304 welded stainless-steel construction
 - e. 90 cfm blower at 80-in. WC
 - f. Unit shall be stand mounted to allow gravity drain from oil/water separator thru DTA into clarifier
 - 3. Inclined Plate Clarifier
 - a. 304 stainless steel construction
 - b. 90% removal of 20 micron & larger solids 20 gpm
 - c. PVC slant tube coalescing media
 - d. Adjustable skimming weir
 - e. Solids collection sump
 - f. Clearwell for pumping directly from clarifier
 - g. PVC site glass with ss low, high & high-high pump out level switch assembly, union mounted
 - h. Vapor tight gasketed cover, Buna-N Gasket
 - 4. Storage tanks
 - a. An anti-siphoning loop shall be provided prior to discharging from the treatment system to mitigate potential for siphoning.
 - b. Provide level controls using ultrasonic level meters, float switches, or a pressure-type transducer.
 - c. Product Storage Tank:
 - 1) 300-gallon capacity, UL 142 double wall tank (OUTSIDE OF ENCLOSURE)
 - 2) Welded steel horizontal tank with enamel external finish
 - 3) High/high- and high-level switches
 - 4) Normal vent with riser pipe
 - 5) Emergency vent
 - 6) Check valve and isolation valve on product inlet
 - 7) 120 VAC heat trace for class I, Div 1 hazardous location
 - 8) 1" polyurethane insulation, UV resistant, R-7 on tank
- G. Instrumentation and Controls: The containerized treatment equipment Manufacturer shall provide an equipment control strategy that will allow for a fully automated treatment system. All hardware, software, and programming required for the control

- system shall be the responsibility of the Manufacturer. The control strategy shall include the containerized treatment equipment and the individual well pumps. The control strategy shall be provided for Engineer approval as outlined in this specification.
- H. Telemetry: The containerized treatment equipment Manufacturer shall provide a cellular-based telemetry system to provide remote access to system data. The telemetry system shall provide the ability to monitor system data through a secure web-based interface. Additionally, alarm conditions shall be sent electronically via e-mail and/or phone-based text messaging. At a minimum, the following parameters shall be able to be monitored remotely:
 - 1. Operating status for the system and each major process component.
 - 2. Alarm conditions for any major process component.
 - 3. Water flow rates and pressure transducer water level for each well.
 - 4. Water flow rates from the effluent equalization tank.
 - 5. Air flow rate for the diffused aeration tank.
 - 6. Water levels in the influent and effluent equalization tanks.
 - 7. Critical water pressures for the major process components.

2.2 Equipment Enclosure Modules

- A. Equipment enclosure module: lined and coated container with a steel frame, corrugated steel walls, and treated wood floor with steel overlay.
 - 1. The Work is based on provision of one 20-foot-long equipment enclosure module for groundwater treatment equipment.
- B. The equipment enclosure module shall be insulated and rated for the expected ambient air temperatures for the site specified in this section.
- C. The module shall come equipped with fluorescent lighting, receptacles, emergency lighting, and a heating, ventilating, and air conditioning (HVAC) system appropriately sized for the expected ambient air temperatures specified in this section.
- D. The container shall be ready for connection to the water conveyance piping system with flanged connections outside the equipment enclosure module for connection to 1.5-inch PVC piping.
- E. A single electrical service shall be provided to the module. All interior wiring shall be NEC compliant and complete prior to delivery at the site.
- F. The container shall have at least one set of double swing-out doors on one end of the container. The doors shall be lockable with either a deadbolt (installed by Manufacturer) or configured for a padlock.
- G. Each module shall have all visible exterior surfaces coated with marine-grade industrial enamel. Custom colors to be as specified by Engineer.

PART 3 EXECUTION

3.1 Shipping

A. Upon arrival at the destination, the Contractor and/or his agent shall be responsible for inspection for damage in transit. If damage has occurred, a claim should be filed with the carrier by the Contractor, and the Manufacturer should be notified prior to the system being put into service.

3.2 Installation

- A. The containerized equipment shall be installed in accordance with the Contract Drawings and specifications.
- B. Mechanical service connections:
 - 1. Contractor to furnish materials and labor to connect conveyance line from the influent tank located in the remediation equipment compound to the equipment enclosure module.
- C. Electric service connections:
 - 1. Installed by a licensed electrician. The NEC and all applicable state and local codes shall be followed when installing this equipment. This includes but is not limited to any provisions for intrinsically safe or explosion-proof wiring. The installation shall be executed in a neat and workmanlike manner.
 - 2. At no time shall any individual tamper with or change any of the wiring in the control panel without the knowledge and consent of the vendor's personnel. The Contractor shall only land wires on the field terminals provided and install or remove any jumpers as shown and indicated on the control schematics to achieve proper operation. Any changes made to the panel wiring other than those just mentioned or those approved by the Manufacturer, in writing, will result in the voiding of any warranty associated with the control panel or any of the connected equipment.
- D. The Contractor shall ensure that all Manufacturer checklist items are completed prior to requesting startup assistance.

3.3 Startup and Training

- A. Services of a factory trained representative shall be supplied by the Manufacturer to start up and provide operator training for the remediation system.
- B. Inspection and startup:
 - 1. Five (5) days startup instruction and operator training. This startup period may coincide with the operational readiness test.

3.4 Factory Testing

- A. Factory Testing: Manufacturer-certified factory tests of each module and the overall treatment system will be required. The factory test of the module shall include at a minimum the following information:
 - 1. The factory test shall be conducted on the actual unit(s) to be installed in the field. Each module shall be tested to ensure that all treatment equipment, transfer and chemical feed pumps, flow meters, actuated control valves, pressure transducers, and appurtenances operate properly, cycle as directed by the system controls, open and close as directed, and correctly meter flow as required.
 - 2. Factory testing shall confirm that connections and piping inside each module are leak-free. Any leaks encountered shall be repaired at the factory.
 - 3. All controls within the modules shall be tested to ensure proper operation to the extent practicable.
 - 4. All alarms on and between equipment within the module shall be triggered to ensure proper system response to all alarms.
 - 5. Factory testing is intended to test system hydraulic performance and not to confirm treatment objectives. No water quality samples are expected to be analyzed.
- B. The factory test shall be conducted on the actual units to be installed in the field; including transfer and chemical feed pumps, treatment equipment, and control systems. The factory test shall be conducted after the containerized treatment equipment to be shipped to the field has been fully assembled. A copy of the certified factory test results shall be furnished to the Engineer within three days after completion (and included in the operation and maintenance manuals).

3.5 Operational Readiness Tests

- A. All required on-site testing is the responsibility of the Contractor and shall be performed by persons with a minimum of 24-hour Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) training.
- B. Prior to startup and the Functional Demonstration Test, the entire system shall be tested in the field by the Contractor to certify that it is ready for operation in the form of an Operational Readiness Test (ORT). The entire system shall be checked for proper installation. The entire system shall be calibrated and adjusted on a loop-by-loop and component-by-component basis to ensure that it is in conformance with related submittals and these Specifications. This testing shall include all well pumps, treatment equipment, transfer and chemical feed pumps, flow meters, actuated control valves, pressure transducers, instrumentation and controls, telemetry, and appurtenances. Recycling of water will be permitted during this testing period. Alarms shall be triggered to ensure proper system response to all alarms. Proper communication between the extraction wells, the influent equalization tank, and the treatment equipment shall be verified.

- 1. The Contractor shall be required to maintain all documentation and reports generated during the ORT at the job site and make them available to the Engineer/Owner at any time.
- 2. These inspections and tests do not require witnessing. However, the Engineer shall review documentation generated during testing and spot-check their entries periodically and upon completion of the ORT. Any deficiencies found shall be corrected.
- 3. The Contractor shall coordinate and allocate time to assist the Owner personnel on all telemetry system integration prior to completion of the ORT.
- C. ORT shall confirm that connections and piping inside each module are leak-free. Any leaks encountered shall be repaired prior to the functional demonstration test.
- D. All chemical feed systems shall be calibrated during the ORT. Documentation of successful calibration shall be furnished as part of the documentation of the ORT.
- E. Costs for as many field visits as are necessary for proper system operations by Manufacturer representatives to perform and/or assist with ORT shall be considered incidental to the Work and no separate payment will be made.

3.6 Functional Demonstration Tests

- A. Prior to startup, the entire installed instrument and control system shall be inspected by the manufacturer/supplier and contractor and certified that it is ready for operation. All preliminary testing, inspection, and calibration shall be complete as defined in the ORT.
- B. Once the facility has been started up and is operating, a witnessed Functional Demonstration Test (FDT) shall be performed on the complete system to demonstrate that it is operating and in compliance with these Specifications. This testing will require active participation by the Contractor, Owner, and the Engineer. This testing shall be performed by persons with a minimum of 24-hour OSHA HAZWOPER training.
- C. Updated versions of the documentation specified to be provided during the ORT shall be made available to the Engineer at the job site both before and during the tests. In addition, one (l) copy of all O&M Manuals shall be made available to the Engineer at the job-site both before and during testing.
- D. The daily schedule specified to be followed during the Factory Tests shall also be followed during the Functional Demonstration Testing.
- E. After startup, the system shall operate for a continuous 100 hours without failure before the FDT will be considered successful. The system must operate without interference for 100 continuous hours and appropriately cycle all pumps, chemical feeds, treatment equipment, and extraction wells. Normal system downtime while the well refills the influent equalization tank shall be included in the 100-hour test, as needed. The performance test shall be performed at the system design flow rate of 20 gpm, or

- whatever flow rate is sustainable from the extraction wells, unless otherwise directed by the Engineer.
- F. Water sampling: Performed during the FDT to ensure the system meets effluent water quality standards. Sample collection and laboratory analysis shall be coordinated by the Engineer. During the 100-hour test, samples shall be collected as detailed below.
 - 1. All samples collected during the FDT shall have laboratory results reported within 24 hours of collection. Preliminary results from the laboratory are acceptable.
 - 2. Official laboratory reports shall be provided to the Engineer.
 - 3. Samples may only be collected by persons with a minimum of 24-hour OSHA HAZWOPER training
 - 4. Sample locations and schedule are defined in Table 2 below.

Table 2. FDT Sample Schedule

Matrix	Sample Point	Туре	Sampling Frequency	Total Number of Samples
Process water	Raw water influent (after influent tank)	Grab	Sample after four hours of operation, every day for rest of FDT	5
Process water	Treated effluent (after effluent tank)	Grab	Sample after four hours of operation, every day for rest of FDT	5
Air	Diffused aeration effluent	Grab	Sample after four hours of operation, every day for rest of FDT	5

- 5. Analytes
 - a. Raw and treated water samples
 - 1) VOCs: EPA Method 8260B (full list)
 - 2) TDS: Standard Method 2540C
 - 3) Field parameters
 - a) pH
 - b) Temperature
 - c) Conductivity
 - d) Dissolved oxygen
 - e) Oxidation reduction potential
 - b. Treated water samples only
 - 1) Total suspended solids (TSS): EPA Method SM2540D
 - 2) pH: EPA Method SM4500/9040C
 - c. Air samples
 - 1) BTEX and MTBE: EPA Methods 8021B
 - 2) TPH: EPA method 8015D
- G. Upon successful completion of the FDT and subsequent review and approval of complete system final documentation, the system shall be considered substantially complete and the warranty period and operations and maintenance period shall commence.

END OF SECTION

SECTION 11 97 00

WELL PUMPS

PART 1 GENERAL

- 1.1 Summary
 - A. Section Includes:
 - 1. Well Pumps
 - B. Related Sections:
 - 1. Section 11 54 00.02 Groundwater Treatment Equipment
 - 2. Section 22 05 03.02 PVC Piping
- 1.2 References
 - A. National Electric Code
 - 1. NEC Section 250 43
 - 2. NEC Section 250 95
 - 3. NEC Section 310 11
- 1.3 Scope of Work
 - A. Installation of submersible pump, drop pipe, electrical wire, well cap, pitless adapter and appurtenances at eight (8) proposed extraction wells. Contractor to provide all labor, materials, equipment, tools, shipping, startup services, testing, training, superintendence, and incidental items necessary for a complete installation.
 - B. The Contractor shall familiarize himself with local conditions at the project site. Failure to do so shall in no way relieve Contractor of the responsibility for performing any of the Work or operations required as a part of this contract.

1.4 Submittals

- A. As directed by the Engineer, Contractor or groundwater treatment equipment Supplier shall submit the following upon award of the Contract:
 - 1. Product Data:
 - a. Pump
 - b. Drop pipe
 - c. Motor
 - d. Submersible pump cable
 - e. Controller
 - f. Pitless adapter
 - 2. Manufacturer's Installation Instructions.

1.5 Closeout Submittals

A. Pump Installation Report and O&M Manuals.

1.6 Qualifications

A. Installer: Company specializing in performing work of this section with minimum three (3) years experience.

1.7 Warranty

A. Contractor shall warrant against defects for all materials provided and work performed under this contract for a period of one (1) year from the date of Substantial Completion. The Contractor shall replace promptly, at the Contractor's own expense, any materials and workmanship that fail during this warranty period as determined by the Owner or Engineer.

PART 2 PRODUCTS

2.1 Submersible Pumping Units

- A. Manufacturer:
 - 1. Grundfos:
 - 2. Model: 5SQE-320, 1-phase motors (Wells RW-1, RW-2, RW-3, RW-4)
 - 3. Model: SP 5S10-22, 3-phase motors, VFDs (Wells BW-7R, MW-11, MW-12, and MW-16). Well MW-13 will be set up for pumping as a contingency well, but a pump will not be installed.
 - 4. Substitutions: Substitutions permitted with Engineer's Approval
- B. Submersible pumping unit:
 - 1. Groundwater Treatment Equipment Supplier: Furnish pump, motor, cable, and appurtenances. Materials of construction shall be suitable for the influent water quality parameters shown in Table 1, Specification Section 11 54 00.
 - 2. Contractor: Furnish drop pipe and install equipment listed in this section.
 - 3. The pump shall be selected for best efficiency at a water flow rate of 2 and 4 gpm and total dynamic head (TDH) of 427-435 feet.
 - 4. Pump and motor to be powered using a variable frequency drive (VFD), if possible for the specified pump model.
 - 5. Additional electrical design resulting from selection of substitute equipment will be at the Contractor's expense.
- C. The motor shall be sized so that its nameplate horsepower is not exceeded throughout the entire range of the pump.
 - 1. Model 5SQE-320 shall be designed for continuous underwater operation on 208/240-volt, 1-phase, and 60-Hz current.
 - 2. Model: SP 5S10-22 shall be designed for continuous underwater operation on 480-volt, 3-phase, and 60-Hz current

2.2 Submersible Pump Cable

A. Use manufacturer recommended materials of construction for insulation and jacketing of the submersible pump cable. Unless otherwise indicated, the conductors shall be sized based upon the motor nameplate full-load amps, the capacity of the conductor, and the allowable voltage drop. In general, the allowable voltage drop shall be less than the difference between the service voltage and the nameplate voltage.

2.3 Pitless Adapter

- A. Manufacturer:
 - 1. Baker Manufacturing Company Monitor
 - 2. Model #8PL41U for the 4-inch wells or Engineer-approved equal.
 - 3. Model #8PL51U for the 5-inch wells or Engineer-approved equal.
 - 4. The unit shall be factory assembled, before shipping to the site.

2.4 Drop Pipe

A. Drop pipe: 1-inch Schedule 80 flush-threaded polyvinyl chloride (PVC).

2.5 Check Valves

- A. Drop Pipe Check Valves:
 - 1. Manufacturers:
 - a. Simmons, Series 600 SB Submersible Check Valve
 - b. Substitutions: Permitted with Engineer's Approval.
 - 2. Silicon bronze body, 400 psi WOG, PTFE, Viton, or approved equal O-ring, stainless steel spring, stainless steel washer and stainless steel locknut.

2.6 Pump Installation Report and O&M Manuals

- A. The Contractor shall prepare a well pump installation report. All applicable information shall be included, and "NA" will be shown for those items that are not applicable.
- B. Upon completion of the project, the Contractor shall furnish four (4) sets of operations and maintenance (O&M) manuals to the Owner. The manuals shall include:
 - 1. Operations manuals for all pumps, valves, and controls installed.
 - 2. Piping diagrams of all installed plumbing, valves, and controls.
 - 3. Safety data sheets for all chemical substances and solvents used in installation and construction.
 - 4. Electrical circuit diagrams of all controls, power supplies, transformers, and any other electrical equipment installed.

PART 3 EXECUTION

3.1 Installation

A. The well head completion shall be according to the drawings.

July 2021 Revision 0

- B. Install the submersible pump and appurtenances complete in place, to provide for a fully functioning extraction well. Install pump and motor in accordance with manufacturer's written instructions.
- C. Pump Installation:
 - 1. Contractor shall verify that the well casing and screen are free of sediment. If sediment has accumulated, clean by bailing or other Engineer-approved method.
 - 2. Prior to installation of pumping equipment, Contractor to ensure pump outside diameter is at least 1 inch less than the inside diameter of the well casing to the pump installation depth.
- D. Submersible pump cable:
 - 1. Padded to prevent abrasion and fastened to the drop pipe at approximate 10-foot intervals with stainless steel clamps or other fastening system approved by the Engineer.
- E. Pitless adapter: install at the location indicated on the Drawings and in conformance with manufacturer installation instructions.
- F. Column check valves: install at the location indicated on the Drawings and in conformance with manufacturer installation instructions.
- G. Submersible pumping unit: install to the depth shown on the Drawings and in conformance with manufacturer installation instructions.

3.2 Field Test of Pump Performance

- A. Initial Testing of Submersible Pumps
 - 1. Untreated discharge from pump testing must be containerized or recirculated back to the same extraction well. Discharge to surface or sewer will not be permitted.
 - a. If untreated water is containerized, it is the Contractor's responsibility to properly dispose of the containerized water and all associated costs will be considered incidental to the Work.
 - b. Temporary plumbing may be installed to allow recirculation of water back to the same extraction well.
 - c. If water is to be containerized, ensure the temporary storage vessel has a working level indicator.
 - 2. Start motor and verify immediately correct shaft rotation.
 - 3. Check and record motor running volts and amps.
 - 4. Verify correct operation of all interlocking and protective devices.
- B. Field testing of submersible pumps shall be included as part of the Operation Readiness Testing (ORT) performed for the containerized treatment equipment as specified under Section 11 54 00.02 Groundwater Treatment Equipment.

July 2021 Revision 0

3.3 Cleanup

A. After the work is completed, the Contractor shall remove all debris, tools, equipment, supplies, and excess material from the site and shall restore the site to its original condition, as approved by the Owner/Engineer.

END OF SECTION

SECTION 22 05 03.01

HIGH DENSITY POLYETHYLENE PIPE

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Casing pipe under Commerce Way and N Prince Street.
- 2. HDPE pipe.
- 3. HDPE fittings.
- 4. HDPE burial.
- 5. HDPE joining.
- 6. HDPE testing.

B. Related Sections:

- 1. Section 31 23 17 Trenching, Backfill, and Compaction
- 2. Section 31 70 00 Boring and Tunneling Conduits

1.2 REFERENCES

A. ASTM International

- 1. ASTM D1248 Standard Specification for Polyethylene Molding and Extrusion Materials.
- 2. ASTM D2239 Standard Specification for Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameters.
- 3. ASTM D2122 Determining Dimensions of Thermoplastic Pipe and Fittings.
- 4. ASTM D2241 Standard Specification for Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter.
- 5. ASTM D2447 Standard Specification for Polyethylene (PE) Plastic Pipe, Schedules 40 and 80, Based on Outside Diameter.
- 6. ASTM D2513 Standard Specification for Thermoplastic Gas Pressure Pipe, Tubing, and Fittings.
- 7. ASTM D2609 Standard Specification for Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe.
- 8. ASTM D2657 Standard Practice for Heat-Joining Polyolefin Pipe and Fittings.
- 9. ASTM D2683 Standard Specification for Socket-Type Polyethylene Fittings for Outside Diameter-Controlled Polyethylene Pipe and Tubing.
- 10. ASTM D2774 Underground Installation of Thermoplastic Pressure Piping.
- 11. ASTM D2837 Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pressure Piping.
- 12. ASTM D3035 Standard Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter.
- 13. ASTM D3350 Standard Specification for Polyethylene Plastics Pipe and Fitting Materials.

- 14. ASTM F412 Standard Terminology Relating to Plastic Piping System.
- 15. ASTM F1248 Standard Test Method for Determination of Environmental Stress Crack Resistance (ESCR) of Polyethylene Pipe.
- B. American Water Works Association (AWWA):
 - 1. AWWA C901 Polyethylene (PE) Pressure Pipe and Tubing, ½ in. through 3 in., for Water Service.
- C. Plastic Pipe Institute (PPI):
 - 1. Handbook of Polyethylene Pipe.
 - 2. TR-33, Generic Butt Fusion Joining Procedure for Field Joining of Polyethylene Pipe.

1.3 SUBMITTALS

A. Product Data: Submit data on pipe sizes, materials and fittings. Submit manufacturers catalog information.

1.4 QUALITY ASSURANCE

- A. Manufacturer Quality Assurance:
 - 1. Manufacturer shall maintain a continuous quality control program.
 - 2. Material certification shall be included verifying that the materials have been tested for conformance with ASTM D3350 and that the pipe material has exceeded 5,000 hours without failure when tested under F1248.
- B. HDPE pipe and fittings shall be provided from one approved manufacturer.
- C. Maintain one copy of each document on site.

1.5 QUALIFICATIONS

- A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum five years documented experience.
- B. Installer: Company specializing in performing work of this section with minimum five years documented experience.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. All necessary precautions shall be taken to prevent damage or contamination to pipe and other materials during shipment and delivery.
- B. All materials shall be securely fastened to truck or rail car to prevent movement or damage during shipment.
- C. Furnish temporary end caps and closures on piping and fittings. Maintain in place until installation.

- D. Protect piping from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.
- E. All pipe materials shall be handled in such a manner as to prevent damage. HDPE pipe shall not be dropped, rolled or pushed off from any height during delivery, storage or installation.
- F. All pipe materials shall be stored off the ground in a dry location.
- G. All pipe materials shall be stored in such a manner as to prevent sagging or bending.

1.7 ENVIRONMENTAL REQUIREMENTS

A. Do not install underground piping when bedding is wet or frozen.

1.8 FIELD MEASUREMENTS

A. Verify field measurements prior to fabrication.

PART 2 PRODUCTS

2.1 POLYETHYLENE PRODUCTS

- A. Manufacturers:
 - 1. ISCO Industries.
 - 2. Polypipe, Inc.
 - 3. Performance Pipe, Inc.
 - 4. Substitutions: Permitted with the Engineer's approval.
 - B. Polyethylene Pipe: Pipe shall be provided in diameters, pressure classes, and dimension ratios (DR) as shown on the plans and in accordance with ASTM D3035. Also:
 - 1. HDPE pipe shall be manufactured from extra high molecular weight polyethylene pipe materials meeting the requirements of cell classification PE345464C Standard PE Code Designation PE3408 as defined by ASTM D3350.
 - 2. Fittings: AWWA C901, molded.
 - 3. Joints: Butt fusion by a qualified technician, trained by an approved manufacturer's representative, and in accordance with the manufacturer's recommended procedures.
 - C. Typical Material Physical Properties: All pipe and fitting materials shall meet these typical physical properties:
 - D. HDPE Fittings:
 - 1. The fittings shall be manufactured from the same cell class resin and fully pressure rated to the same pressure rating as the designed piping system.
 - 2. Shall have a controlled outside diameter and produced to the SDR/DR rating for the pressure specified by the Engineer.

- 3. Shall be specifically manufactured to the standardized dimensions noted on the Drawings.
- 4. Where applicable, fittings shall meet the requirement of AWWA C901 or AWWA C906.
- 5. Butt fusion fittings shall be manufactured from the same material as the extruded pipe, shall be rated for the pressure service at least equal to that of the system pipe, and shall have outlets manufactured to the same DR as that of system pipe.
- 6. Molded fittings shall be manufactured in accordance with ASTM D3261.
- 7. Socket fittings shall be manufactured in accordance with ASTM D2683.

2.2 UNDERGROUND PIPE MARKERS

A. Underground pipe marker shall be metallic detectable brightly colored plastic tape.

2.3 BEDDING AND COVER MATERIALS

A. Bedding, cover, and backfill shall be as specified in Sections 31 23 17 and as indicated on the Drawings.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Contractor shall inspect all piping to assure that the piping is free from defects in material and workmanship.
- B. Compatibility of all pipe and fittings shall be verified.
- C. Pipe, fittings and accessories that are cracked, damaged, not identified or in poor condition shall be rejected.
- D. The Engineer shall have free access to all joints and test joints for determining the suitability of the joining process.
- E. Where construction restrictions limit inspection of joints, the Engineer may have the person joining the pipe and or fittings perform a test joint in the presence of the Engineer.
- F. The Engineer shall determine the method of testing either by visual examination or bent strap testing.
- G. Verify excavations are to required grade, dry, and not over-excavated.
- H. Verify trenches are ready to receive piping.

3.2 PREPARATION

A. Remove burrs.

- B. Remove scale and dirt on inside and outside before assembly.
- C. Prepare piping connections to equipment with flanges or unions.
- D. Keep open ends of pipe free from scale and dirt. Protect open ends with temporary plugs or caps.

3.3 INSTALLATION - BURIED PIPING SYSTEMS

- A. Verify connection size, location, and inverts are as indicated on Drawings.
- B. Joining
 - 1. The pipe and fittings shall be heat fused creating a homogeneous joint.
 - 2. Joining shall be in accordance with the manufacturer's heat fusion recommendations.
 - 3. Joints shall not be of the solvent welded type.
 - 4. Each person making heat fusion joints shall demonstrate proficiency by making joints and test the trial fusion by bent strap testing in accordance with ASTM D2657.
 - 5. Trial joints shall be allowed to cool completely prior to testing and shall not fail at the joint.
 - 6. During construction, at the Engineer's discretion, a trial fusion shall be made which shall then be allowed to cool and destructively bent strap tested.
 - 7. If the trial fusion should fail, additional trial fusions shall be made and tested until successful fusions are completed.
 - 8. The procedure used to join the trial fusion shall be used for the balance of the day's work, proved the procedure is within the limitations recommended by the manufacturer.
 - 9. The Engineer shall have the authority to disallow any installer's from completing heat fusion of polyethylene pipe if that technician has consecutively failed trial joints.
 - 10. Any person deemed unqualified by the Engineer will require training per Manufacturer's guidelines at the expense of the Contractor and training shall be documented and submitted to the Engineer.
 - 11. The equipment used to make the heat fusion joint shall be capable of recording the heating and fusion pressures used to join the pipe, recording heater temperature, and storing this information for retrieval.
 - 12. Each field fusion shall be recorded by such equipment and this information shall be made available to the Engineer's representative.
- C. Excavate pipe trench in accordance with Section 31 23 17.
- D. Install pipe as indicated on Drawings.
- E. Install pipe to allow for expansion and contraction without stressing pipe or joints.
- F. Install detectable plastic ribbon tape continuously 12 inches above pipeline; coordinate with Section 31 23 17.

3.4 BURIAL

- A. All polyethylene pipe must be installed to minimize shear and tensile stresses.
- B. Pipe shall be installed in a trench as specified in the construction drawings.
- C. Minimum burial depth is specified in the Drawings.
- D. The Contractor shall take care to insure haunching material is well placed as to not disturb the pipeline.
- E. Final backfill material may consist of the excavated material as specified in the Drawings provided it is free of unsuitable matter, such as clumps of clay, stones, construction debris, and frozen clods of dirt, unless final backfill is under a roadway.
- F. Final backfill material shall be compacted as shown on the Drawings. Proctor density shall be determined by ASTM D698 for compaction and density of soils.
- G. All polyethylene pipe shall use warning tape for future location.

END OF SECTION

SECTION 22 05 03.02

PVC PIPE

PART 1 GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe and pipe fittings for the following systems:
 - a. SVE conveyance system
 - b. Groundwater conveyance system
 - c. Extraction well drop pipe
 - 2. Pipeline Test Report Form

B. Related Sections:

- 1. Section 22 05 23 General Duty Valves.
- 2. Section 31 23 17 Trenching, Backfilling, and Compaction
- 3. Section 31 70 00 Boring and Jacking.

C. ASTM International:

- 1. ASTM D1785 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120.
- 2. ASTM D2235 Standard Specification for Solvent Cement for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe and Fittings.
- 3. ASTM D2464 Standard Specification for Threaded Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80.
- 4. ASTM D2466 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 40.
- 5. ASTM D2564 Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Piping Systems.

1.2 SUBMITTALS

A. Product Data: Submit data on pipe sizes, materials and fittings. Submit manufacturers catalog information.

1.3 DELIVERY, STORAGE, AND HANDLING

- A. Furnish temporary end caps and closures on piping and fittings. Maintain in place until installation.
- B. Protect piping from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.

1.4 ENVIRONMENTAL REQUIREMENTS

A. Do not install underground piping when bedding is wet or frozen.

1.5 FIELD MEASUREMENTS

A. Verify field measurements prior to fabrication.

1.6 COORDINATION

A. Coordinate installation of buried piping with trenching.

PART 2 PRODUCTS

2.1 PVC PRODUCTS

- A. PVC Pipe: ASTM D1785, Schedule 40, polyvinyl chloride (PVC) material.
 - 1. Fittings: ASTM D2466, Schedule 40, PVC.
 - 2. Joints: ASTM D2855, solvent weld with ASTM D2564 solvent cement.
- B. PVC Pipe: ASTM D1785, Schedule 80, PVC material
 - 1. Fittings: ASTM D2467, Schedule 80, PVC.
 - 2. Joints: ASTM D2855, solvent weld with ASTM D2564 solvent cement.

2.2 UNDERGROUND PIPE MARKERS

A. Plastic Ribbon Tape: Bright colored, continuously printed, detectable metallic, minimum 6 inches wide by 4 mil thick, manufactured for direct burial service.

2.3 BEDDING AND COVER MATERIALS

A. Bedding, cover, and backfill shall be as specified in Section 31 23 17 and as indicated on the Drawings.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Verify excavations are to required grade, dry, and not over-excavated.
- B. Verify trenches are ready to receive piping.

3.2 PREPARATION

- A. Remove burrs.
- B. Remove dirt on inside and outside before assembly.

- C. Prepare piping connections to equipment with flanges or unions.
- D. Keep open ends of pipe free from scale and dirt. Protect open ends with temporary plugs or caps.

3.3 INSTALLATION - BURIED PIPING SYSTEMS

- A. Verify connection sizes, locations, and inverts are as indicated on Drawings.
- B. Excavate pipe trench in accordance with Section 31 23 17.
- C. Install pipe to elevation as indicated on Drawings.
- D. Install pipe on prepared bedding.
- E. Install valves at locations indicated on Drawings in accordance with this Section.
- F. Install plastic ribbon tape continuously buried 12 inches, above pipe line; coordinate with Section 31 23 17.
- G. Pipe Cover and Backfilling:
 - 1. Backfill trench in accordance with Section 31 23 17 and as indicated on the Drawings.

3.4 INSTALLATION - ABOVE GROUND PIPING

- A. Route piping in orderly manner and maintain appropriate gradients. Route parallel and perpendicular to fences and equipment.
- B. Install piping to maintain headroom without interfering with use of space or taking more space than necessary.
- C. Group piping whenever practical at common elevations.
- D. Sleeve pipe passing through partitions, walls and floors.
- E. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.
- F. Install piping penetrating roofed areas to maintain integrity of roof assembly.
- G. Install valves in accordance with the manufacturer's instructions.
- H. Insulate piping as shown in the Drawings.

3.5 FIELD QUALITY CONTROL

- A. The Contractor shall test each SVE line by applying a pressure of 10 psig and holding it for a minimum of 15 minutes. Measured pressure shall be at least 90% of the applied pressure (9 psig) at the end of the test period. Contractor and Engineer to document results using forms found in this specification.
- B. The Contractor shall test the groundwater conveyance line by applying a pressure of 150 psig and holding it for a minimum of two hours. During the test, the test pressure should not lose more than 10 psig without being pumped back up to test pressure. Contractor and Engineer to document results using forms found in this specification.

Leakage Allowed (L_{ALL}):

 $L_{ALL} = SD(\sqrt{P})/133,200 \text{ (gal/hr)}$

S = Length (ft)

D = size (in)

 $P = Pressure \ (psi-gauge)$ (average test pressure during the hydrostatic test)

END OF SECTION

PIPELINE TEST REPORT

Operating Company:					
Testing Company:					
This form must be completed for line and on each service line that				r service	
	<u> 1</u>	<u>Γest Data</u>			
Type of Pipe/Line:					
Size of Pipe:	inches	s Length of I	ine:		
Location of Line:					
Tested with: Air () Water	•()				
Time Started:a.	m./p.m.	Time Ended:	a.m./p.	.m.	
Test Pressure Start:	psig Test Pressure Stop:psig				
Line Loss: Yes		No	Amount Lost:		
Allowable Loss per Specification:	:	Pass _	Fail		
Reason for Line Loss:	 				
Corrective Measures Taken:					
Remarks:					
DBS&A Representative:					
Signature:		Date:			
Contractor Representative:					
Signatura		Dota			

SECTION 22 05 19

GAUGES AND SENSORS

PART 1 GENERAL

- 1.1 Summary
 - A. Section Includes:
 - 1. Analog dial-type vacuum gauges for SVE system lines.
 - 2. Analog dial-type pressure gauges for groundwater extraction wells.
 - 3. Groundwater extraction well flow meters per drawings.
 - B. Accessories to be furnished and installed at the locations indicated on Drawings.
 - C. Allowances:
 - 1. Gauges, meters, and sensors shall be considered incidental.
- 1.2 References
 - A. Except as modified or supplemented herein, all gauges shall conform to the requirements of:
 - 1. ANSI/ASME B40.100
 - 2. ANSI Grade 2A or better
- 1.3 Submittals
 - A. Shop Drawings: Required.
 - B. Product Data: Required.
 - C. Manufacturer's Installation Instructions: Required.
- 1.4 Closeout Submittals
 - A. Project Record Documents: Required.
 - B. Operation and Maintenance Data: Required.
- 1.5 Warranty
 - A. Furnish manufacturer's warranty.

PART 2 PRODUCTS

2.1 Vacuum Gauges

A. Manufacturers:

- 1. Dwyer Series LPG3 Low Pressure Gauge.
- 2. Substitutions: Permitted with the Engineer's approval.

2.2 Pressure Gauges

A. Manufacturers:

- 1. Dwyer Series SG1 Industrial Pressure Gauge.
- 2. Substitutions: Permitted with the Engineer's approval.

2.3 Flow Meters

1. Per the Drawings. Substitutions permitted with the Engineer's approval.

2.4 Gauge and Sensor Construction

A. Dwyer Series LPG3

- 1. Unless otherwise specified, gauges shall be indicating dial type with:
 - a. Drawn steel housing.
 - b. Polycarbonate lens.

B. Dwyer Series SG1

- 1. Unless otherwise specified, gauges shall be indicating dial type with:
 - a. 304 stainless steel housing.
 - b. Shatter-proof safety glass lens.

2.5 Operation

- A. The dial shall be 3 inches diameter or less with a white background and black markings.
- B. The units of measurement shall be indicated on the dial face.
- C. Subdivisions of scale shall conform to the requirements of the governing standard.
- D. Point travel shall be not less than 200 degrees or more than 270 degrees.
- E. Connection shall be ¼-inch male NPT.

2.6 Mounting

A. The mounting configuration of each gauge shall be as indicated on the Drawings.

B. Connections

1. As necessary, depending on the thickness class and size of the gauged pipe, a tap or saddle shall be located on the pipe, fitting, or appurtenance to be gauged.

- 2. The attachment shall be made by an appropriately sized NPT nipple in the tap or saddle.
- 3. Nipples or elbows or combination thereof shall be long enough such that the edge of the gauge case does not contact the pipe; however, in no case shall the distance from the edge of the pipe to the centerline of the gauge exceed 6 inches without prior approval of the Engineer.

PART 3 EXECUTION

3.1 Installation

- A. Gauges and meters shall be installed at the locations indicated on the Drawings.
- B. Gauges and meters shall be installed per the manufacturer's guidelines and directions.
- C. All gauges shall be installed in the vertical upright position, unless indicated otherwise in the Drawings.
- D. Threaded connections shall be assembled using Teflon thread tap or Teflon thread sealer, as specified in the miscellaneous piping section.

3.2 Field Quality Control

A. Test: Verify all gauge and sensor installations are free from leaks.

3.3 Schedule

ID	Range	Manufacturer	Model	Count
VG-301	−100 to 0" w.c	Dwyer	LPG3	3
PG-201	0-150 psi	Dwyer	SG1	9
FM-101	0-10 gpm			9

END OF SECTION

SECTION 22 05 23

GENERAL DUTY VALVES

PART 1 GENERAL

1.1 Summary

- A. Furnish all labor, materials, equipment, and incidentals required to install all valves necessary for the soil vapor extraction, treatment, and groundwater treatment systems including but not limited to wells, piping, and equipment.
- B. Section Includes:
 - 1. Ball valves
 - 2. Butterfly valves
 - 3. Gate valves
 - 4. Check valves

1.2 References

- A. ASTM International:
 - 1. ASTM D1785 Standard Specification for Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds.
 - 2. ASTM D4101 Standard Specification for Polypropylene Injection and Extrusion Materials
 - 3. ASTM/ASME B16.34 Valves-Flanged, Threaded, and Welding End
 - 4. ASTM B61-15 Standard Specification for Steam or Valve Bronze Castings
- B. Manufacturers Standardization Society of the Valve and Fittings Industry:
 - 1. MSS SP 67 Butterfly Valves
 - 2. MSS SP 110 Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends
 - 3. MSS SP 80 Bronze Gate, Globe, Angle, and Check Valves

1.3 Submittals

- A. Product Data: Submit manufacturer's catalog information with valve data and ratings for each service.
- B. Manufacturer's Installation Instructions: Submit hanging and support methods, joining procedures.
- C. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

1.4 Closeout Submittals

A. Project Record Documents: Record actual locations of valves.

- B. Operation and Maintenance Data: Submit installation instructions, spare parts lists, exploded assembly views.
- 1.5 Quality Assurance
 - A. Maintain one copy of each document at the site.
- 1.6 Delivery, Storage, and Handling
 - A. Accept valves on site in shipping containers with labeling in place. Inspect for damage.
 - B. Provide temporary protective coating on cast iron and steel valves.
- 1.7 Environmental Requirements
 - A. Do not install valves underground when bedding is wet or frozen.
- 1.8 Warranty
 - A. Furnish one-year manufacturer warranty for valves excluding packing.
- 1.9 Extra Materials

PART 2 PRODUCTS

- 2.1 Butterfly Valves
 - A. Manufacturers:
 - 1. Asahi/America, Inc, Model Type 57.
 - 2. Substitutions: Permitted with the Engineer's approval.
 - B. 8-inch (BFV-801): 150 psi at 73°F water temperature, maximum service temperature: 140°F, one-piece body, ASTM D1785 PVC, lug type flange facing, disc encapsulated with EPDM, stainless steel shaft, locking lever handle.
- 2.2 Ball Valves
 - A. Manufacturers:
 - 1. American Valve Company, Model p200S.
 - 2. Substitutions: Permitted with the Engineer's approval.
 - B. 2-inch (BV-201): SCH 40 PVC, pressure class 150 psi at 73°F, max temperature 140°F, in compliance with ASTM F1970, female solvent-weld socket dimensions ASTM D2467.
- 2.3 Gate Valves
 - A. Manufacturers:
 - 1. Sharpe, Series 30276

- 2. FNW, Model 200 WOG
- 3. NIBCO, Class 125, 200 WOG
- 4. Substitutions: Permitted with the Engineer's approval.
- B. 1-inch (GV-101): Stainless steel or bronze body, threaded, non-rising stem, pressure test API 598.

2.4 Check Valves

- A. Manufacturers:
 - 1. Simmons, Series 600 SB Submersible Check Valve
 - 2. Substitutions: Permitted with the Engineer's approval.
- B. Silicon bronze body, 400 psi WOG, PTFE, Viton, or approved equal O-ring, stainless steel spring, stainless steel washer and stainless steel locknut.

PART 3 EXECUTION

3.1 Examination

A. Verify piping system is ready for valve installation.

3.2 Installation

- A. Install valves with stems upright or horizontal, not inverted, unless indicated otherwise on the Drawings.
- B. Install valves with clearance for installation of insulation and allowing access.
- C. Provide access where valves and fittings are not accessible.
- D. Install butterfly valves with appropriate length handles to allow for ease of operation.

3.3 Valve Applications

- A. Install valves at locations indicated on the Drawings in accordance with this Section.
- B. Install ball or butterfly valves to isolate equipment, part of systems, or vertical risers.
- C. Install ball or butterfly valves for throttling, bypass, or manual flow control services.
- D. Install gate valves for throttling, bypass, or manual flow control services.

3.4 Schedules

Valve ID	Valve Type	Material	Size, inches	Number of Valves
BFV-801	Butterfly	PVC		3
BV-201	Ball Valve	PVC		20
GV-101	Gate Valve	SS		9
CV-101	Check Valve	Bronze	1	8

END OF SECTION

SECTION 22 07 00

PLUMBING INSULATION

PART 1 GENERAL

1.1 Summary

- A. Section Includes:
 - 1. Plumbing, insulation, jackets, and accessories for exterior, aboveground piping.
- B. Related Sections
 - 1. Section 22 05 23 General Duty Valves
 - 2. Section 22 05 03.02 PVC Pipe

1.2 References

A. ASTM International:

- 1. ASTM C195 Standard Specification for Mineral Fiber Thermal Insulating Cement.
- 2. ASTM C449/C449M Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement.
- 3. ASTM C450 Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging.
- 4. ASTM C547 Standard Specification for Mineral Fiber Pipe Insulation.
- 5. ASTM C585 Standard Practice for Inner and Outer Diameters of Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System).
- 6. ASTM C795 Standard Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel.
- 7. ASTM C1136 Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation
- 8. ASTM D1785 Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
- 9. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials.

1.3 Submittals

- A. Product Data: Submit product descriptions, thermal characteristics, and material thickness for each service, and location.
- B. Samples: Submit two samples of representative size illustrating each insulation type.
- C. Manufacturer's Installation Instructions: Submit manufacturer's published literature indicating proper installation procedures.

D. Manufacturer's Certificate: Certify that products meet or exceed the specified requirements.

1.4 Quality Assurance

- A. Test pipe insulation for maximum flame spread index of 25 and maximum smoke developed index not exceeding 450, in accordance with ASTM E84.
- B. Pipe insulation manufactured in accordance with ASTM C585 for inner and outer diameters.
- C. Factory fabricated fitting covers manufactured in accordance with ASTM C450.
- D. Maintain 2 copies of each document on-site.

1.5 Qualifications

- A. Manufacturer: A company specializing in manufacturing products specified in this section, with a minimum of three (3) years of experience.
- B. Applicator: A company specializing in performing the Work described in this section, with a minimum of three (3) years of experience.

1.6 Delivery, Storage, and Handling

- A. Accept materials on-site in original factory packaging, labeled with manufacturer's identification, including product density and thickness.
- B. Protect materials from weather and construction traffic, dirt, water, chemicals, and damage, by storing in original wrapping and in a dry storage area.

1.7 Environmental Requirements

- A. Install insulation only when ambient temperature and humidity conditions are within the range recommended by the manufacturer.
- B. Maintain the temperature before, during, and after installation, for a minimum period of 24 hours.

1.8 Field Measurements

A. Verify field measurements prior to fabrication.

1.9 Warranty

A. Furnish 1-year manufacturer warranty for insulation and jacketing.

22 07 00 - 3

PART 2 PRODUCTS

2.1 Manufacturers

- Α. Manufacturers for Insulation and Jacketing Products:
 - CertainTeed. 1.
 - 2. Knauf.
 - 3. Johns Manville.
 - Substitutions: Permitted with Engineer's Approval 4.

2.2 Pipe Insulation

- Product Description: ASTM C547, molded glass fiber pipe insulation. Conform to A. ASTM C795 for application on Austenitic stainless steel.
 - Thermal Conductivity: 0.23 at 75°F.
 - 2. Operating Temperature Range: 0 to 450°F.
 - Vapor Barrier Jacket: ASTM C1136, Type I, factory applied reinforced foil kraft 3. with self-sealing adhesive joints.
 - Jacket Temperature Limit: -20 to 150°F. 4.
 - 5. Minimum thickness: 2 inches.

2.3 Pipe Insulation Jackets

- A. PVC Plastic Pipe Jacket:
 - Product Description: ASTM D1785, One piece molded type fitting covers and sheet material, off-white color.
 - 2. Thickness: 30 mil.
 - 3. Connections: Brush on welding adhesive.
- В. Field Applied Glass Fiber Fabric Jacket System:
 - Insulating Cement/Mastic: ASTM C195; hydraulic setting on mineral wool. 1.
 - Glass Fiber Fabric: 2.
 - Cloth: Untreated; 9 oz/sq yd weight. a.
 - Blanket: 1.0 lb/cu ft density. b.
 - Weave: 10 x 10. c.
 - 3. Indoor Vapor Retarder Finish:
 - Cloth: Untreated; 9 oz/sq yd weight.
 - Vinyl emulsion type acrylic, compatible with insulation, white color. b.

2.4 Pipe Insulation Accessories

- A. Adhesives: Compatible with insulation.
- В. Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement: ASTM C449/C449M.

July 2021 Plumbing Insulation Revision 0

PART 3 EXECUTION

3.1 Examination

- A. Verify piping has been tested before applying insulation materials per Section 22 10 00 Plumbing and Piping.
- B. Verify surfaces are clean and dry, with foreign material removed.
- 3.2 Installation: Piping Systems
 - A. Exterior Piping: Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe, and finish with glass mesh reinforced vapor retarder cement. Cover with jacket with seams located at 3 or 9 o'clock position on side of horizontal piping with overlap facing down to shed water or on bottom side of horizontal piping.

END OF SECTION

July 2021 Plumbing Insulation Revision 0 22 07 00 - 4

SECTION 22 30 10

HIGH DENSITY POLYETHYLENE TANKS

PART 1 GENERAL

1.1 SUMMARY

- A. This specification covers upright, single-walled, flat bottom SVE condensate storage tank assemblies. The tank is designed for aboveground, vertical installation, and is capable of containing fluids at atmospheric pressure. Tank capacity shall be per the drawings.
- B. This specification also covers groundwater storage tank assemblies. The tank is designed for aboveground, vertical installation, and is capable of containing fluids at atmospheric pressure. Tank capacity shall be per the drawings.

1.2 MATERIALS

A. The material used shall be virgin polyethylene resin.

1.3 DIMENSIONS AND TOLERANCES

A. All dimensions will be taken with the tank in the vertical position, unfilled. Tank dimensions will represent the exterior measurements.

1.4 SUBMITTALS

A. Product Data: Submit complete information concerning materials of construction, fabrication, and fitting installation locations.

1.5 SCHEDULING

A. Schedule prior to connecting piping work.

1.6 COORDINATION

A. Coordinate work with location and placement of utilities.

PART 2 PRODUCTS

2.1 TANKS

- A. Manufacturers:
 - 1. Snyder Industries, Inc
 - 2. Substitutions: Permitted with approval of Engineer.

- B. Product Description:
 - 1. 300 gallon single-walled tanks
 - 2. 600 gallon single-walled tanks

2.2 WORKMANSHIP

- A. The finished tanks wall shall be free, as practicable, of visual defects such as foreign inclusions, air bubbles, pinholes, pimples, crazing, cracking and delaminating that will impair the serviceability of the vessel.
- B. All edges where openings are cut into the tanks shall be trimmed smooth.

2.3 THREADED BULKHEAD FITTINGS

- A. Furnish threaded bulkhead fittings as required to connect tank to piping as indicated on the Drawings.
- B. The bulkhead fittings shall be constructed of polyvinyl chloride (PVC), polypropylene (PP), or other specified material. Gaskets shall be a minimum of ¼ in. thickness and constructed of EPDM.

PART 3 EXECUTION

3.1 DELIVERY, STORAGE AND HANDLING

- A. Inspect tanks for damage.
- B. Store products in areas protected from weather, moisture, or possible damage; do not store products directly on ground; handle products to prevent damage to interior or exterior surfaces.

3.2 EXAMINATION

A. Verify layout and orientation of tank accessories and piping connections prior to placement.

3.3 INSTALLATION

- A. Install storage tanks as indicated on the Drawings and in accordance with manufacturer's instructions.
- B. Connect piping to tank.
- C. Install tank accessories not factory-mounted to complete installation.

3.4 FIELD QUALITY CONTROL

A. Field Testing:

- 1. Hydrostatically test the storage tank by filling with water to the overflow pipe level.
- 2. Conduct test minimum of 24 hours.
- 3. No leakage is permitted.
- 4. Adjust, repair, modify, or replace components of system failing to perform as specified and rerun tests.

END OF SECTION

SECTION 31 10 00

SITE CLEARING

PART 1 GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Removing surface debris.
 - 2. Removing designated paving, curbs, and sidewalks.
 - 3. Removing designated trees, shrubs, and other plant life.
 - 4. Removing abandoned utilities.
 - 5. Excavating topsoil.

B. Related Sections:

1. Section 31 23 17 - Trenching, Backfilling, and Compaction

1.2 DEFINITIONS

- A. Clearing: Clearing is the removal from the ground surface and disposal of trees, brush, shrubs, down timber, decayed wood, other vegetation, concrete, rubbish, and debris, as well as the removal of fences, stockpiled materials, and incidental structures such as recycle bins.
- B. Grubbing: Grubbing is the removal and disposal of all stumps, buried logs, roots, matted roots, and organic materials.

1.3 QUALITY ASSURANCE

A. Perform Work in accordance with applicable State of New Mexico Standard Specifications.

PART 2 PRODUCTS

Not Used.

PART 3 EXECUTION

3.1 DISPOSITION OF TREES AND SHRUBS

A. General

1. Trees and shrubs within the limits of work shall be removed only where shown on the Drawings. Do not cut or damage trees unless so indicated or unless written permission has been obtained from the affected property owner. Three

copies of such permission shall be furnished to the ENGINEER before removal operations commence.

B. Trees and Shrubs to be Removed

1. Trees and shrubs felled within the limits of work shall have their stumps grubbed and removed to a licensed disposal site. Depressions created by such removal shall be filled with suitable backfill and compacted to match properties of existing terrain.

3.2 CLEARING AND GRUBBING

- A. Clear all items specified herein to the limits indicated or as directed by the ENGINEER and stockpile cleared and grubbed material onsite. Do not start earthwork operations in areas where clearing and grubbing is not complete, with the exception that stumps and large roots may be removed concurrent with excavation. Comply with erosion and sediment control and storm water management measures.
- B. Clear and grub areas to be excavated, areas to receive fill, and areas upon which structures are to be constructed, as directed by the ENGINEER. Remove all trees, stumps, and root mats in these areas and dispose of them offsite at no cost to the property owner. Depressions made by the removal of stumps or roots shall be filled with suitable backfill.
- C. The CONTRACTOR shall clear, grub, and strip the site area to the limits of disturbance shown on the Contract Drawings. Clearing and grubbing shall not be performed more than 60 days before excavation is to begin.

END OF SECTION

July 2021 Revision 0

SECTION 31 23 17

TRENCHING, BACKFILLING, AND COMPACTION

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:

1. This Section shall be supplemental to 701 of the New Mexico Standard Specifications for Public Works Construction. Section 701 shall apply except as modified in this Section.

B. Related Sections:

- 1. Section 31 10 00 Site Clearing
- 2. Section 22 05 03.01 High Density Polyethylene Pipe
- 3. Section 22 05 03.02 PVC Pipe

1.2 REFERENCES

- A. New Mexico Standard Specifications for Public Works Construction:
 - 1. Section 701 Trenching, Excavation and Backfill

1.3 DEFINITIONS

- A. Utility: Any buried pipe, duct, conduit, or cable.
- B. Trench Zone: The trench zone includes the portion of the trench from the top of the pipe zone to the existing surface in unpaved areas.
- C. Pipe Zone: The pipe zone shall include the full width of trench from the bottom of the pipe or conduit to a horizontal level 12 inches above the top of the pipe. Where multiple pipes or conduits are placed in the same trench, the pipe zone shall extend from the bottom of the lowest pipes to a horizontal level 12 inches above the top of the highest or topmost pipe.
- D. Pipe Bedding: The pipe bedding shall be defined as a layer of material immediately below the bottom of the pipe or conduit and extending over the full trench width in which the pipe is bedded. Thickness of pipe bedding shall be as shown on the drawings or as described in these specifications.

E. Excess Excavated Material

- 1. The Contractor shall make the necessary arrangements for and shall remove and dispose of all excess excavated material.
- 2. No excavated material shall be deposited on private property unless written permission from the Engineer is secured by the Contractor.

1.4 TRENCH SAFETY

- A. All excavations shall be performed, protected, and supported as required for safety. In all cases, Contractor shall ensure that all excavation and trenching methods meet or exceed safety requirements as set forth by local, state and federal agencies.
- B. Barriers shall be placed at each end of all excavations and at such places as may be necessary along excavations to warn all traffic of such excavations.
- C. No trench or excavation shall remain open and exposed to vehicular or foot traffic during non-working hours. The trench or excavation shall be fenced off, or covered with steel plates, spiked in place, or backfilled.
- D. The Contractor shall notify the Engineer of all work-related accidents which may occur to persons or property at or near the project site, and shall provide the Engineer with a copy of all accident reports. All accident reports shall be signed by the Contractor or its authorized representative and submitted to the Engineer within twenty-four (24) hours of the accident's occurrence.

1.5 ACCESS

A. Unobstructed access must be provided to all driveways or other property or facilities that require routine use. Temporary closures of driveways require written approval of the property owner and confirmation from the Engineer.

1.6 PERMITS

A. The Contractor shall keep a copy of all the required permits in the job site and comply with all the terms and conditions of said permits.

1.7 OUALITY ASSURANCE

- A. Perform Work in accordance with applicable State of New Mexico Standard Specifications for Public Works Construction.
- B. Perform hydrostatic testing on installed pipe per Section 22 05 03.02 prior to covering pipe.

1.8 COORDINATION

A. Verify Work associated with lower elevation utilities is complete before placing higher elevation utilities.

PART 2 PRODUCTS

2.1 FILL MATERIALS

- A. Native Earth Backfill: Native earth backfill, acceptable for use, shall be fine-grained material free from roots, debris, and rocks with a maximum dimension not larger than 3 inches.
- B. Imported Backfill Material: Whenever the excavated material is not suitable for backfill, the Contractor shall arrange for and furnish suitable imported backfill material that is capable of attaining the required relative density.
- C. The Contractor shall dispose of the excess trench excavation material as specified in the preceding section. Backfilling with imported material shall be done in accordance with the methods described herein.

PART 3 EXECUTION

3.1 COMPACTION REQUIREMENTS

- A. Determine laboratory moisture-density relations of existing soils by ASTM D698.
- B. Determine the relative density of cohesionless soils by ASTM D2049.
- C. Sample backfill materials by ASTM D75.
- D. Express "relative compaction" as the ratio, expressed as a percentage; of the in place dry density to the laboratory maximum dry density.
- E. Compaction shall be deemed to comply with the specifications when no test falls below the specified relative compaction.
- F. The Contractor will secure the services of a soils tester and pay the costs of all compaction testing. The Contractor will be responsible for the cost of all retests in failed areas. Test results will be furnished to the Engineer immediately upon conclusion of the test.
- G. If the backfill fails to meet the specified relative compaction requirements, the Contractor shall rework the backfill until the requirements are met. The Contractor shall make all necessary excavations for density tests as directed by the Engineer. The Contractor will be responsible for the cost of all additional compaction tests in the reworked areas.
- H. Compaction tests shall be performed at 2 foot depths and at 200-foot intervals or as per section A-1 of Standard Specification 701.
- I. Unless otherwise shown on the drawings or otherwise described in the specifications for the particular type of pipe installed, relative compaction in pipe trenches shall be as described below:
 - 1. Pipe zone and pipe base: 85% relative compaction.
 - 2. Trench zone not beneath paving: 90% relative compaction.
 - 3. Trench zone beneath paving: 95% relative compaction.

4. Work performed in roadways shall be done in accordance with section A-1 of Standard Specification 701 and approval of the roadway Owner.

3.2 MATERIAL REPLACEMENT

A. Removal and replacement of any trench and backfill material which does not meet the specifications shall be the Contractor's responsibility.

3.3 TRENCHING

- A. Excavation for pipe, fittings, and appurtenances shall be open trench to the depth and in the direction necessary for the proper installation of the facilities as shown on the plans.
- B. Trench banks shall be kept as near to vertical as possible and shall be properly braced and sheeted.

3.4 BRACING

- A. The Contractor's design and installation of bracing and shoring shall be consistent with OSHA rules, orders, and regulations.
- B. Excavations shall be so braced, sheeted, and supported that they will be safe such that the walls of the excavation will not slide or settle and all existing improvements of any kind, either on public or private property, will be fully protected from damage.
- C. The sheeting, shoring, and bracing shall be arranged so as not to place any stress on portions of the completed work until the general construction thereof has proceeded far enough to provide ample strength.
- D. Care shall be exercised in the drawing or removal of sheeting, shoring, bracing, and timbering to prevent the caving or collapse of the excavation faces being supported.

3.5 TRENCH WIDTHS

A. Excavation and trenching shall be true to line with a minimum width of the largest outside diameter of the pipe + 12 inches and a maximum width of the largest outside diameter of the pipe + 24 inches. Width of trenches for multiple pipes will keep a distance of 12 inches between pipes.

3.6 LENGTH OF OPEN TRENCH

A. The maximum allowable length of open trench shall be the distance necessary to accommodate the amount of pipe installed in a single day.

3.7 GRADE

A. Excavate the trench to the lines and grades shown on the Drawings with allowance for pipe thickness and for pipe base or special bedding.

B. The trench bottom shall be graded to provide a smooth, firm, and stable foundation that is free from rocks and other obstructions and shall be at a reasonably uniform grade.

3.8 CORRECTION OF OVER EXCAVATION

- A. Where excavation is inadvertently carried below the design trench depth, suitable provision shall be made by the Contractor to adjust the excavation, as directed by the Engineer, to meet requirements incurred by the deeper excavation.
- B. Over excavations shall be corrected by backfilling with approved graded crushed rock or gravel and shall be compacted to provide a firm and unyielding subgrade or foundation, as directed by the Engineer.

3.9 FOUNDATION STABILIZATION

- A. Whenever the trench bottom does not afford a sufficiently solid and stable base to support the pipe or appurtenances, the Contractor shall excavate to a depth below the design trench bottom, as directed by the Engineer, and the trench bottom shall be backfilled with 3/4-inch rock and compacted to provide uniform support and a firm foundation.
- B. Where rock is encountered, (see Section 3.10 C) it shall be removed to a depth at least 6 inches below grade and the trench shall be backfilled with 3/4-inch crushed rock to provide uniform support and a firm foundation.
- C. If excessively wet, soft, spongy, unstable, or similarly unsuitable material is encountered at the surface upon which the bedding material is to be placed, the unsuitable material shall removed to a depth as determined in the field by the Engineer and replaced by crushed rock to provide uniform support and a firm foundation.

3.10 EXCAVATED MATERIAL

- A. All excavated material shall not be stockpiled in a manner that will create an unsafe work area or obstruct sidewalks or driveways.
- B. In confined work areas, the Contractor may be required to stockpile the excavated material off-site, as determined by the Engineer.
- C. Rock excavation is defined as boulders, sedimentary, or igneous rock that cannot be removed without continuous use of pneumatic tools or blasting.

3.11 PLACING OF PIPE BEDDING

A. Place the thickness of pipe bedding material over the full width of trench necessary to produce the required bedding thickness when the material is compacted to the specified relative density. Grade the top of the pipe bedding ahead of the pipe to provide firm, uniform support along the full length of pipe. Pipe bedding should not be composed of rocks or deleterious materials which may come in contact with the pipe.

3.12 BACKFILLING WITHIN PIPE ZONE

A. After pipe has been installed in the trench, place pipe zone material simultaneously on both sides of the pipe, keeping the level of backfill the same on each side. Carefully place the material around the pipe so that the pipe barrel is completely supported and that no voids or uncompacted areas are left beneath the pipe. Use particular care in placing material on the underside of the pipe to prevent lateral movement during subsequent backfilling.

3.13 BACKFILLING WITHIN TRENCH ZONE

- A. Push the backfill material carefully onto the backfill previously placed in the pipe zone. Do not permit free fall of the material until at least 2 feet of cover is provided over the top of the pipe. Do not drop sharp, heavy pieces of material directly onto the pipe or the tamped material around the pipe.
- B. The remaining portion of the trench to the street zone or ground surface, as the case may be, shall be backfilled, compacted and/or consolidated by approved methods to obtain the specified relative compaction.
 - 1. Compaction using vibratory equipment, tamping rollers, pneumatic tire rollers, or other mechanical tampers shall be done with the type and size of equipment necessary to accomplish the work. The backfill shall be placed in horizontal layers of not greater than 12-inches depth. Each layer shall be evenly spread, properly moistened, and compacted to the specified relative density as given on the drawings. The Contractor shall repair or replace any utility, pipe, fittings, manholes, or structures as directed by the Engineer damaged by the Contractor's operations.

END OF SECTION

SECTION 31 70 00

BORING AND TUNNELING CONDUITS

PART 1 GENERAL

1.1 Summary

- A. This Section covers road crossings under all paved roads including:
 - 1. Excavation for approach trenches and pits
 - 2. Casing pipe
 - 3. Carrier pipe

B. Related Sections:

- 1. Section 22 05 03.01- High Density Polyethylene Pipe
- 2. Section 31 23 17 Trenching, Backfilling, and Compaction

1.2 References

- A. New Mexico Standard Specifications for Public Words Construction.
 - 1. NM APWA Section 710 Boring, Drilling, and Jacking

1.3 Design Requirements

A. Design bracing, backstops, and use jacks of sufficient rating for continuous jacking without stoppage, except for adding pipe sections and, as conditions permit, to minimize tendency of ground material to "freeze" around casing pipe.

1.4 Submittals

- A. Installation Plan: Submit description of proposed construction plan, dewatering plan, and plan to establish and maintain vertical and horizontal alignment.
- B. Submit emergency response procedures to handle situations when conduit is compromised and jeopardizes integrity of installation or safety.
- C. Project Record Documents: Record actual locations of casing, carrier pipe, and invert elevations.
- D. Identify and describe unexpected variations to subsoil conditions or discovery of uncharted utilities.

1.5 Quality Assurance

A. CONTRACTOR shall have a copy of the NMDOT permit and its attachments on the job at all times. Deviations from the approved permit must have prior approval of NMDOT.

1.6 Qualifications

- A. Installer: Company specializing in performing work of this section with a minimum of three (3) years documented experience.
 - 1. Work Experience: Include projects of similar magnitude and conditions.
 - 2. Furnish list of references upon request.

1.7 Delivery, Storage, and Handling

- A. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.
- B. Accept system components on site in Manufacturer's original containers or configuration. Inspect for damage.
- C. Support casing and carrier pipes with nylon slings during handling.
- D. All construction equipment and materials stored on highway right of way shall be stored in such a manner and at such locations (a minimum of 30 feet from nearest traffic lane) as not to interfere with the safe passage of traffic.

1.8 Environmental Requirements

A. Conduct operations so as not to interfere with, interrupt, damage, destroy, or endanger integrity of surface or subsurface structures or utilities, and landscape in immediate or adjacent areas.

1.9 Field Measurements

A. Verify invert elevations of existing work prior to excavation and installation of casing.

PART 2 PRODUCTS

- 2.1 Casing Materials
 - A. Per Specification Section 22 05 03.01
- 2.2 Carrier Pipe Materials
 - A. Per NM APWA Specification Section 710 and as shown on the drawings.
- 2.3 Grout and Cover Materials
 - A. Soil Backfill for Trench Approaches and Pits to Finish Grade as specified in Section 31 23 17.
 - B. Pressure Grout Mix: One part Portland cement, and 6 parts mortar sand, mixed with water to a consistency applicable for pressure grouting.

2.4 End Caps

- A. Pull-on end seals shall be minimum ½-inch-thick synthetic rubber. Banding clamps shall be 304 stainless steel with worm screws. End seal shall have locating ribs on the outside for banding clamps and ribs in the inside to prevent leakage. End Seals shall be Pipeline Seal & Insulator, Inc. Model S or Model C Pull-on or approved equal.
 - 1. Materials: EPDM 60
 - 2. Thickness: ½-inch minimum
 - 3. Color: Black
 - 4. Temperature Rating: 250°F.
 - 5. Hardware: 304 stainless steel bands with worm screws

2.5 Accessories

- A. Supports and Insulators:
 - 1. Casing Spacers:
 - a. Casing Spacers shall be Cascade stainless steel casing spacers or equivalent. Casing spacers shall support and restrain carrier pipe throughout casing.
 - b. Other supports per drawings.
 - c. Substitutions: Permitted with the Engineer's approval.

PART 3 EXECUTION

3.1 Examination

- A. Locate existing underground utilities per NM APWA Specification Section 710.
- B. Verify connection to new piping system size, location, and bury depths are in accordance with drawings.
- C. Provide information pertaining to boring pit bracing and casing boring head per NM APWA Specification Section 710.

3.2 Preparation

- A. Identify required lines, levels, contours, and datum locations.
- B. Warning and protective devices, including flagmen, shall be used to prevent creation of a traffic hazard and to ensure the safety of the public in accordance with the Manual of Uniform Traffic Control Devices.
- C. Protect plant life, lawns and other features remaining as portion of final landscaping.
- D. Protect benchmarks, survey control points, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.
- E. Establish elevations of casing per drawings.

3.3 Dewatering

- A. Intercept and divert surface flow and groundwater flow away from the excavation through the use of dikes, curb walls, ditches, pipes, sumps, or other means.
- B. Develop substantially dry subgrade for prosecution of subsequent operations.
- C. Comply with State of New Mexico requirements for dewatering to any watercourse, prevention of stream degradation, and erosion and sediment control.

3.4 Existing Work

A. Maintain access to existing facilities and other remaining active installations requiring access. Modify installation as necessary to maintain access.

3.5 Pits or Approach Trenches

A. Excavate approach trenches or pits in accordance with the installation plan. Bore pits shall be located at least 30 feet from all roadways. If 30-foot separation is not attainable, use guard fence, concrete barriers, or other protective devices in accordance with NMDOT "Special Provisions."

3.6 Casing Pipe Installation

A. General:

1. No more than three (3) pilot bores will be permitted. Abandoned pilot bores shall be pressure grout filled.

B. Boring:

- 1. The boring and installation of the HDPE casing shall be performed with equipment capable of simultaneous operation per NM APWA Specification Section 710.
- 2. When voids develop greater than outside diameter of pipe by 1 inch, grout to fill voids.
- 3. When boring is obstructed, relocate, jack, or tunnel as directed by ENGINEER.

3.7 Pressure Grouting

A. Pressure grout annular space between casing pipe and surrounding earth if annular space is greater than 1 inch.

3.8 Carrier Pipe Installation

- A. Clean, inspect, and handle pipe in accordance manufacturer recommendations.
- B. Prior to installing carrier pipes into casing, slide end seal loosely onto the active carrier pipe (insertion side) making sure to have large size of end seal facing toward casing pipe. Two spare carrier pipes will be installed and capped inside the casing. Slide far enough

- back onto the active carrier pipe so that the end seal will be near the casing opening after the insertion of the carrier pipe is completed.
- C. Place carrier pipes and casing spacers in accordance with casing spacer manufacturer installation guidelines. Casing spacers shall support and restrain carrier pipe(s). Casing spacers shall be installed along the carrier pipe per manufacturer guidelines and within 2 feet of the end of the casing.
- D. Prepare outside surfaces by removing dirt from casing and carrier pipes. After the carrier pipes are inserted into casing, slide small end of end seal over the active carrier pipe with stainless steel banding clamp. Large end should face casing. Position large end of end seal over the casing pipe. Position banding clamp approximately 1 inch from the end of the casing pipe (in between the external ribs on the end seal) and then tighten. Maintain "S" shape so it will extend into the casing. Position banding clamp in between the external ribs on the end seal on the carrier pipe then tighten. (Make sure the end seal is folded into the casing to relieve stress during backfilling and allow for expansion and contraction movement.)

3.9 Markers and Vents

A. Place a readily identifiable and suitable marker at each right of way line crossed (6 feet maximum height). Marker shall also serve as a vent for annular space between carrier and casing.

END OF SECTION

SECTION 33 56 13

ABOVEGROUND HYDROCARBON STORAGE TANK

PART 1 GENERAL

1.1 SUMMARY

A. This specification covers a horizontal, double-walled, cylindrical tank. The tank is designed for aboveground, horizontal installation, and is capable of containing nonaqueous-phase liquid (NAPL) at atmospheric pressure. Extracted fluids (gasoline and diesel fuel) will be transferred to this tank from an oil-water separator

1.2 MATERIALS

A. The material used shall be welded steel.

1.3 DIMENSIONS AND TOLERANCES

A. All dimensions will be taken with the tank in the horizontal position, unfilled. Tank dimensions will represent the exterior measurements.

1.4 SUBMITTALS

A. Product Data: Submit complete information concerning materials of construction, fabrication, and fitting installation locations.

1.5 SCHEDULING

A. Schedule prior to connecting piping work.

1.6 COORDINATION

A. Coordinate work with location and placement of utilities.

PART 2 PRODUCTS

2.1 TANKS

- A. Manufacturers:
 - 1. Kohlhaas Corporation
 - 2. Hughes Tank Company
 - 3. Willborn Tank and Fuel Systems
 - 4. Mills Equipment Company
 - 5. Substitutions: Permitted with approval of Engineer.

B. Product Description:

- 1. Welded steel tank 300-gallon double-walled tank.
- 2. Tank shall conform to the UL 142, Standard for Safety for Steel Aboveground Tanks for Flammable and Combustible Liquids
- 3. Tank shall have an enamel external finish
- 4. Check valve and isolation valve on product inlet
- 5. High/high and high level switches
- 6. Normal vent with riser pipe
- 7. Emergency vent

2.2 WORKMANSHIP

- A. The finished tank wall shall be free, as practicable, of visual defects such as foreign inclusions, air bubbles, pinholes, pimples, crazing, cracking and delaminating that will impair the serviceability of the vessel.
- B. All edges where openings are cut into the tanks shall be trimmed smooth.

2.3 THREADED BULKHEAD FITTINGS

- A. Furnish threaded bulkhead fittings as required to connect tank to piping as indicated on the Drawings.
- B. Openings are female national pipe thread (FPNT)

PART 3 EXECUTION

3.1 DELIVERY, STORAGE AND HANDLING

- A. Inspect tanks for damage.
- B. Store products in areas protected from weather, moisture, or possible damage; do not store products directly on ground; handle products to prevent damage to interior or exterior surfaces.

3.2 EXAMINATION

A. Verify layout and orientation of tank accessories and piping connections prior to placement.

3.3 INSTALLATION

- A. Install NAPL storage tank as indicated on the Drawings and in accordance with manufacturer's instructions.
- B. Connect piping to tank.
- C. Install tank accessories not factory-mounted to complete installation.

3.4 Schedules

A. Storage Tank Schedule:

Stored Material	Tank Type & Number	Tank Dimensions (Nominal)	Tank Size (Capacity)	
NAPL	T-1	38" dia. & 68" long	300 gallons	

END OF SECTION

Appendix G O&M Data Collection

Site:	Former Y St	ation State Lo	ead Site		Project No: DB18.1157			
Staff:	-							
Date/Time or						off site:		
(use value of no	reading (NR)	or not active ((NA) if applicat	ole for each entry)				
SERVICE GA	AS METER F	READING:				cubic feet		
SERVICE EL		TER REA	DING:			kWh		
DPE System Da								
Main Menu				Statistics Menu				
OX OUTL	ET TEMP (°F):		_ DPE	Vacuum Blower	HOURS:		_ CYCLES:	
OX INL	ET TEMP (°F):		_	DTA Blower	HOURS:		CYCLES:	
OX Natural	Gas Valve (%)		_ M	S Transfer Pump	HOURS:		CYCLES:	
OX	Dilution Air (%)		LNAP	L Transfer Pump	HOURS:		CYCLES:	
	LEL (%)		DT/	A Transfer Pump	HOURS:		_ CYCLES:	
			Treated	d Water Totalizer	Gallons:		-	
DPE System Co	ontrol Panel M	lain Menu						
Sample point		Vacuum (in Hg)	Pressure (in H ₂ O/psi)	Temp. (°F)	Flow (scfm)	Motor (amps)]	
SVE combined i	nfluent		NA					
DTA blower		NA						
k	(nockout Tank:		inches Product Storage		orage Tank:		ft. below mea	asuring point
SVE Lines			_				_	
Well	Vacuum (in Hg)	HC Conc (ppm-v)	VelociCalc (cfm)	Velocity (ft/min)		Remarks		
Ox Effluent	NA		NA	NA				
SVE Line 1								
SVE Line 2								
SVE Line 3								
SVE combined								
LABORATORY	SAMPLES CO	OLLECTED (I	list times):					•
Oxidizer Effluent (vapor)						SVE Combi	ned Influent (v	vapor)
GW System Influent (water)						GW Treated	d Effluent (wat	er)
NOTES (leaks?	corrosion? p	otential con	cerns? sampl	ing problems?):				

Site:	Former Y Station State Lead Site	Project No: DB18.1157
Staff:		
System (Component Data	
	1 Temperature Inside Container (°F)	
	2 Knockout Tank vacuum (in. Hg)	
	3 Vacuum Relief valve on blower (open or closed)	
	4 Vacuum filter #1 differential pressure Gauge	
	5 DPE Blower Inlet Vacuum (in. Hg)	
	6 DPE Blower Outlet Pressure (in. H20)	
	7 DPE Blower Outlet Temperature (°F)	
	8 Level Oil/Water Separator Tank (In.)	
	9 DA Tank Level (In.)	
	10 Clarifier Tank Level (In.)	
	11 Level of Solids in Clarifier Sump (In.)	
	12 Clarifier Transfer Pump Operating Hours	

Individual Well Data

	Vacuum	HC Conc	VelociCalc	Velocity	GW Flow	Ducer	
Well	(in Hg)	(ppm-v)	(cfm)	(ft/min)	(gpm)	(psi)	Remarks
BW-8s							
BW-8i							
BW-8d							
RW-1s							
RW-1i							
RW-1d							
RW-2s							
RW-2i							
RW-2d							
RW-3s							
RW-3i							
RW-3d							
RW-4s							
RW-4i							
RW-4d							
BW-7R							
MW-11							
MW-12							
MW-16							
MW-13							

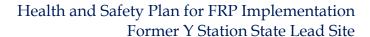
Appendix H Health and Safety Plan

Health and Safety Plan for FRP Implementation Former Y Station State Lead Site 721 Commerce Way, Clovis, New Mexico

Prepared for

New Mexico Environment Department Petroleum Storage Tank Bureau

Prepared by


6020 Academy NE, Suite 100 Albuquerque, New Mexico 87109 www.dbstephens.com DB18.1157

July 6, 2021

Table of Contents

Site	Healt	th and Safety Plan Summary	S-1					
Site-	Spec	ific Health and Safety Plan	1					
1.	Intro	oduction	1					
2.	Des	cription of Site Activities	1					
3.	Proj	ject Personnel	2					
4.	Gen	neral Hazard Review and Assessment	4					
	4.1	Sunburn and Temperature Hazards	5					
	4.2	Weather Hazards						
	4.3	Biological Hazards						
	4.4	Emergency Response	7					
5.	Tasl	k-Specific Safety Guidelines	7					
	5.1	Groundwater Sampling						
	5.2	Installation and Operation of DPE System						
	5.3	Excavating and Trenching Activities						
6.	Star	ndard Safe Work Practices	10					
7.	Air a	and Noise Monitoring						
	7.1	Air Monitoring						
		7.1.1 Organic Vapors						
		7.1.2 Combustible and Oxygen-Dencient Atmospheres						
	7.2	Noise Monitoring						
8.	Prot	tective Equipment	15					
σ.	8.1	Disposal of Contaminated Clothing or Equipment						
	8.2	Decontamination Procedures						
9.	Site	Control	17					
10.	Con	ifined Space Entry	17					
11.	Spil	l Prevention	18					
12.	Safety Meetings18							
13.	Trai	ning Requirements	18					
14.	Med	edical Monitoring Requirements19						

15.	Hospital and Evacuation Route	19
Lis	st of Tables	
1	Air Monitoring Equipment, Action Levels, and Protective Measures	13
Lis	st of Appendices	

- A Health and Safety Forms
- B Emergency Response Plan

Site Health and Safety Plan Summary

This summary provides critical, site-specific health and safety information that all site workers should be familiar with. This summary is an integral part of the site-specific health and safety plan (HASP) and must be attached to the complete plan.

Site Name and Location

Former Y Station State Lead Site, 721 Commerce Way Clovis, New Mexico

Project Personnel (refer to Section 3 for description of duties)

Project Manager (PM): Tom Golden

Site Safety Officer (SSO): Grace Herrmann

Site Supervisor: Grace Herrmann

Emergency Response

Table S-1 lists the emergency contacts that might be needed in the event of a site emergency. The complete emergency response plan is provided as Appendix B of this plan.

Site Activities and Hazard Assessment

Table S-2 identifies each of the tasks that will be performed during the field program and the hazards associated with each task. Table S-3 identifies the appropriate personal protective equipment (PPE) to be used for each task, including respiratory protection, and the air monitoring equipment that will be used. Air monitoring is further discussed in Section 7.1 of this plan. In the event that new tasks become necessary or new hazards are encountered, the SSO will update Tables S-2 and S-3 accordingly, and will notify all site workers of the changes.

Contaminants of Concern

Tables S-4 and S-5 identify the contaminants of concern that might reasonably be encountered during site activities and provide summaries of the chemical properties and worker exposure/health information, respectively. This information is typically summarized from safety data sheets (SDSs) and other sources.

Hospital Route

Figure S-1 depicts the route and provides written instructions from the site to the hospital.

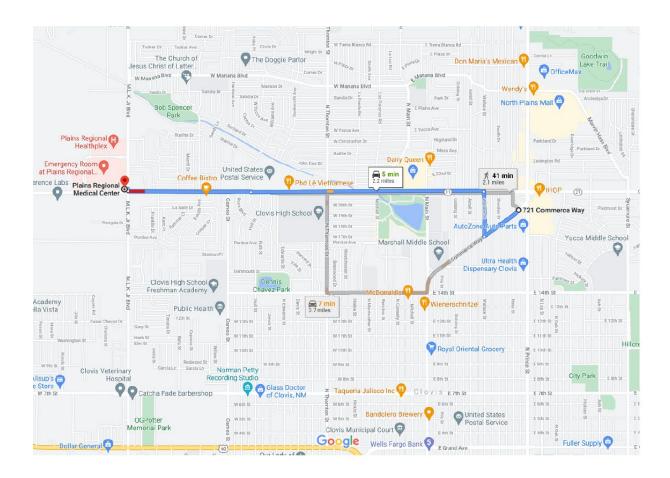
Medical Monitoring (refer to GLA Policy)

All site workers must be currently participating in a medical monitoring program that includes baseline and annual medical evaluation and testing.

Site Control Plan (refer to Section 9 of this plan)

Site control measures will be implemented during any activity that presents a hazard to workers outside the immediate work area or to unauthorized personnel in the vicinity. These measures can range from erecting barricades or barriers to prevent unauthorized entry, to establishing and enforcing work zones to mitigate the spread of contaminants beyond the work area.

As all work is occurring on private property with minimal truck traffic anticipated, a traffic control plan is not required for this site.


Confined Spaces (refer to Section 10 of this plan)

No confined space entries will be performed during this investigation. In the event that confined space entries become necessary, this site-specific HASP will be amended. Confined space entries can only be performed by trained personnel in accordance with the GLA Confined Space Entry Program.

Figure S-1. Hospital Route

The nearest hospital with emergency services is Plains Regional Medical Center, located at 2100 N M.L.K Jr Blvd, Clovis NM 88101. The map to the hospital is shown on this page, written directions are located on the following page.

721 Commerce Way

Clovis, NM 88101

†	1.	Head southwest on Commerce Way toward Ross St						
L	2.	Turn right onto Wallace St	0.2 mi					
			0.2 mi					
4	3.	Turn left onto E 21st St/Curry Rd 11						
•	0	Continue to follow E 21st St						
			1.2 mi					
†	4.	Continue straight onto W 21st St						
•	0	Pass by Allsup's Convenience Store (on the left in (0.6 mi)					
			0.6 mi					
C	5.	Turn right onto M.L.K. Jr Blvd						
•	0	Destination will be on the left						
	_		— 56 ft					

Plains Regional Medical Center

2100 N M.L.K. Jr Blvd, Clovis, NM 88101

DBS&A and Contractor Vehicles

Table S-1. Emergency Resources

Location of Nearest Telephone:

In Case of Fire or Explosion:

Fire Department: 911
Police/Sheriff 911
In Case of Personal Injury or Exposure:

Hospital: Plains Regional Medical Center: 575-769-2141
Poison Control Center: 800-222-1222
Ambulance: 911
Air Ambulance: 911

GLA and Other Contacts:

DBS&A Albuquerque Office: 505-822-9400

DBS&A Project Manager: Tom Golden, 505-249-9402

GLA H&S Committee Member: Chad Johannesen, 505-250-4630

GLA Corporate Program Administrator: Russell Granfors (cell) 602-659-7131

Human Resources Manager: Maria Robles, Ontario: 909-626-2281

Medical Contact: WorkCare, Dr. Peter Greaney, Anaheim, CA, 800-455-6155

Regulatory Contact (if appropriate): Renee Romero, 575-291-2109

Emergency Response:

Local Chemical Emergency Response Team: 911

National Response Center, Oil & Toxic Chemical Spills 800-424-8802

CHEMTREC (24-hour) 800-424-9300


Other Contacts: _____

Table S-2. Proposed Tasks and Hazard Assessment

	Proposed Tasks					
Potential Hazards	Groundwater Sampling	DPE System Installation and Operation	Trenching and Excavations			
Heavy equipment		X	X			
Hazardous energy		X	X			
Pinch points		X	X			
Unstable ground			X			
Noise hazards (>85 dbA)		X	X			
Eye hazards	X	X	X			
Head hazards		X	X			
Dermal contact	X	X	Х			
Slips, trips, and/or falls	Х	Х	Х			
Heavy lifting	X	X	X			
Vehicle traffic	Х	X	X			
Unauthorized site entry		X	X			
Buried utilities		X	X			
Overhead utilities		Х	X			
Respiratory Concerns						
Particulates			Х			
Vapors and/or gases	Х	Х	Х			
Oxygen depletion						
Asbestos						
Contaminated soil or liquids	Х	Х	Х			
Explosive atmospheres						
Heat/cold stress	Х	Х	X			
Sunburn	Х	Х	Х			
Electrical hazards		Х				
Compressed air or gases	Х	Х				
Fire hazards (hot work)		Х				
Chemical hazards (other than COCs)	Х	Х				

S-6

	Proposed Tasks					
Potential Hazards	Groundwater Sampling	DPE System Installation and Operation	Trenching and Excavations			
Insects and vermin	Х	Х	Х			
Confined spaces						
Ionizing radiation						
Unexploded ordnance/munitions						
HAZARD RANKING (Low, Medium, High)	Low	Low-Medium	Medium			

dBA = A-weighted decibels
COCs = Contaminants of concern

Table S-3. Requirements for Personal Protective Equipment and Air Monitoring

	Droposed Tasks				
		Proposed Tasks			
Personal Protective Equipment	Groundwater Sampling	DPE System Installation and Operation	Trenching and Excavations		
Level D (Long pants, shirt, steel-toed boots, and safety glasses)	Minimum require	ed for all site activities			
Hard hat		X	X		
Hearing protection		X	X		
Faceshield					
Respiratory Protection	(Selection matrix and cartridge change schedule in Project Files)				
Half-mask with organic vapor/HEPA cartridge					
Full-face with organic vapor/HEPA cartridge					
Cartridge change schedule			Breakthrough, 8 hours, or end of shift		
Air Monitoring Equipment					
Particulate monitor			Х		
Photoionization detector		X	Х		
Flame-ionization detector					
Combustible gas indicator					
O ₂ monitor					
Colorimetric tubes					
H ₂ S detector					
Methane gas monitor					
Other					

HEPA = High-efficiency particulate air

O₂ = Oxygen H₂S = Hydrogen sulfide

Table S-4. Chemical and Physical Properties for Primary Contaminants of Concern

Compound	Vapor Pressure (mm Hg)	Vapor Density ^a (air=1)	Specific Gravity	Odor Threshold ^b (ppm)	LEL-UEL (%)	Ionization Potential (eV)	Physical Description
Silica, crystalline as respirable dust [Ca]	NA	NA	2.66	NA	Unknown	NA	Colorless, odorless solid - a component of many mineral dusts.
Benzene [Ca]	75	2.7	0.88	24–119 (P)	1.2–7.8	9.24	Colorless to light yellow liquid with aromatic odor
Toluene	21	3.18	0.87	1.6 (G)	1.1–7.1	8.82	Colorless liquid with a sweet, pungent, benzene-like odor
Ethylbenzene	7	3.66	0.87	0.092–0.6 (G)	0.8–6.7	8.76	Colorless liquid with an aromatic odor
Xylene (o-, m-, p- isomers)	7–9	3.66	0.86-0.88	0.62–20 (G)	0.9–1.1	8.44–8.56	Colorless liquid with an aromatic odor (p-xylene is a solid below 56°F)
Methyl tertiary butyl ether (MTBE) [Ca]	8.5–10	3.1	0.74	0.053 (G)	NA	NA	Clear, colorless, low viscosity liquid with a terpene-like odor
Tertiary butyl alcohol (TBA)	40-42	2.55	0.79	21.5	2.4-8		
Gasoline [Ca]	38–300	NA	0.72-0.76	0.3 (G)	1.4–7.6	NA	Clear liquid with a characteristic odor
Diesel fuel	NA	<1	0.81	NA	0.7 ^a	NA	Clear white liquid with kerosene odor

Sources: NIOSH Pocket Guide to Chemical Hazards (2013 - accessed online).

mm Hg = Millimeters of mercury

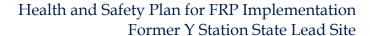
LEL/UEL = Lower explosive limit/Upper explosive limit

NA = Not available or unknown

ppm = Parts per million

eV = Electron volts

[Ca] = Known or suspected carcinogen


^a Vapor density data from *Groundwater Chemicals Desk Reference* (Montgomery, 2000) and product material safety data sheets.

b Odor threshold data from (1) MSA RESPONSE® Guide, on-line at http://webapps.msanet.com/responseguide/ChemicalDatabase.aspx, and (2) 3M Respirator Selection Guide (2012).

Table S-5. Exposure Limit, Hazard, and First Aid Information for Primary Contaminants of Concern

Compound	Applicable Exposure Limit	IDLH	Primary Acute Symptoms from Inhalation and Dermal Exposures	Target Organs	First Aid
Silica, crystalline as respirable dust [Ca]	0.05 mg/m ^{3 a}	50 mg/m ³	Cough, dyspnea (breathing difficulty), wheezing; decreased pulmonary function, progressive respiratory symptoms (silicosis); irritation eyes	Eyes, respiratory system	Eyes: irrigate immediately; Skin: no recommendation; Breathing: remove to fresh air; Ingestion: no recommendation
Benzene [Ca]	0.1 ppm ^a 1.0 ppm ^b	500 ppm	Irritates eyes, skin, and nose; causes headache, nausea, giddiness, staggered gait, weakness, exhaustion; dermatitis	Eyes, skin, respiratory system, blood, CNS, bone marrow	Eyes: irrigate immediately; Skin: soap wash immediately; Breathing: remove to fresh air, provide respiratory support; Ingestion: medical attention immediately
Toluene	100 ppm ^a 150 ppm ^b	500 ppm	Irritates eyes and nose; causes headache, weakness, fatigue	Eyes, skin, respiratory system, CNS, liver, kidneys	As above
Ethylbenzene	100 ppm ^{a,c} 125 ppm ^b	800 ppm	Irritates eyes, skin and mucous membranes	Eyes, skin, respiratory system, CNS	As above
Xylene, o-, m-, p-	100 ppm ^{a,c} 150 ppm ^b	900	Irritates eyes, skin, nose and throat; causes dizziness, excitement	Eyes, skin, respiratory system, CNS, GI tract, blood, liver, kidneys (o-, m- and p-Xylene)	As above
Methyl tertiary butyl ether (MTBE) [Ca]	50 ppm ^d	NE	Irritates eyes, skin, and respiratory tract	Eyes, skin, respiratory system, CNS	As above

Compound	Applicable Exposure Limit	IDLH	Primary Acute Symptoms from Inhalation and Dermal Exposures	Target Organs	First Aid
Gasoline [Ca]	300 ppm ^a	NE.	Irritates eyes, skin, mucous membrane; causes dermatitis, headache, weakness, exhaustion, blurred vision, dizziness, slurred speech, confusion, convulsions; possible liver, kidney damage	Eyes, skin, respiratory system, CNS, liver, kidneys	As above
Diesel fuel	10 ppm ^{a,c,e} 15 ppm ^{b,e}	NE	Irritates eyes, skin, and upper respiratory tract; CNS depression	Eyes, skin, respiratory system	As above

Sources: NIOSH Pocket Guide to Chemical Hazards (2013 - accessed on-line) and manufacturer's safety data sheets (SDS); MSA Response® Guide (2013 - accessed on-line)

mg/m³ = Milligrams per cubic meter

ppm = Parts per million

[Ca] = Known or suspected carcinogen

CNS = Central nervous system

CVS = Cardiovascular system

NE = None established

^a National Institute of Safety and Health recommended exposure limit (NIOSH REL) - 10-hour time-weighted average (TWA)

b NIOSH short-term exposure limit (STEL) - 15 minute TWA - not to be exceeded

^c Occupational Safety and Health Administration permissible exposure limit (OSHA PEL) - 8-hour TWA

^d American Conference for Governmental Industrial Hygienists (ACGIH) - 8-hr TWA

^e No exposure limit established; limits for naphthalene presented as a guide only

Site-Specific Health and Safety Plan

Project Name: Former Y Station State Lead Site, FRP Implementation

Project Location: 721 Commerce Way, Clovis, New Mexico

DBS&A Project Manager: Tom Golden

1. Introduction

This health and safety plan (HASP) establishes the responsibilities, requirements, and procedures for personnel of Daniel B. Stephens & Associates, Inc. (DBS&A), a wholly owned subsidiary of Geo-Logic Associates (GLA), while performing work at the above-named site. The HASP summary is an integral part of this HASP and must be attached for the plan to be considered complete.

The objective of this HASP is to establish a safe work environment for all site personnel, provide a uniform and concise plan of action in an emergency, and furnish the necessary guidance to adhere to these policies. This HASP meets the requirements set forth by the Occupational Safety and Health Administration (OSHA) in Title 29 of the Code of Federal Regulations (CFR), Part 1910.120 (Hazardous Waste Operations and Emergency Response) and 29 CFR, Part 1926 (Safety and Health Regulations for Construction). This HASP is designed to augment the health and safety policies and procedures established in the GLA Health and Safety Program Manual (H&S Manual).

Safety is considered a priority during all field activities. Field personnel will not perform any task for which they have not received adequate training, or which they personally feel is unsafe.

2. Description of Site Activities

The project will include DBS&A observation of the following activities: trenching and installation of buried and aboveground conveyance pipelines, installation of treatment equipment, and DBS&A performance of groundwater sampling and remediation system sampling.

DB21.1060 | Former Y HASP_706.docx

Table S-2 in the HASP summary identifies the tasks that will be performed during the field program and the hazards associated with those tasks. The measures that will be employed to protect worker safety are described in Table S-3 and Sections 4 and 5 of this plan. Assuming that the site tasks do not change and that data from follow-up testing do not change the hazard assessment, this HASP will also apply to any subsequent field events. This HASP must be revised to address activities beyond those described above and listed in Tables S-2 and S-3.

The specific field activities are described in detail in the scope of work and the related sampling and analysis plan. The site-specific field methods and procedures are based on standard procedures established by DBS&A/GLA and applicable regulatory agency guidance.

The site is considered an uncontrolled hazardous waste site. All workers and visitors are subject to the OSHA requirements for hazardous waste workers in 29 CFR 1910.120.

The site is an active gas station. Workers must be aware of traffic and pedestrians entering and exiting the site.

Nearest telephone: DBS&A and contractor personnel

Nearest water: Potable water will be supplied

Nearest bathroom facilities: Albertson's Market grocery store,

Allsup's Convenience Store, or on-site port-a-potty

Nearest fire extinguisher: DBS&A and contractor vehicles

Nearest first aid kit: DBS&A and contractor vehicles

Warning/method signal for site evacuation: Verbal

3. Project Personnel

The H&S manual establishes the roles and responsibilities for health and safety at various levels within the company. The DBS&A personnel responsible for the activities at the site are listed in the HASP summary. Their roles are described in the following subsections.

Project Manager

The Project Manager (PM) is responsible for implementing the GLA H&S Program at the site and designating the Site Safety Officer (SSO). The PM will oversee the preparation of this site-

specific HASP, ensuring that the hazards associated with each task have been identified and that appropriate protective measures have been established. The PM will approve the final HASP.

Site Safety Officer

The SSO will be responsible for ensuring that all personnel entering an active work area comply with this HASP, meet appropriate OSHA medical and safety training requirements, and use the required level of personal protective equipment (PPE). The SSO will conduct site safety meetings prior to the start of work and before the start of each new activity. Workers will acknowledge their attendance by signing the tailgate safety meeting form (Appendix A). Accidents or incidents at the job site that affect or could potentially affect worker safety will be documented using the GLA Illnesses, Injury, and Unusual Occurrence Report.

In accordance with the Hazard Communication standard (29 CFR 1910.1200), the SSO will coordinate with contractor representatives to identify hazardous materials being used on the site and to ensure that safety data sheets (SDSs [formerly referred to as material safety data sheets, or MSDSs]) are available for each material. Site workers will be briefed on hazardous materials at the job site. The SSO will maintain SDSs for the hazardous chemicals routinely used at the site; the contractor will maintain SDSs for the hazardous chemicals they bring to the site.

To maintain a safe job site, all potentially dangerous conditions or practices must be corrected before proceeding with field work. The SSO will notify contractors and the PM of any unsafe work practices, and will stop all work on DBS&A projects if contractors do not abide by this plan.

The SSO will establish the initial level of PPE and respiratory protection and will upgrade or downgrade levels of protection in response to changes in field conditions. Information and guidance concerning the PPE Program and the Respiratory Protection Program are found in the H&S manual.

The SSO will establish the physical limits of the work areas at the site and will instruct all personnel and visitors on the boundaries of the exclusion zones. Only authorized personnel will be allowed in active work areas. It is also the responsibility of the SSO to ensure that all personnel enter and leave active work areas through the decontamination station, if necessary. Specific site control measures are addressed in Section 9 of this plan.

DB21.1060 | Former Y HASP_706.docx 3

Site Supervisor

The Site Supervisor is responsible for directing all field activities at the site and ensuring that the scope of work is completed. The Site Supervisor will serve as the SSO in his/her absence.

Site Workers and Visitors

Additional workers and visitors may be authorized to enter the site under the direction of the PM or the SSO. All workers must be properly trained in their assigned duties, including standard safety procedures. All workers and visitors entering the work zone will be familiar with the contents of this site-specific HASP and will sign the plan acceptance form (Appendix A). Constructive comments regarding the HASP should be directed to the PM, the SSO, or the GLA H&S Program Coordinator.

Contractors

Contractors to DBS&A are obligated to comply with OSHA regulations and standard industry safety practices for their profession. If a contractor proposes changes in the HASP, the SSO will obtain permission from the H&S Program Coordinator and the PM, and this authorization will be documented in the project site log. A modification to the HASP will be issued reflecting the changes. Additional contractor responsibilities are described in Section 14 of the H&S manual.

4. General Hazard Review and Assessment

The hazard review for the site is based on DBS&A's experience conducting similar field operations at similar sites. Table S-2 in the HASP summary identifies the hazards associated with each task and provides a hazard ranking (from low to high) for each task. The controls (elimination, substitution, engineering, administrative, or PPE) that will be employed to protect worker safety are described in Sections 4 and 5 of this plan. Table S-3 in the HASP summary lists the PPE required to protect workers during each task and identifies the air monitoring equipment that will be used on-site.

Tables S-4 and S-5 in the site HASP summary provide information on the physical and chemical characteristics, symptoms of exposure, and first aid procedures for each of the contaminants known or suspected to be present at the site. The OSHA permissible exposure limits (PELs) or the National Institute of Occupational Safety and Health (NIOSH) recommended exposure limits (RELs) for each contaminant of concern are also presented in Table S-5. The PEL and REL are

levels to which one may be exposed for 8 hours per day, 5 days per week for one's working lifetime without resulting in adverse health effects.

4.1 Sunburn and Temperature Hazards

Sunburn is perhaps the most common hazard for field site workers. Sunburn is caused by overexposure to ultraviolet (UV) radiation from the sun. Chronic overexposure to sunlight, especially the UV-B component, accelerates skin aging and increases the risk of skin cancer. The following guidelines can be used to avoid overexposure to UV rays from the sun:

- Wear protective clothing (long sleeves, hats with protective brims, and long pants) that provides the most coverage and is consistent with the job to be performed.
- Protect eyes with UV-absorbing tinted safety glasses.
- Use a commercial sunscreen with a skin protection factor (SPF) of at least 30 and protection against both UV-A and UV-B rays. Sunscreen should be applied 15 to 30 minutes before exposure and reapplied at 60- to 90-minute intervals. If possible, avoid exposure to the sun between 10:00 a.m. and 2:00 p.m., as rays are the most powerful during this period.

Heat stress is often the most critical hazard for field site workers. The effects can range from transient heat fatigue to serious illness and even death. Heat stress is caused by a number of interacting factors including environmental conditions, clothing, workload, and the individual characteristics of the worker. Because heat stress is fairly common during the summer and fall, preventive measures and alertness are especially important during these seasons.

Protective clothing and equipment affect the way the body controls its temperature. A previous heat injury (including sunburn) can also increase an individual's susceptibility to further heat injury. Workers who have suffered a previous heat injury or who have sunburn must be especially vigilant in preventing heat stress and injury.

In order to ensure against heat stress-related problems, personnel should take frequent breaks in shaded areas. Workers should wear loose-fitting clothing (except around rotating equipment) and will unzip or remove coveralls during breaks. Cool drinking water with added electrolytes will be made available and sufficient amounts of fluids should be consumed to avoid dehydration.

During hot weather, heat stress monitoring will be part of the daily regimen. DBS&A personnel will count their pulse rate for 30 seconds as early as possible in the rest period. If the pulse rate

DB21.1060 | Former Y HASP_706.docx 5

exceeds 110 beats per minute (bpm), the length of the next work period will be reduced by 20 minutes and the heat stress parameters will be observed again at that time. If the pulse rate at the beginning of the next test period exceeds 100 bpm and the last reading was over 110 bpm, the work cycle will be reduced by one-third. Whenever the pulse rate is elevated, work should not be resumed until the pulse rate is below 100 bpm. These heat stress indicators shall be observed at least once every hour.

During cold weather, DBS&A personnel should wear multilayer, wind-resistant outfits and drink warm fluids. Warm shelter will be available during breaks.

4.2 Weather Hazards

In addition to the hazards of UV radiation from the sun and extreme ambient temperatures, general weather conditions may present a hazard to field workers. Rain and snow may result in muddy, slippery conditions that make foot and vehicle travel hazardous. Lightning and tornadoes, common summertime phenomena, can be extremely hazardous. In the event of adverse weather (e.g., high wind and airborne dust, lightning, extreme cold or heat, or rain) that could compromise worker's health and safety during outdoor activities, the SSHO will shut down operations. Additional safety measures for weather-related hazards are described in the IIPP.

If lightning is visible and the sound of thunder is heard less than 60 seconds after lightning is observed (10 miles), stop field operations and move to a sturdy, completely enclosed building. There are many apps for cell phones that will show immediate radar and tell you how many miles away lightning is from your location (e.g., Weather Bug). If a sturdy shelter is not available, get inside a hardtop automobile and keep the windows up. Automobiles offer excellent lightning protection.

In the event of a tornado, move to a pre-designated shelter. If an underground shelter is not available, move to an interior room or hallway on the lowest floor and get under a sturdy piece of furniture. Stay away from windows. If caught outside or in a vehicle, do not try to outrun a tornado in your car; instead, lie flat in a nearby ditch or depression. Remember that flying debris from tornadoes causes most deaths and injuries.

4.3 Biological Hazards

Venomous snakes and arthropods (e.g., insects, spiders, ticks, scorpions, and centipedes) create a hazard when their habitats are disturbed. Awareness and avoidance are the best defenses. Fieldwork shall be performed in a manner that minimizes disturbances of these creatures.

Should a bite or sting occur, first aid shall be immediately applied and medical treatment sought as soon as possible.

The feces and urine of some desert rodents may be carriers of the hantavirus, and fleas on living or dead animals may carry bubonic plague. Both hantavirus and bubonic plague occur in the southwestern U.S. Field workers should avoid all contact with rodent nests, droppings, or bodies. Professional medical treatment should be sought immediately if a worker suffers an animal bite of any kind.

Important Note: Any individual with a known allergy to wasps and bees must notify the SSHO and/or PM/task leader prior to working at the project site. If an individual has a history of allergic reactions to insect bites or is subject to attacks of hay fever or asthma, or if they are not promptly relieved of symptoms after first aid is administered, a physician will be called or immediate emergency medical treatment will be sought. In a highly sensitive person, do not wait for symptoms to appear, as delay can be fatal.

4.4 Emergency Response

Table S-1 in the HASP summary lists the names and telephone numbers of people and agencies that might be contacted in the event of an emergency. The emergency response (ER) plan is included as Appendix B. The ER plan includes instructions and procedures for emergency vehicular access, evacuation procedures for personnel, methods of containing a fire, and instructions on how to handle a variety of specific medical emergencies.

5. Task-Specific Safety Guidelines

Table S-2 in the HASP summary identifies each of the tasks that will be performed during the field investigation and the physical and chemical hazards associated with each task. Table S-3 in the site HASP summary identifies the requirements for PPE, as well as the air monitoring that will be performed. This section identifies the measures that will be taken to eliminate or minimize potential exposures to site workers for each task listed in Tables S-2 and S-3.

5.1 Groundwater Sampling

Groundwater samples will be collected from groundwater monitor wells. Prior to sampling, water level measurements will be collected using a water level indicator. Physical hazards may include any of those identified in Table S-2. Chemical hazards associated with groundwater

sampling include potential skin and eye contact with contaminated groundwater and sample preservatives. Attention to site conditions, good housekeeping, and use of standard safety procedures will help to control or minimize the physical and chemical hazards. Appropriate PPE for groundwater sampling is described in Table S-3.

5.2 Installation and Operation of DPE System

Site activities will include installation and operation of a dual-phase extraction (DPE) system. Chemical hazards associated with this work include inhalation of organic vapors. Physical hazards may include typical construction hazards due to work with and around heavy equipment, heat stress, trips, falls, and slips, and electrical hazards when working in and around open electrical panels. Use caution when working around blower discharge piping; it is insulated but may be hot. Blowers have sound attenuating enclosures, but ear protection may be needed when working around equipment. Remediation well vaults are located in an active gas station parking lot and in the shoulder of adjacent roadways, so use reflective safety vests and traffic cones when working in well vaults.

Appropriate PPE will include safety glasses or goggles, steel-toed boots, and long-legged pants. Air monitoring will be conducted using a PID to monitor organic vapors in the breathing zones of workers and around piping joints. Diligent air monitoring and the use of appropriate PPE and standard safety procedures will minimize the risk of exposure and physical injury. Work in and around electrical panels shall be conducted by qualified professionals and shall include locking and tagging of affected equipment.

5.3 Excavating and Trenching Activities

Excavating and trenching operations will be conducted using a backhoe or a larger excavator (trackhoe). The hazards associated with excavating operations at this site will be primarily physical (e.g., slips, trips, falls, etc.), as identified in Table S-2. Chemical hazards associated with excavating and trenching activities include potential skin and eye contact with airborne particulates and contaminated soil. Attention to site conditions, good housekeeping, and use of standard safety procedures will help to control or minimize the physical and chemical hazards. Appropriate PPE for groundwater sampling will include that described in Table S-3.

Any excavation/trenching operations will be performed in accordance with OSHA regulations in 29 CFR 1926, Subpart P (Excavations). Properly trained contractor personnel will operate excavating equipment; at no time will an employee of DBS&A operate excavating equipment. Personnel should be sure they have eye contact with equipment operators before approaching

heavy equipment. Never approach equipment from or work within an operator's blind spots. DBS&A employees will be familiar with and avoid hazards associated with work near or in trenches.

A "competent person" trained to interpret soil conditions and to identify the proper safety protection devices or procedures needed for each particular situation shall be in charge of all excavation and trenching activities at the job site. "Competent person" means one who is capable of identifying existing and predictable hazards in the surroundings, or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has authorization to take prompt corrective measures to eliminate them. The DBS&A competent person shall be designated by the PM and will be familiar with their role and responsibilities (refer to the H&S manual). All site workers should be familiar with basic soil mechanics related to excavations (refer to the H&S manual) and pay particular attention to identify evidences of distress in the excavation.

The following safety guidelines and practices can be used to mitigate some of the hazards associated with excavation activities:

- Contact the local utility locator to identify and mark the locations of any underground cables, pipes, or utility installations in the area of the proposed excavation. Discuss the locations of utilities with the property owner to identify private utilities.
- Take additional precautions when excavating a backfilled trench, or when working near railroads, highways, or other sources of vibrations.
- Provide appropriate and adequate barricades and warning lights to prevent accidental entry by workers and unauthorized persons, animals, or vehicles.
- Do not leave a hazard unguarded. Secure the site or surround the excavation with plastic high-visibility fencing to prevent accidental entry.
- If personnel are required to enter a trench or excavation that is greater than 5 feet in depth or excavated in soft or unstable materials, the sides of the excavation will be shored or sloped in accordance with OSHA regulations in 29 CFR Part 1926.652.
- If the excavation cannot be sloped adequately (usually at 1.5 horizontal to 1 vertical), trench boxes, shoring, sheeting, bracing, or other equivalent methods are required to keep the trench wall from collapsing.

- When workers are required to enter trenches that are 4 feet or greater in depth, an adequate means of exit, such as ladders or steps, shall be provided. Exit points shall be spaced no more than 50 feet apart.
- If the trench is 4 feet or more in depth and hazardous atmospheres exist or could reasonably be expected to exist, the trench shall be considered a confined space. Workers entering the trench shall be properly trained in confined space entries, and atmospheric testing for oxygen content, flammability, and organic or other vapors shall be performed before entering the trench. For additional information on the GLA Confined Space Program, refer to the H&S manual or contact the H&S Program Coordinator.

6. Standard Safe Work Practices

The following guidelines are meant to cover operations by DBS&A field staff and DBS&A contractors during field activities at the site. DBS&A contractors may choose to establish and enforce more stringent safety guidelines for personnel under their employ. Health and safety issues for other personnel working or visiting at the site and not involved in the site activities are the responsibility of the client and their respective contractors, not DBS&A.

Prior to the initiation of any on-site activities, the SSO will conduct a safety meeting to discuss the contents of this site-specific HASP, describe the field activities, identify any high-risk activities, and familiarize personnel with emergency procedures, including the route to the hospital. The DBS&A field supervisor will establish that all equipment is in good condition. The DBS&A supervisor should properly and thoroughly instruct the contractor on exactly what results are to be accomplished and point out all known safety hazards.

During the field activities, all participants will be expected to follow standard safe work practices as outlined below:

- Do not eat, drink, smoke, or chew tobacco in the work area.
- Avoid contact with potentially contaminated substances.
- Report any unsafe conditions to the SSO.
- Be aware of the physical characteristics of investigations, including:
 - Wind direction in relation to the contaminated area
 - ♦ Accessibility to associates, equipment, vehicles, etc.
 - Communication

- Areas of known or suspected contamination
- Site access
- Nearest water sources
- Dispose of all wastes generated during field activities in accordance with applicable regulatory guidelines.

7. Air and Noise Monitoring

This section describes the measures that will be taken to protect workers from exposures to hazardous atmospheres and noise during the site activities.

7.1 Air Monitoring

This site is contaminated with fuel-related petroleum hydrocarbons (gasoline, diesel), and the potential exists for the development of toxic or explosive atmospheres in or near excavation. Excavation activities also have the potential to create hazardous levels of dust and airborne particulates. Respiratory protection will be used if air monitoring shows the presence of a hazardous atmosphere at concentrations above occupational exposure limits.

Respiratory protection will be used in accordance with OSHA regulations in 29 CFR 1910.134 and the GLA Respiratory Protection Program Plan. All persons using respiratory protection must be medically cleared to do so and should be aware of the following important definitions:

- Assigned protection factor (APF) is the level of protection that a respirator or class of respirators is expected to provide to employees and is used to select the appropriate class of respirators. Level C PPE includes an air-purifying respirator (APR). A half-face APR has an APF of 10; a full-facepiece APR has an APF of 50.
- Maximum use concentration (MUC) is the maximum atmospheric concentration of a hazardous substance from which an employee can expect to be protected when wearing a respirator. The MUC is calculated by multiplying the occupational exposure limit by the APF. For example, in the case of benzene, OSHA has established a permissible exposure level (PEL) of 1 part per million (ppm) (for an 8-hour time-weighted average [TWA]), and a short-term exposure limit (STEL) of 5 ppm. Therefore, the MUC for benzene is 10 ppm for a half-face APR and 50 ppm for a full-facepiece APR. The half-face and full-facepiece APRs may be

DB21.1060 | Former Y HASP_706.docx

used for short periods of time (up to 15 minutes) in benzene concentrations up to 50 and 250 ppm, respectively (STEL x APF).

Table S-3 in the HASP summary identifies each of the tasks to be performed at the site and the air monitoring requirements for each task. Targets of such monitoring may include organic vapors, particulates, combustible gases, and oxygen. Table S-4 lists each of the contaminants of concern for the site. Table 1 lists the types of hazardous atmospheres that could be present at a site, the air monitoring equipment used for each, and the action levels to be used at this site. When in use, all meters will be calibrated daily in accordance with manufacturer's instructions.

The SSO or his/her designee will obtain PID readings of organic vapor concentrations in the breathing zone of the workers. Readings will be made at the working face of the excavation as the excavation progresses. The person making the PID measurements will determine the extent of the affected area, record the readings, and advise workers of the results.

7.1.1 Organic Vapors

The need for respiratory protection from toxic vapors is based on the most hazardous constituent that is likely to be present or known to be present, based on soil, soil gas, and/or groundwater sampling. Table S-4 lists each of the volatile contaminants of concern for the site.

A release of gasoline has occurred at this site. Gasoline is a complex mixture of petroleum hydrocarbons, additives, and blending agents, whose composition varies widely. The most hazardous constituent is benzene, a known human carcinogen. A PID will be used to monitor organic vapor concentrations; in the absence of other data, the PID readings are assumed to be due to benzene. If testing shows that benzene is not present or does not occur at significant concentrations, toluene, the next most volatile aromatic hydrocarbon in gasoline would be considered the most hazardous constituent. The OSHA PEL and STEL for benzene are 1 ppm and 5 ppm, respectively. The OSHA PEL for toluene is 200 ppm.

Assuming the presence of benzene, work will stop and workers in the affected area will upgrade to Level C respiratory protection if PID readings exceed 1 meter unit (usually parts per million by volume or ppmv) above background in the breathing zone for 5 minutes, or if unusual or unpleasant odors are detected. Workers will leave the work zone when PID readings exceed the MUC for the respiratory protection being used (10 ppm for a half-face APR; 50 ppm for a full-face APR). All personnel within the work zone will continue to wear respiratory protection until vapor levels dissipate below 1 meter unit. APRs will be equipped with organic vapor cartridges that will be changed at the end of each 8-hour shift.

13

Table 1. Air Monitoring Equipment, Action Levels, and Protective Measures

Hazard	Equipment	Action Levels in BZ	Action Response
Organic vapors	PID, FID	Background	Level D PPE
		OEL of most toxic contaminant sustained for 5 minutes	Use Level C respiratory protection; evaluate specific compounds.
		MUC for respiratory protection in use.	Stop work; upgrade to Level B
	Colorimetric (Drager) Tubes	Chemical specific: >1 ppm for benzene >1 ppm for vinyl chloride >1 ppm for 1,1-DCE	Use Level C respiratory protection if compounds exceed OELs.
Particulates Dust Monitor		Visible dust	Suppress with water
		<5 mg/m ³	Level D PPE
		>5 mg/m ³	Use Level C respiratory protection
Flammable/explosive	Explosimeter	<10% scale reading	Proceed with work
atmosphere		10 – 15% scale reading	Stop work
		>15% scale reading	Evacuate site
Oxygen-deficient	Oxygen Meter	19.5 – 23.5%	Normal - continue work
atmosphere		<19.5%	Evacuate - oxygen deficient
		>23.5%	Evacuate - fire hazard
Ionizing radiation	Gamma radiation meter	>0.1 millirem/hr	Radiation sources may be present
		>1 millirem/hr	Evacuate - radiation hazard

BZ = Breathing zone

MUC = Maximum use concentration

PID = Photoionization detector

ppm = Parts per million

FID = Flame ionization detector PPE = Personal protective equipment mg/m³ = Milligrams per cubic meter

OEL = Occupational exposure limit

June 30, 2021

1,1-DCE = 1,1-Dichloroethene

A benzene-specific colorimetric tube (e.g., Draeger) can be used to determine whether benzene is present and at what concentration. If the colorimetric tube indicates that benzene concentration exceeds 1 ppm, all personnel within the affected area must use respiratory protection. If the colorimetric tube indicates that benzene is not present, exposure levels for

toluene will be used to determine the need for respiratory protection. The SSO will periodically check for the presence of benzene using a colorimetric tube.

All personnel should be aware that the detection capabilities of PIDs may be enhanced or dampened by high humidity or by the presence of certain gases, such as methane. Direct evidence of contamination, such as visible staining of soils or strong odors, should be used to further evaluate these quantitative instrument readings.

7.1.2 Combustible and Oxygen-Deficient Atmospheres

An instrument or instruments capable of detecting combustible gases and oxygen levels will be used during excavation activities. The instrument(s) shall be placed as close to the working face of the excavation, as possible. The lower explosive limit (LEL) and the upper explosive limit (UEL) for benzene are 1.2 percent and 7.8 percent, respectively. Similar values are published for gasoline (NIOSH Pocket Guide). Excavation operations will be suspended when combustible gas measurements are at or between the LEL and the UEL.

Normal atmosphere contains between 20.8 and 21 percent oxygen. The atmosphere is oxygen-deficient if it contains less than 19.5 percent oxygen, and oxygen-enriched if it contains more than 22 percent oxygen. Oxygen-deficient atmospheres may be created when oxygen is displaced by other gases, or consumed by bacterial activities. Oxygen-enriched atmospheres can be created by certain chemical reactions and present a significant fire and explosion risk. Excavating operations will be suspended when readings indicate oxygen levels at or below 19.5 percent and at or above 22 percent.

7.1.3 Particulates

When respirable dust is considered a potential hazard (e.g., drilling or excavating operations), direct-reading personal dust monitors (e.g., Thermo Scientific pDR-1500 personal DataRAM) should be used to identify and quantify airborne dust concentrations that a worker is exposed to while working. NIOSH has established a recommended exposure limit (REL) for crystalline silica as respirable dust of 0.05 milligrams per cubic meter (mg/m³). This value is 10-hour TWA concentration for a 40-hour workweek. NIOSH recommends the use of N95 or more efficient filters for protection against respirable dust. The MUC for crystalline silica as respirable dust is 0.5 mg/m³ for a half-face APR and 2.5 mg/m³ for a full-face APR. Supplied air respirators must be used if airborne concentrations of crystalline silica exceed 2.5 mg/m³ (NIOSH Pocket Guide, 2013). Respirator cartridges and filters will be changed each day.

DB21.1060 | Former Y HASP_706.docx 14

7.2 Noise Monitoring

All site personnel who are exposed to average noise levels of 85 A-weighted decibels (dBA) or greater during an 8-hour workday must participate in their company's Hearing Protection Program. Workers must use appropriate hearing protection whenever noise levels exceed 90 dBA. The GLA H&S Program Coordinator has used a noise meter to survey a variety of equipment that may be used during the site activities and found that work around heavy equipment is most likely to require hearing protection. Noise levels are highest near the engines and compressors, but generally do not exceed 85 dBA in the typical operator locations (e.g., behind the drill rig). However, impact noise, such as the tripping of a pneumatic or hydraulic hammer on a direct-push rig or driving casing on a dual-tube drill rig, can be considerably higher. When a noise meter is not available, the following rule of thumb should be used: if it seems loud or you cannot carry on a normal conversation, hearing protection should be worn.

8. Protective Equipment

PPE requirements for each task are described in Table S-3. At a minimum, the following PPE shall be used by personnel while working at the site:

- Steel-toed/steel-shanked work boots
- Long pants
- Protective eyewear
- Hard hat (when needed)
- Chemical-resistant gloves (when needed)
- Hearing protection (when needed)

Level C PPE will include Level D equipment plus a full- or half-face air-purifying respirator with appropriate cartridges and prefilters. Workers using respiratory protection should be familiar with guidelines to determine that the equipment being used for respiratory protection is providing adequate protection, as discussed in Section 7.1. Chemical-resistant coveralls and/or gloves will be worn whenever conditions require DBS&A field personnel to come in direct contact with potentially contaminated materials.

DBS&A will supply employees with PPE that meets requirements established by NIOSH or the American National Standards Institute (ANSI), and that meet current OSHA criteria. Employees will be trained in the selection, care, and use of PPE, as described in the H&S manual.

8.1 Disposal of Contaminated Clothing or Equipment

All potentially contaminated clothing, Tyvek coveralls, gloves, paper towels, and other expendable items will be placed in garbage bags for disposal. Fresh Tyvek coveralls and work gloves should be donned at the start of each workday or when otherwise required.

8.2 Decontamination Procedures

Specific personnel decontamination procedures are based on the personal level of protection. When using Level D protection, a personnel decontamination system (PDS) is not required. However, because project personnel wearing Level D protection may need to upgrade to Level C if site conditions change, a PDS may be established based on specific site characteristics.

The decontamination stations for Level C decontamination may include (1) a segregated equipment drop for hand tools and monitoring equipment, (2) a wash and rinse for gloves and disposable booties (if worn), (3) a removal station for gloves and disposable booties (if worn), (4) a removal station for respiratory protection, hard hat, safety glasses, and Tyvek suits, and (5) a station to wash and rinse hands and face. Specific procedures and the sequence of events will be determined based on the potential hazards identified at the site. The stations listed are a guide to the selection of adequate decontamination procedures.

When a PDS is set up, the SSO or his/her designee has the responsibility for operating the decontamination station. This person will make sure that all personnel enter and leave active work areas through the PDS, that all personnel decontaminate properly, and that disposable items are bagged. The SSO will assist on-site workers in changing cartridges, masks, gloves, or other pieces of safety equipment, and monitor the length of work periods. Disposable items will be placed in plastic bags and properly disposed of. Non-disposable items will be properly cleaned and dried according to manufacturer's specifications and stored for future use.

Decontamination procedures, which are based on guidelines appropriate for low-level contamination, will be required for all reusable equipment used for sampling, personal protection, and field monitoring. Sampling equipment will be decontaminated between each sample. High-pressure steam cleaners, Alconox detergent solution, and deionized water rinses may be used. If necessary, personnel will decontaminate equipment at a specified decontamination area before leaving the site. Field monitoring equipment will be cleaned daily; additional cleaning and recalibration will be performed if contamination affects operation.

DB21.1060 | Former Y HASP_706.docx 16

9. Site Control

Barricades, caution tape, or other necessary means shall be used when necessary to prevent unauthorized access into the work area. The SSO will establish the physical limits of the work areas at the site and instruct all personnel and visitors concerning the boundaries of the exclusion zones.

At a minimum, a 15-foot-wide primary exclusion area will be established around the perimeter of active machinery. DBS&A personnel will enter the primary exclusion zone only when absolutely necessary for the performance of the task at hand. A secondary exclusion zone will be established around the general work area. If necessary, the work area will be marked off with temporary barriers and caution tape. Only authorized personnel will be allowed in active work areas.

Traffic control plans may be required for all sites where work activities may impact traffic flow on adjacent roadways. These plans must be submitted to and approved by the local traffic control authority. The PM or their designee will be responsible for ensuring that the necessary site control measures and plans are prepared and implemented.

10. Confined Space Entry

No confined spaces have been identified at the site and no confined space entries are anticipated during the field activities. However, any confined spaces identified as the work progresses shall be properly marked and managed accordingly. GLA has developed and implemented a Confined Space Entry Program Plan that provides policies and procedures to be followed for confined space entries, including air monitoring, participant training and duties, and authorizing and permitting confined space entries.

If confined space entries become necessary, the SSO will contact the PM and this site-specific HASP will be amended accordingly. The SSO will ensure that entries are performed in accordance with the GLA Confined Space Entry Program Plan. If necessary, the SSO will contact the local fire department to coordinate the entry and rescue requirements.

11. Spill Prevention

Minor spills of potentially contaminated soil, residual free product, or groundwater may occur during site work. If a spill occurs, site personnel will use best judgment and available materials to contain and prevent it from spreading. All contained soil and liquids will be disposed of in compliance with federal, state, and local requirements.

12. Safety Meetings

A site safety or "tailgate" safety meeting will be held every day before the start of work for the project and before the start of each new activity. All personnel directly involved in the work are required to attend. This HASP and all pertinent health and safety issues will be discussed during the initial briefing or meetings. The tailgate meeting will also address specific issues regarding on-site health and safety, such as the proposed work and associated hazards, recent problems, and any accidents or incidents. All personnel will acknowledge their attendance by signing the safety meeting form (Appendix A).

13. Training Requirements

Before entering the site, workers will have received the necessary training required by OSHA for workers at potentially hazardous waste sites [29 CFR 1910.120(e)], including 40 hours of formal instruction and a minimum of 3 days of field experience under the supervision of a trained and experienced worker. Additionally, site supervisors will have completed an 8-hour health and safety supervisor training course. Before starting work, each worker will receive site-specific hazard recognition and emergency response training.

In the event that organic vapor concentrations in the work zone require an upgrade to Level C PPE, only workers who are trained and medically cleared to wear a respirator will be allowed in the work zone.

DBS&A's contractors will certify, by name, that each of their employees who will perform field work at a hazardous waste project site has received the applicable health and safety training listed above.

14. Medical Monitoring Requirements

All medical monitoring will be performed in accordance with 29 CFR 1910.120(f), 29 CFR 1910.134 (Respiratory Protection), and 29 CFR 1910.95 (Occupational Noise Exposure). The PM must identify any chemicals of concern that might require monitoring (e.g., lead or PCBs) before and after the site activities.

The GLA medical monitoring program is directed by WorkCare in Anaheim, California. In the event of a chemical exposure resulting in symptoms or illness, the SSO may contact Dr. Peter Greaney at WorkCare (800-455-6155) to obtain guidance for recommended testing protocols.

15. Hospital and Evacuation Route

If a medical emergency occurs during work at the site, the Lincoln County Medical Center in Alto, NM is the closest emergency room facility. Figure S-1 in the HASP summary provides a computer-generated route map from the site to the hospital, with driving directions. All workers should be familiar with the location of this facility. The SSO will perform a pre-activity physical route check to determine any planning modifications required. If the evacuation route needs to be modified, this HASP will be corrected, and all workers will be notified of the changes. All workers should be familiar with the location of this facility.

Appendix A Health and Safety Forms

Health and Safety Plan Acceptance Form

	form is to be completed by e vaste site. THIS FORM IS TO E		
Project			
Job No.			
Location			
	low, I acknowledge that I hav n for this project. I agree to p		
Signature	Print Name	Company	Date
	· ·		

Tailgate Safety Meeting

Project ID:	Day:				
Location:	Date:	Date:			
Project Manager:	Team Leader:				
Health & Safety Officer:	No. of Personnel Present:				
Check Topics Discussed					
Scheduled Activities:					
Chemical/Physical Hazards Contaminants of Concern Safety Data Sheets Overhead & Underground Utiliti Extraordinary Site Conditions Lifting/Slips/Trips/Falls Heat/Cold Stress (Inc. Sunburn) Other: First Aid Facilities/Kits/Eyewashes Personal Protective Equipment - Leve Hard Hats/Hearing Protection Steel-Toed Boots Glasses/Goggles/Shields Gloves Contingency: Level C Respirators & Tyvek/Saranex Emergency Procedures/Site Safety "Buddy System" Communication Facility-Specific Regulations Rally Point Emergency Facilities Name:	Other Sanitation & Hygiene Drinking Water/Fluids Restrooms Personal Cleanliness Housekeeping Waste Containers Waste Materials Other Fire Prevention Locations of Extinguishers Smoking Hot Work Explosive & Flammable Liquids Other:				
Address: Tel. No.:					
Safety Meeting Attendees:					
	gnature Name Signature				

Illnesses, Injury, and Unusual Occurrence Report

Date of Event:	Report Number:
l. Name of the Site:	
2. Name of individual(s) injured, ill, or exposed:	
. Provide a brief, but concise description of the event:	
. Damaged Property:	
. Damage to equipment and the type of equipment:	
Any motor vehicle accident, regardless of fault, which involve vehicle, or personal vehicle, while the employee is acting in the accompanied by a police report, unless the police refuse accident. In addition, draw a simple illustration of the scene	es a company vehicle, rental the course of employment must to respond to the scene of the
'. Action taken/additional employee training:	
8. Name and Signature:	Name (print)
	Signature
	Date completed

Diagram 1:		
Diagram 2:		

Daily Site Safety Checklist

Job Name and Number:	
Person Completing Form:	Date(s):
Instructions: Use form for up to five consecutive days. Wri	te in date, place checkmark to indicate item has been
completed. Deficiencies must be corrected. Completed for	orm to be maintained with the Project files with copy to
H&S Program Coordinator	

	Date
Checklist Item	
The HASP (including emergency phone numbers) has been reviewed and signed by GLA staff, subcontractors, & visitors and is available on site	
Hazardous chemicals have been discussed and SDSs are available for each hazardous chemical on site.	
Tailgate Safety Meeting has been conducted for all site workers and visitors (and updated as necessary)	
Copies of Hospital Route map and emergency phone numbers are available in all vehicles	
DBS&A personnel and subcontractors have discussed hazards associated with Site-specific work	
Potential slips, trips, or fall hazards have been identified and mitigated where possible	
Site control measures have been established for present conditions (e.g., safety cones or caution tape)	
Proper PPE has been identified and is being used for present conditions	
Personnel monitoring is being conducted for present conditions	
An operating, fully-charged cell phone is available on site	
A fully-stocked first aid kit and eye wash bottle are readily available	
Fully-charged fire extinguishers are available for use.	
All workers and visitors have training appropriate for assigned tasks	
Equipment on-site has been inspected and is in safe working order	
Electrical power operated tools are properly grounded and used with a GFCI	
Excavated soils are properly stored and labeled	
Excavations are properly shored/sloped and barricaded	
Used disposable PPE and garbage are bagged for proper disposal	
All Health and Safety concerns have been communicated to the Site H&S Officer and the Project Manager	

Project Health and Safety Checklist

The Project Manager and their designated site supervisors and safety officers are responsible for the implementation of the company health and safety program. This form has been designed to help the Project Manager meet the health and safety guidelines established by the company in accordance with OSHA regulations and accepted protocols. If you have any questions, contact the H&S Program Coordinator.

Project Planning

- Do all of the workers at the site have the required or appropriate level of safety training for the site and the assigned tasks (e.g., current 40-hour training, 8-hour Supervisor training, 3-day supervised training)?
- _ Has an OSHA-trained Supervisor been designated for the site?
- Has a Safety Officer been designated for the site?
- Has a Competent Person been designated for the site (required at construction/excavation sites)?
- Do field personnel have current first aid/CPR training?
- Are there any health hazards at the site that require workers to be medically monitored (e.g., excessive noise, possible respirator use, or potential for exposure to hazardous contaminants)?
- Are there any special health hazards at the site that require baseline testing before and follow-up testing after field activities (e.g., cadmium or PCBs)?

Site H&S Plans

- Has a site-specific H&S Plan been prepared? [Required for all Hazwoper sites; Company policy requires completion of the H&S Plan Summary at a minimum.]
- Has the site H&S Plan been reviewed and approved by the PM?
- Have all site workers been briefed on the contents of the site H&S Plan and signed-off on the Plan?
- Have Tailgate Safety Meetings been held as necessary (e.g., prior to the start of activities, when activities or conditions change, or when new workers come on site) and have those present signed the attendance sheet?
- Do site workers understand the site hazards and know the route to the hospital?
- Have clearances been obtained for underground utilities?

Documentation

The following documentation should be available at the field site or in the office for inspection:

- Site-specific H&S Plan signed by site workers (must be available at the field site)
- Utility Clearance Form (must be available at the field site)
- MSDSs for hazardous chemicals used on-site (must be available at the field site)
- Tailgate Safety Meeting forms signed by site workers (current one in the field and completed forms in the project file)
- Records of excavation inspections by Competent Person (current one in the field and completed forms in the project file)
- Copies of Accident/Incident or Chemical Exposure reports (submitted to H&S Program)
- Results of any safety inspections (project and/or program files)

Appendix B

Emergency Response Plan

Emergency Response Plan

Purpose and Scope

The following emergency response plan (ER plan) has been developed to include instruction and procedures for emergency vehicular access, evacuation procedures for personnel, methods of containing a fire, and medical emergencies. All extraordinary conditions that require concise and timely action must be dealt with in a manner that minimizes the health and safety risks to the immediate site personnel and the general public.

General Response Considerations

All on-site personnel shall be familiar with the ER plan described herein. This section will be maintained in the field office.

Due to the nature of the site, the emergencies or extraordinary conditions that may arise are more than likely limited to personnel accidents requiring first aid, exposure to contaminated sediments, and potential fire near mechanical equipment. The following procedures shall be implemented in the event of an emergency:

- First aid or other appropriate initial action will be administered by those closest to the
 accident/event. This assistance will be coordinated by the Site Safety Officer (SSO) and will
 be conducted in a manner so that those rendering assistance are not placed in a situation of
 unacceptable risk. The primary concern is to avoid placing a greater number of workers in
 jeopardy.
- Personnel shall report all accidents and unusual events to the SSO, the subcontractor Health and Safety representative, and the Project Manager (PM).

The SSO and other on-site personnel are responsible for conducting the emergency response in an efficient, rapid, and safe manner. The SSO will decide if off-site assistance and/or medical treatment is required and shall be responsible for alerting off-site authorities and arranging for their assistance. The SSO, in coordination with the contractor Health and Safety representative, will provide an Accident/Incident Report to the PM that includes the following:

A description of the emergency (including date, time and duration)

B-2

- Date, time and names of all persons/agencies notified and their response
- A description of corrective actions implemented or other resolution of the incident

All workers at the site are responsible for conducting themselves in a mature, calm manner in the event of an accident/unusual event. All personnel must conduct themselves in a manner to avoid spreading the danger to themselves and to surrounding workers.

Responsibilities

The SSO shall have responsibility for directing response activities in the event of an emergency. He/she will:

- Assess the situation
- Determine required response measures
- Notify appropriate response teams
- Determine and direct on-site personnel during the emergency

The SSO shall coordinate the response activities of on-site personnel with those of public agencies.

Public Response Agencies

The site-specific HASP includes a list of public response agencies to be contacted and who may, depending on the nature of the situation, assume authority for emergency response. The HASP presents local emergency numbers, including local hospitals (which include the poison control center), ambulance service, fire and police departments, and others. In addition, nationwide hotline numbers for emergency assistance are listed. These phone lists should be retained by all field personnel and posted by the phone in all field trailers.

The hospital location is outlined in the HASP. The SSO will provide directions and/or maps to these facilities to all field personnel.

Prior to the initiation of all on-site work, the local police and fire department will be notified, if deemed necessary. This notification will take the form of a letter describing both on-site and off-site activities. If requested, a briefing will be held to further explain the type of activities and equipment that are associated with each project. Emergency procedures also will be discussed.

Accidents and Non-Routine Events

Several types of emergencies are outlined in the following subsections. These are not intended to cover all potential situations, and the corresponding response procedures should be followed using common sense. Every accident is a unique event that must be dealt with by trained personnel working in a calm, controlled manner. In the event of an accident/unusual event, the prime consideration is to provide the appropriate initial response to assist those in jeopardy without placing additional personnel at an unnecessary risk. Employees shall be instructed to report all injuries and illnesses to the SSO.

Worker Injury

If a person working on the site is physically injured, appropriate first aid procedures shall be followed. Depending on the severity of the injury, emergency medical response may be sought. If the employee can be moved, he/she will be taken to the edge of the work area where contaminated clothing (if any) will be removed, and emergency first aid administered. If necessary, transportation to local emergency medical facility will be provided as soon as possible.

If a worker can only be moved by emergency medical personnel, the SSO will decide what protective equipment, if any, is required to be worn by emergency personnel. Each work area will have extra equipment available for emergencies.

- Eye Exposure: If contaminated solid or liquid gets into the eyes, wash eyes immediately at the emergency eyewash station using water and lifting the lower and upper lids occasionally. Obtain medical attention immediately if symptoms warrant.
- *Skin Exposure*: If contaminated solid or liquid gets on the skin, wash skin immediately at the decontamination station using soap and water. Obtain medical attention immediately if symptoms warrant.
- Inhalation: If a person inhales large amounts of organic vapor, move him/her to fresh air at once. If breathing has stopped, perform cardiopulmonary resuscitation (CPR) per American Red Cross standard first aid instruction. Keep the affected person warm and at rest. Obtain medical attention as soon as possible.
- *Ingestion*: If contaminated solid or liquid is swallowed, medical attention shall be obtained immediately by consulting the Poison Control Center as outlined in the site-specific HASP.

Temperature-Related Problems

Adverse weather conditions are important considerations in planning and conducting site operations. Hot or cold weather can cause physical discomfort, loss of efficiency, and personal injury. One or more of the following control measures shall be employed to help control heat stress:

- Provide adequate non-alcoholic liquids to replace lost body fluids. Employees must replace
 water and salt lost through perspiration. Employees will be encouraged to drink more than
 the amount required to satisfy thirst, as thirst satisfaction is not an accurate indicator of
 adequate salt and fluid replacement.
- Replacement fluids can be a 0.1 percent salt solution, commercial mixes such as GatoradeTM or Quick KickTM, or a combination of these with fresh water.
- Establish a work regimen that will provide adequate rest periods for cooling down.
- Take rest breaks in a cool, shaded area during hot periods.
- Employees shall not be assigned other tasks during rest periods.
- Inform all employees of the importance of adequate rest, acclimation, and proper diet in the prevention of heat stress.

Adverse Weather

In addition to the hazards of UV radiation from the sun and extreme ambient temperatures, general weather conditions may present a hazard to field workers. Rain may result in muddy, slippery conditions that make foot and vehicle travel hazardous. Lightning and tornadoes, common summertime phenomena, can be extremely hazardous. In the event of adverse weather (e.g., high wind and airborne dust, lightning, extreme cold or heat, or rain) that could compromise worker's health and safety during outdoor activities, the SSO will shut down operations. Safety precautions for lightning and tornadoes can be found in the health and safety manual.

Fires

The potential for fires involving hazardous chemicals must be addressed during the preliminary site-specific evaluation of all hazards. Personnel in each work group will be knowledgeable in

fire extinguishing techniques. They shall be instructed in proper use and maintenance of the appropriate fire extinguishers supplied at the work site.

Vehicle Accidents

Posted speed limits will be observed. All vehicles will be required to meet applicable state inspection standards. All drivers will be required to have a good driving record and must have all necessary licenses to operate their vehicle.

The phone numbers of the SSO, the field office, and subcontractor health and safety representative will be carried in each vehicle at the site. These numbers may also be provided to all police, fire, rescue, and emergency agencies in the area.

Upon notification of an accident, the PM will make available any personnel and equipment at his or her disposal to aid in the cleanup. For example, the following equipment may be supplied:

- Sorbent materials to contain/control liquids
- Front-end loaders to pick up solids
- Dust-suppression materials to control dust
- Trucks to haul collected material
- Appropriate protective gear for cleanup workers

The supervision and operation of all emergency response personnel and equipment will be coordinated through the authorities at the scene of the accident.

Appendix I

Permits

File No.			
----------	--	--	--

nim Interstate Stream Commission

NEW MEXICO OFFICE OF THE STATE ENGINEER

APPLICATION FOR PERMIT TO CHANGE AN EXISTING WATER RIGHT (Non 72-12-1)

(check applicable boxes):

For fees, see State Engineer website: http://www.ose.state.nm.us/

■ Change Purpose of Use	■ Change Point of Diversion (POD):			Additional Groundwater Point		
■ Ground water ☐ Surface Water	From: 🔳 Gro	undwater 🔲 Surface Water		of Diversion (POD)		
■ Change Place of Use	To: 🔳 Gro	undwater 🔲 Surface Water		Additional Surface Water Point		
■ Groundwater ☐ Surface Water				of Diversion (POD)		
☐ Temporary Change, NMSA 1978, § 72-12-7(B) Requested Start Date: Requested End Date:						
` '	(Not to Exceed 3 ac-ft in One Year)					
☐ Water Use Lease, NMSA 1978, §§ 72-6-1				uested End Date:		
■ Temporary Change (other)	Requested S	Start Date: Agreement da	_{ite} Req	uested End Date: 12/31/2030		
☐ Accounting Period Start Date: WY 20:	21					
1. APPLICANT(S) (Required) Note: water-rig	ght owner must b	be listed as an applicant.				
Name:		Name:				
City of Clovis		New Mexico Environm	ent Depart	ment - PSTB		
Contact or Agent: check he	ere if Agent 🗌	Contact or Agent:		check here if Agent		
Justin Howalt, P.E., Clovis City Manager		Thomas Golden, P.E.	(DBS&A)			
Mailing Address: 321 N. Connelly St.		Mailing Address: 6020 Academy Rd. N	E Suita 10	10		
·		City:	L, Suite 10	10		
Clovis	Clavis					
State: Zip Code:				Zip Code:		
NM	88101	State: NM		87109		
Phone:	☐ Cell	Phone:	☐ Home ☐ Cell			
Phone (Work): 575-763-9654		Phone (Work): 505-8	822-940	0		
E-mail (optional):		E-mail (optional):				
jhowalt@cityofclovis.org		tgolden@geo-logic.d	com			
2. CURRENT OSE FILE INFORMATION (Rec	quired)					
OSE File No(s):	Priority Date (if k	*	n): Subfile/Cause No. (if applicable):			
CC-01090	1	12/31/1934	1/1934 n/a			
3. CURRENT PURPOSE OF USE AND AMO	UNT OF WATER	(Required)				
☐ Domestic ☐ Livestock ■ Irrig	gation			annum): If more details are		
☐ Municipal ☐ Industrial ☐ Cor	nmercial		needed, type "See Comments" in "Other" field below, and explain			
Other Use (specify):		in Additional Statemer				
			Diversion:1,162.16 (total WR)			
Describe a specific use If applicable (i.e. san			Consumptive Use:			
dairy etc): <u>City zoo, irrig</u> ation of golf course,	, parks, & ball lield	Other (inclu	Other (include units): See Comments			
FOR OSE INTERNAL USE		'	Application	n for Permit, Form wr-06, Rev 10/21/19		
File No.:		Trn. No.:	Trn. No.: Receipt No.:			
Trans Description (optional):		I		Sub-Basin:		
Wall Tag ID No. (if applicable):	PCW/LOG Duo	Data	DRII Duo I			

Curry			
5. ADDITIONAL STATEMENTS	CONCERNING THE	CURRENT WATE	R RIGHT
The diversion right under file nu diversion and place and purpos			ear. This application seeks to temporarily change the point of der this file number.
6. CURRENT or MOVE-FROM	POINT(S) OF DIVER	SION (POD) <mark>(Requ</mark>	uired)
☐ Surface POD OR ■	Ground Water POD	(Well)	
Name of ditch, acequia, or	spring:		
Stream or water course:		Т	ributary of:
If application proposes a new Attachment 2. ☐ Check here			am, storage dam, main canal, and/or pipeline, complete ation packet.
Latitude/Longitude (Lat/Lon	g - WGS84).	•	NM State Plane (NAD 83), UTM (NAD 83), <u>or</u> PLSS location in addition to above.
☐ NM State Plane (NAD83) ☐ NM West Zone ☐ NM East Zone ☐ NM Central Zone	ì	JTM (NAD83) (Mete]Zone 12N]Zone 13N	Lat/Long (WGS84) (to the nearest 1/10 th of second)
POD Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves, Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name
CC-01090	103°11'13.3"W	34°24'27.1"N	Hillcrest Park well: T02N, R36E, Section 8, NW1/4 SW1/4 SE1/4
CC-01090-S	103°10'55.8"W	34°24'29.3"N	Municipal golf course well: T02N, R36E, S 8, NW¼ SE¼ SE½
CC-01090-S2	103°10'44.6"W	34°24'42.3"N	Guy Leeder well: T02N, R36E, Section 8, SE1/4
NOTE: If more PODS need to Additional point of diversion	o be described, com n descriptions are a	nplete form WR-08 ttached:	(Attachment 1 − POD Descriptions) ■ No If yes, how many
Point of Diversion is on Land (
Other description relating poin	at of diversion to comr	mon landmarks, stre	eets, or other:
		OR OSE INTERNAL	USE Application for Permit, Form wr-06

File Number:

4. COUNTY WHERE WATER RIGHT IS CURRENTLY USED (Required)

Trn Number:

7. CURRENT or MOVE-FROM PLACE(S) OF USE (Required)

The land is legally described by (check all that app	oly):		- Cumusus Damanta	Ma.	
■ Public Land Survey System (PLSS) (quarters, section, township, range)		☐ Hydrographic Survey Report or Map☐ Subdivision☐ Grant			
☐ Irrigation or Conservation District Map					
Complete the blocks below for all tracts of land (more than one description can be provided for a tract if available):					
PLSS Quarters or Halves, and/or Name of Hydrographic Survey, and/or Name of Irrigation or Conservation District, and/or Name and County of Subdivision	PLSS Section and/or Map No. and/or Lot No.	PLSS Township and/or Tract No. (Please list each tract individually)	PLSS Range	Acres	Priority
and/or Grant		<u>and/or</u> Block No.			
SE1/4	8	T02N	R36E	0	12/31/1934
			Total Acres:	0	
Other description relating place of use to common landmarks, streets, or other:					
Place of use is on land owned by (required): City of Clovis					
Are there other sources of water for these lands? No ■ Yes □ describe by OSE file number:					
Note: If an Enderal or State Land, please provide	do conv of loco				

FOR OSE INTERNAL USE	Application for Permit, Form wr-06
File Number:	Trn Number:

8. MOVE-TO PURPOSE OF USE AND AMOUNT OF WATER

Check all that apply: Domestic Liveste Municipal Indust Other Use (specify): Pollu Describe a specific use If applicating etc): Remediation	rial Commerc tion Recovery		Amount of Water (acre-feet per annum): If more details are needed, type "See Comments" in "Other" field below, and explain in Additional Statements Section. Diversion: Consumptive Use: Other (include units):					
9. MOVE-TO POINT(S) OF DIVERSION (POD) (Complete this section ONLY if adding or replacing a POD)								
☐ Surface POD OR ■	Ground Water POD	(Well)						
Name of ditch, acequia, or	spring:							
Stream or water course:			Tributary of:					
If application proposes a new Attachment 2. Check here			dam, storage dam, main canal, and/or pipeline, complete ication packet.					
Latitude/Longitude (Lat/Lon	g - WGS84). ct VII (Cimarron) cus (Feet)	•	a PLSS location in addition to above. Lat/Long (WGS84) (to the nearest 1/10 th of second)					
POD Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves, Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name					
CC-02536 POD6 (MW-11)	884412.98	1244812.45	SW SW NW NW, S8, T2N, R36E					
CC-02536 POD7 (MW-12)	884520.19	1245128.28	NW SW NW NW, S8, T2N, R36E					
CC-02536 POD5 (BW-7R)	884291.06	1245210.02	NW SW NW NW, S8, T2N, R36E					
CC-02536 POD1 (RW-1)	884125.45	1245546.79	NE NE NE NE, S7, T2N, R36E					
	NOTE: If more PODS need to be described, complete form WR-08 (Attachment 1 – POD Descriptions) Additional POD descriptions are attached: ☑ Yes ☐ No If yes, how many 6							
Other description relating poir	nt(s) of diversion to co	mmon landmarks	, streets, or other: ~21st & Commerce Street intersection, Clovis					
Point of Diversion is on Land	Owned by: Various (a	ccess agreements	s are in place with each landowner)					
Note: The following information is for wells only. If more than one (1) well needs to be described, provide attachment.								
Approximate depth of well (feet): Attachment 1 Outside diameter of well casing (inches):								
Driller Name:			Driller License Number:					
If replacing the current well, is the current well to be plugged?								

FOR OSE INTERNAL USE

Application for Permit, Form wr-06

File Number:

Trn Number:

10. MOVE-TO PLACE(S) OF USE (Complete this section ONLY if adding or changing a place of use)

List each individually The land is legally described by (check all that apply): ☐ Hydrographic Survey Report or Map Subdivision ■ Public Land Survey System (PLSS) (quarters, section, township, range) ☐ Grant ☐ Irrigation or Conservation District Map Complete the blocks below for all tracts of land (more than one description can be provided for a tract if available): PLSS Quarters or Halves, **PLSS PLSS PLSS** Priority Acres and/or Section Township Range Name of Hydrographic Survey, and/or and/or and/or Map No. Tract No. (Please list Name of Irrigation or Conservation District, and/or each tract and/or Lot No. individually) Name and County of Subdivision and/or and/or Block No. Grant Former Y Station State Lead Site 7 NE1/4 T02N R36E NA NA **Total Acres:** 0 Other description relating place of use to common landmarks, streets, or other: Place of use is on land owned by (required): Various (site address is 721 Commerce Way, Clovis, NM) Are there other sources of water for these lands? No Yes \(\) describe by OSE file number:

Note: If on Federal or State Land, please provide copy of lease.

FOR OSE INTERNAL USE	Application for Permit, Form wr-06		
File Number:	Trn Number:		

11. ACEQUIA OR COMMUNITY DITCH REQUIREMENTS
■ A. The water right is not within a Community Ditch or Acequia
☐ B. The water right is within a Community Ditch or Acequia. If you checked box B you must:
1) Attach documentary evidence provided by commissioners of the Community Ditch or Acequia confirming applicant's compliance with any applicable requirement for the change adopted by the Community Ditch or Acequia or
2) Attach an affidavit from the commissioners of the Community Ditch or Acequia stating that no such requirement has been adopted by the relevant association bylaws.
This documentation is required pursuant to NMSA 1978 § 72-5-24.1.
12. ADDITIONAL STATEMENTS OR EXPLANATIONS
Purpose of the application is to make up to 50.0 acre-feet of City of Clovis water rights available for pollution recovery purposes at the Former Y Station, NMED-PSTB State Lead Site. See attached Water Use Agreement.
Move-to points of diversion will be limited to a combined diversion of 50.0 acre-feet/year, metered and reported separately. The approximate pumping rates by well are included on the attached table (Attachment 2).
The water will be pumped, treated, and then discharged to the City of Clovis sanitary sewer.

FOR OSE INTERNAL USE

Application for Permit, Form wr-06

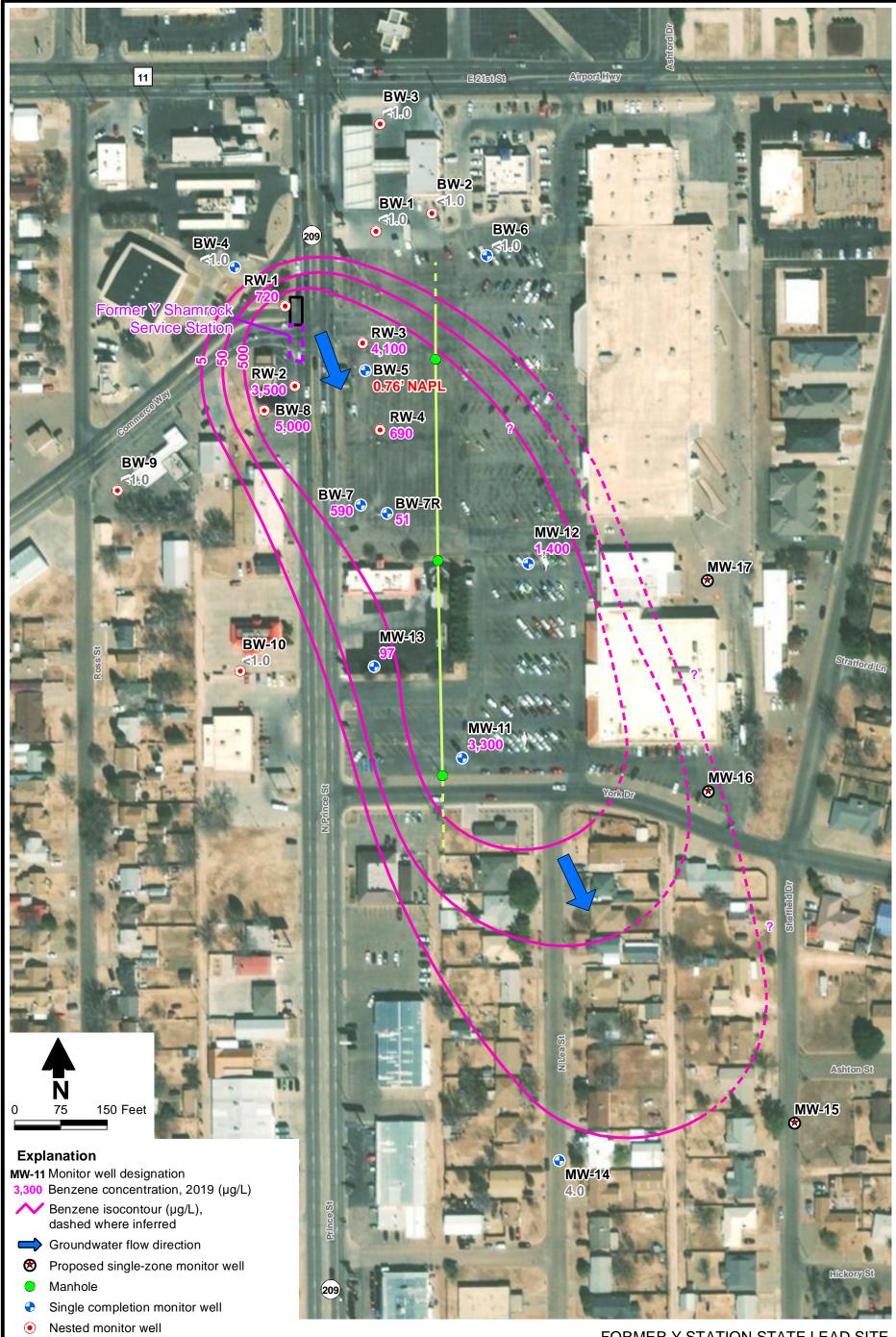
File Niversham	T N 1
File Number:	Trn Number:

ACKNOWLEDGEMENT

I, We (name of applicant(s)), City of Clovis a	nd New Mexico Environment Department	
., (Print Name(s)	
affirm that the foregoing statements are true	to the best of (my, our) knowledge and belief.	
Applicant Signature	 Applicant Signatu	re
Applicant digitator	, ipplicant oighata	
	ACTION OF THE STATE ENGINEER	
	This application is:	
	☐ approved ☐ partially approved	denied
provided it is not exercised to the detriment Mexico nor detrimental to the public welfare	t of any others having existing rights, and is not e and further subject to the attached conditions	contrary to the conservation of water in New of approval.
Witness my hand and seal this	day of 20	for
Witness my hand and seal this	day of 20	, for
	, New Mexico State Eng	gineer
_		
By: Signature	Print	
_		
Title: Print		
Check have if a new well is to be drilled a	under this permit	
Check here if a new well is to be drilled u	under this permit.	
FOR OSE INTERNAL USE		
Well Tag ID Issued?		Application for Permit, Form wr-06
File No.:	Trn No.:	Well ID Tag No.:

NEW MEXICO OFFICE OF THE STATE ENGINEER

ATTACHMENT 1 POINT OF DIVERSION DESCRIPTIONS


This Attachment is to be completed if more than one (1) point of diversion is described on an Application or Declaration.

a. Is this a: Move-From Point of Diversity Move-To Point of Diversity	sion(s)		b. Information on Attachment(s): Number of points of diversion involved in the application:1 Total number of pages attached to the application:1			
☐ Surface Point of Diversion	OR	■ Well				
Name of ditch, acequia,	or spring:					
Stream or water course:						
Tributary of:						
c. Location (Required): Required: Move to POD location	coordinate must l	be either New Mex	ico State Pla	nne (NAD 83), UTM (NAD 83), <u>or</u> Lat/Long (WGS84)		
NM State Plane (NAD83) (feet) NM West Zone NM Central Zone NM East Zone	UTM (NAD83) (meters) Zone 13N Zone 12N	☐ Lat// (WGS8 ² 1/10 th of		OTHER (allowable only for move-from descriptions - see application form for format) PLSS (quarters, section, township, range) Hydrographic Survey, Map & Tract Lot, Block & Subdivision Grant		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
CC-02536 POD2 (RW-2)	884140.96	12454	16.83	SE NE NE NE, S7, T2N, R36E		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
CC-02536 POD3 (RW-3)	884251.49	12454	86.71	SW NW NW NW, S8, T2N, R36E		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
CC-02536 POD4 (RW-4)	884279.77	12453	46.00	SW NW NW, S8, T2N, R36E		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
CC-02536 POD8 (MW-13)	884269.96	12449	60.74	NW SW NW NW, S8, T2N, R36E		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
CC-02548 POD3 (MW-16)	not surveyed ye	et		SW NW NW, S8, T2N, R36E		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
CC-02244 POD8 (BW-8)	884091.68	12453	77.10	NE NE NE, S7, T2N, R36E		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		
POD Number:	X or Longitude	Y or Lati	tude	Other Location Description:		

FOR OSE INTERNAL USE Form wr-08

POD DESCRIPTIONS - ATTACHMENT 1

File Number:	Trn N	umber:
Trans Description (optional)		

FORMER Y STATION STATE LEAD SITE
721 COMMERCE WAY
CLOVIS, NEW MEXICO

Sewer main

Attachment 2. Additional Move To Well Information
City of Clovis-NMED CC-01090 Permit Application to Change POD, Purpose, and Place of Use

			Well casing				Proposed	
		Depth	diameter		Driller's	Install date	extraction rate	
OSE POD Number	Monitor well ID	(feet)	(inches)	Driller name	license number	(Month/Year)	(gpm)	Comments
CC-02536 POD6	MW-11	361	5	Richard LeBlanc/YJD	WD-1458	6/2019	4	
CC-02536 POD7	MW-12	362	5	Richard LeBlanc/YJD	WD-1458	7/2019	4	
CC-02536 POD5	BW-7R	362	5	Richard LeBlanc/YJD	WD-1458	8/2019	4	
								Nested completion (other two are 2-
CC-02536 POD1	RW-1	359	4	Richard LeBlanc/YJD	WD-1458	6/2019	2	inch diameter)
								Nested completion (other two are 2-
CC-02536 POD2	RW-2	360.5	4	Richard LeBlanc/YJD	WD-1458	6/2019	2	inch diameter)
								Nested completion (other two are 2-
CC-02536 POD3	RW-3	364.5	4	Richard LeBlanc/YJD	WD-1458	8/2019	2	inch diameter)
								Nested completion (other two are 2-
CC-02536 POD4	RW-4	366	4	Richard LeBlanc/YJD	WD-1458	9/2019	2	inch diameter)
CC-02536 POD8	MW-13	362	5	Richard LeBlanc/YJD	WD-1458	8/2019	4	Contingency extraction well
CC-02548 POD3	MW-16	364	5	Richard LeBlanc/YJD	WD-1458	5/2020	4	Contingency extraction well
								Nested completion (other two are 2-
CC-02244 POD8	BW-8	352	4	Richard LeBlanc/YJD	WD-1458	11/2015	2	inch diameter)

gpm = gallons per minute

ID = identification

POD = point of diversion

YJD = Yellow Jacket Drilling

TEMPORARY WATER RIGHT USE AGREEMENT

THIS AGREEMENT is made this ____ day of Month, 2020 by and between the City of Clovis, whose address is 321 N. Connelly St., Clovis, NM 88101, hereinafter referred to as "Water Right Owner", and the New Mexico Environment Department, Petroleum Storage Tank Bureau, whose address is 2905 Rodeo Park Drive East, Building 1, Santa Fe, NM 87505, hereinafter referred to as "Water Right User".

WHEREAS, the Water Right Owner holds perpetual water rights ("water rights") with consumptive duty diversionary rights totaling 1,162.16 acre-feet per year under New Mexico Office of the State Engineer (OSE) file number CC-01090, as more particularly set forth in Exhibit "A" attached hereto and incorporated herein by reference as though fully set forth;

and

WHEREAS, the parties desire to set forth the terms and conditions of their agreement.

NOW, THEREFORE, IT IS MUTUALLY AGREED AS FOLLOWS:

1. <u>PROPERTY:</u> Water Right Owner, upon the terms, provisions and conditions hereinafter contained, shall make available to the Water Right User up to 50.0 acre-feet per year of consumptive water rights in supplemental pollution recovery wells associated with the New Mexico Environment Department-Petroleum Storage Tank Bureau Former Y Station State Lead Site, located at 721 Commerce Way in Clovis, New Mexico (Site).

The transfer to the new points of diversion and place and purpose of use, and all fees associated therewith shall be the responsibility of the Water Right User and its designated agents. If additional extraction wells are needed in the future, additional permitting will be coordinated and paid for by the Water Right User or its designated agents.

- 2. <u>PRICE:</u> The total price for use of the Water Right Owner's water right shall be the sum of \$0.00 dollars, but the Water Right User or its designated agents will pay City of Clovis' current industrial discharge rate for discharge of treated water to the City sewer, with the total cost based on the metered discharge. Fees will be assessed and paid monthly.
- 3. <u>STATE ENGINEER APPROVAL:</u> Water Right Owner and Water Right User shall promptly apply to the OSE for approval of a temporary change in point of diversion, and purpose and place of use of water rights to the site extraction wells. The parties shall diligently and in good faith

cooperate to obtain final approval of the application by the OSE. All expenses related to the temporary water right use agreement, including any legal fees in the case of a protest, shall be borne by the Water Right User. At the end of the project, the Water Right User will be responsible for all plugging, permitting, and associated costs.

- 4. <u>ATTORNEY FEES AND COSTS:</u> In the event an action is brought to enforce any of the terms and conditions of this Agreement, the prevailing party shall be entitled to recover from the other party as part of the prevailing party's costs, reasonable attorney fees and costs, the amount of which shall be fixed by the court and shall be made a part of any Judgment or Decree rendered.
- 5. <u>ENTIRE AGREEMENT:</u> This Agreement constitutes the entire agreement between the parties and replaces any existing agreement. No representations, warranties or promises pertaining to the Agreement or any other property affected by this Agreement have been made or shall be binding upon either of the parties except as expressly stated herein. This Agreement may not in any way be changed orally and cannot be reassigned to other parties except by an agreement in writing, signed by both parties

IN WITNESS WHEREOF, the parties have executed this Agreement as of the date and year

Exhibit A. Former Y Station Site Remediation Project Additional Information

The New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB), and their consultant Daniel B. Stephens & Associates, Inc. (DBS&A), are preparing the final remediation plan for corrective action at the Former Y Station State Lead Site. The site is located at 721 Commerce Way in Clovis, and a large dissolved-phase hydrocarbon plume is located south of the Allsup's, near the intersection of Prince Street and Commerce Way. Water rights in the Curry County Underground Water Basin are needed for the corrective action at this site.

The treatment system will be run for 5 to 7 years. Pending access, regulatory approvals, and funding, the treatment system will be installed in the first quarter of 2021. Operation could begin as early as third quarter of 2021. The treatment system is being designed for a groundwater extraction rate of 30 gallons per minute (gpm), which is equivalent to approximately 50 acre-feet per year (ac-ft/yr). The temporary water use agreement is for a volume of up to 50 ac-ft/yr under New Mexico Office of the State Engineer (OSE) file number CC-01090, for a term of not to exceed ten years (e.g., July 1, 2021 through December 31, 2030).

Through its consultant, NMED PSTB intends to pay the City of Clovis (the City) for discharge of the treated water, at the City's current industrial discharge rate of \$1.12 per thousand gallons (kgal). A flow rate of 30 gpm is equivalent to 43.2 kgal per day. Assuming that the treatment system is run 365 days per year, at the industrial discharge fee of \$1.12/kgal, NMED PSTB will pay up to \$17,660.16 per year in discharge fees, plus New Mexico Gross Receipts Tax, under the temporary water use agreement. There will be no additional charge for using the City's water rights.

An application to change the point of diversion and place and purpose of use for up to 50 ac-ft/yr of water rights under OSE file number CC-01090 will be filed with the OSE. Public notice of this application will be required. NMED PSTB's consultant will complete the public notice tasks, which will be paid for by NMED PSTB. The application will be filed as soon as the temporary water use agreement has been signed, to ensure that water can be pumped once the treatment system is ready for operation.

New Mexico Office of the State Engineer

Water Right Summary

WR File Number: CC 01090 Subbasin: CU Cross Reference:-

Primary Purpose: IRR IRRIGATION

Primary Status: PMT PERMIT

Total Acres: 0 Subfile: - Header: -

Total Diversion: 1162.16 Cause/Case: -

Owner: CITY OF CLOVIS
Contact: JOE THOMAS

Documents on File

			Sta	tus		From/			
Trn #	Doc	File/Act	1	2	Transaction Desc.	То	Acres	Diversion (Consumptive
get 440686	SUPP	L 1997-10-03	PMT	ET	CC 01090 S-2	Т	0	1162.16	1162.16
get 314716	DCL	1996-11-25			CC 01090	Т	0	1162.16	1162.16

Current Points of Diversion

Q Q Q (NAD83 UTM in meters)

 POD Number
 Well Tag
 Source 6416 4 Sec Tws Rng
 X
 Y
 Other Location Desc

 CC 01090
 Shallow 1 3 4 08 02N 36E
 666669 3808823*
 3808823*

CC 01090 S Shallow 1 4 4 08 02N 36E 667072 3808830*

CC 01090 S2 Shallow 4 08 02N 36E 666971 3808925* N1/2

An () after northing value indicates UTM location was derived from PLSS - see Help

Priority Summary

Priority	Status	Acres	Diversion	Pod Number	Source
12/31/1934	DCL	0	1162.16	CC 01090	Shallow
				CC 01090 S	Shallow
				CC 01000 S2	Shallow

Place of Use

Source

 Acres Diversion
 CU Use Priority
 Source Description

 0
 1162.16
 1162.16 IRR 12/31/1934 GW

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/4/20 4:48 PM Page 1 of 1 WR SUMMARY - CC 01090

Appendix J

Legal Notice of Publication

NOTICE OF SUBMISSION OF FINAL REMEDIATION PLAN

Date of Notice: July 14 and 21, 2021

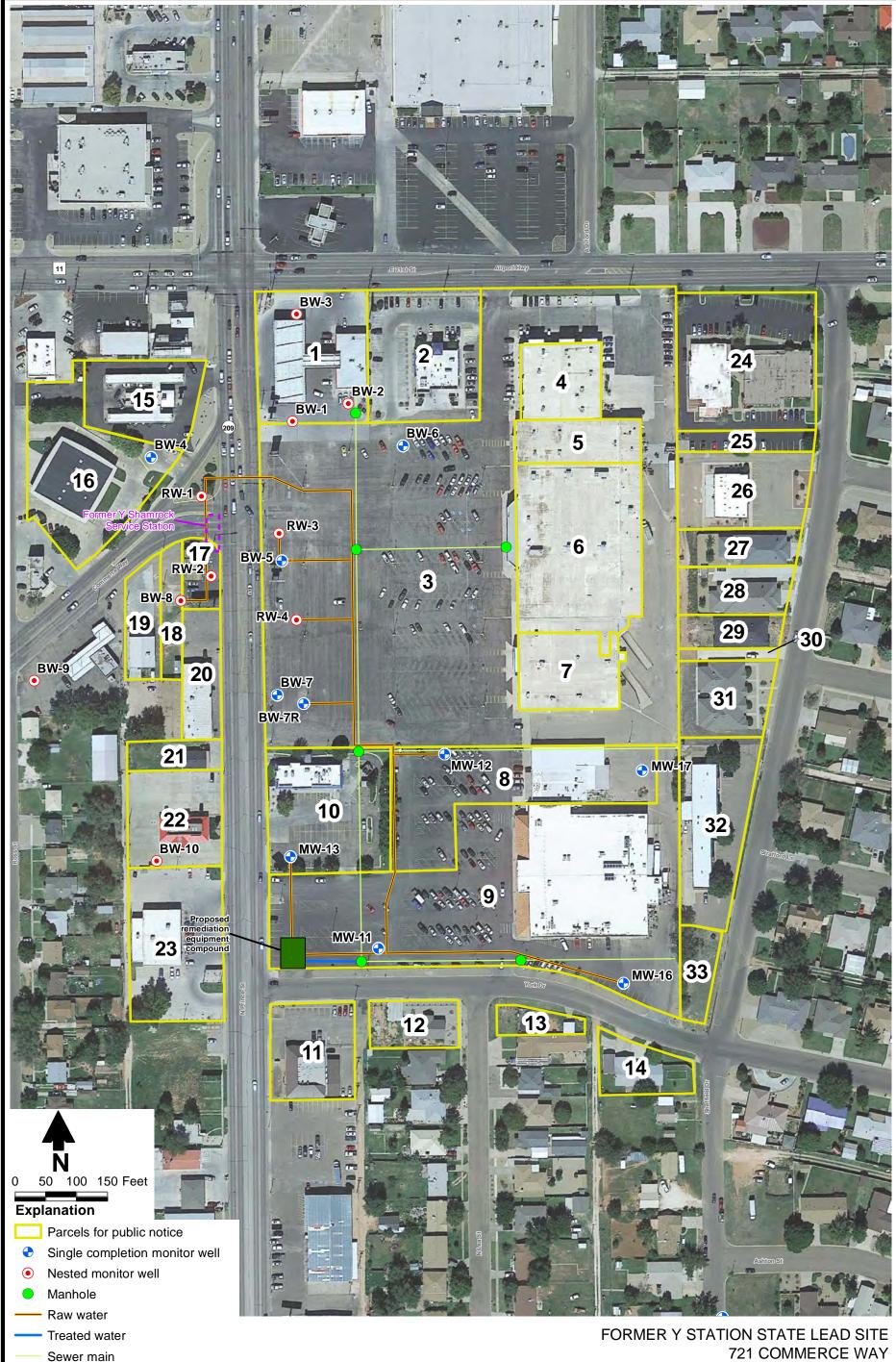
Notice is hereby given by the Petroleum Storage Tank Bureau (PSTB) of the New Mexico Environment Department (NMED) of the submission of a Final Remediation Plan (Plan) on July 16, 2021, as follows:

- 1. The Plan proposes actions to remediate a release of petroleum or petroleum products into the environment.
- 2. The release occurred at the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico. Impacts associated with the release extend under the intersection and adjacent property to the southeast. With permission, remediation equipment will be located in the parking lot of the Albertson's grocery store located at 1905 N. Prince Street, at the northeast corner of Prince Street and York Drive.
- 3. The Plan proposes to remove gasoline contamination through the use of dual-phase extraction technology from existing on-site and downgradient wells. Extracted hydrocarbon vapors will be treated using thermal and/or catalytic oxidation technology and discharged to the atmosphere. Extracted groundwater will be treated with diffused aeration and discharged to the sanitary sewer, pending required regulatory approval.
- 4. Copies of the Final Remediation Plan can be viewed by interested parties at the NMED PSTB offices at 1) 2905 Rodeo Park Drive East, Building 1, Santa Fe, New Mexico, 87505; and 2) 1914 W. Second Street, Roswell, New Mexico, 88201. Due to policies in place in response to the COVID-19 pandemic, arrangements must be made 48 hours in advance for an in-person viewing of the Plan. Please contact the NMED PSTB project manager, Ms. Renee Romero, by telephone at 505-372-8332 or email at d.renee.romero @state.nm.us to arrange a viewing.

In addition, the Final Remediation Plan and all applicable data may be viewed at the following website: http://dbsa-client-access.com/PSTB/file_access.htm. Services may be arranged for translation of documents, for interpreters, and for obtaining services for persons with disabilities by contacting the PSTB Project Manager. TDD or TTY users, please access phone numbers using the New Mexico Relay Network, 1-800-659-1779 (voice) and 1-800-659-8331 (TTY users).

5. Comments on the Plan may be sent to the PSTB Project Manager: by mail at New Mexico Environment Department Petroleum Storage Tank Bureau, Attn: Renee Romero, 1914 W Second St., Roswell, New Mexico, 88201; by telephone at 505-372-8332; or e-mailed to: d.renee.romero@state.nm.us. Comments sent to the PSTB Project Manager must also be mailed to the NMED Secretary at New Mexico Environment Department, Attn: Secretary Kenney, PO Box 5469, Santa Fe, NM 87502-5469. Comments must be delivered by August 12, 2021. Please include the name of the site "Former Y Station, 721 Commerce Way, Clovis, New Mexico" to ensure comments are correctly assigned to the site.

AVISO DE PRESENTACIÓN DEL PLAN FINAL DE REMEDIACIÓN


Fecha del aviso: 14 y 21 de julio de 2021

Por el presente aviso, la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) notifica la presentación de un Plan Final de Remediación (Plan) el 16 de julio de 2021, como sigue:

- 1. El Plan propone acciones para remediar una liberación de petróleo o productos petrolíferos en el medio ambiente.
- 2. La liberación ocurrió en el sitio de la Antigua Estación Y, ubicada en la esquina noroeste de Prince Street y Commerce Way en Clovis, Nuevo México. Los impactos asociados con la liberación se extienden bajo la intersección y la propiedad adyacente al sureste. Con permiso, el equipo de remediación se ubicará en el estacionamiento de la tienda de comestibles Albertson's ubicada en 1905 N. Prince Street, en la esquina noreste de Prince Street y York Drive.
- 3. El plan propone eliminar la contaminación por gasolina mediante el uso de tecnología de extracción de doble fase en los pozos existentes en el lugar y en los pozos descendentes. Los vapores de hidrocarburos extraídos se tratarán mediante tecnología de oxidación térmica y/o catalítica y se descargarán a la atmósfera. Las aguas subterráneas extraídas se tratarán con aireación difusa y se verterán al alcantarillado sanitario, pendiente de la aprobación regulatoria requerida.
- 4. Las partes interesadas pueden ver copias del Plan Final de Remediación en las oficinas de la PSTB del NMED en 1) 2905 Rodeo Park Drive East, Edificio 1, Santa Fe, NM, 87505; y 2) 1914 W. Second Street, Roswell, NM, 88201. Debido a las políticas establecidas en respuesta a la pandemia por COVID-19, se deben hacer acomodaciones con 48 horas de anticipación para ver el Plan en persona. Comuníquese con la gerente del proyecto de la PSTB del NMED, la Sra. Renee Romero, por teléfono llamando al 505-372-8332 o por correo electrónico a d.renee.romero @state.nm.us para concertar una visita.

Además, el Plan Final de Remediación y todos los datos aplicables pueden verse en el siguiente sitio web: http://dbsa-client-access.com/PSTB/file_access.htm. Se pueden concertar servicios de traducción de documentos, de intérpretes y de obtención de servicios para personas con discapacidades comunicándose con la gerente del proyecto de la PSTB. Los usuarios de TDD o TTY, pueden acceder a los números de teléfono usando la Red de Retransmisión de Nuevo México, 1-800-659-1779 (voz) y 1-800-659-8331 (usuarios de TTY).

5. Los comentarios sobre el Plan pueden enviarse a la gerente del proyecto de la PSTB: por correo postal a New Mexico Environment Department Petroleum Storage Tank Bureau, Attn: Renee Romero, 1914 W Second St., Roswell, NM, 88201; por teléfono llamando al 505-372-8332; o por correo electrónico a: d.renee.romero@state.nm.us. Los comentarios enviados a la gerente del proyecto de la PSTB también deben enviarse por correo postal al secretario del NMED de Nuevo México, Environment Department, Attn: Secretary Kenney, PO Box 5469, Santa Fe, NM 87502-5469. Los comentarios deben ser entregados a más tardar hasta el 12 de agosto de 2021. Incluya el nombre del sitio "Former Y Station, 721 Commerce Way, Clovis, New Mexico" para asegurar que los comentarios sean asignados correctamente al sitio.

721 COMMERCE WAY CLOVIS, NEW MEXICO **Proposed Remediation System Layout**

12741 LLC 5435 Lemon Gulch Road Castle Rock, Co 80108

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Darrell & Andrea Armstrong 221 York Drive Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Autozone #2514 PO Box 2198, Dept. 8088 Memphis, TN 38101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

B & B Merritt Real Estate LLC 750 North 17th Street Las Cruces, NM 88005

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Brian Bailey 7200 A Windsor Drive Allentown, PA 18106

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

John Bourne and William L. Erwin 321 Remuda Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Joline Chaparro 1717 North Lea Street Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Clovis Grocery Owners LLC c/o Paradigm Tax Group PO Box 800729 Dallas, TX 75380

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E. Project Engineer/Ingeniero

Clovis Shopping Center LLC 5435 Lemon Gulch Road Castle Rock, CO 80108

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Clovis Shopping Center LLC Pace Properties Inc. 1401 S Brentwood Boulevard, Suite 900 Brentwood, MO 63144

Re: Proposed Final Remediation Plan / Plan de Remediación Final por Former Y Station Site
Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E. Project Engineer/Ingeniero

Gerald V. Cryer PO Box 7730 Ruidoso, NM 88355

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Lawrence & Anna Kolek 15 North Village Drive Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/Ingeniero

Legacy Capital LLC 2020 Sheffield Drive Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Lotharlo LLC 437 Audraine Drive Glendale, CA 91202

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Jazmin Loya 619 Dixie Drive Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Dennis Matsui Trustee Dennis Matsui Living Trust 89 Old Agua Fria Road West Santa Fe, NM 87508

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E. Project Engineer/Ingeniero

Raymond J. Montoya 1908 North Prince Street Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

National Retail Properties LP 450 South Orange Avenue, Suite 900 Orlando, Fl 32801

Re: Proposed Final Remediation Plan / Plan de Remediación Final por Former Y Station Site
Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

New Mexico Bank & Trust P O Box 730 Clovis, NM 88102

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Paradise Rentals LLC PO Box 683 Clovis, NM 88102

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Realty Income Properties 17 LLC Attn:Pm Dept #4796 c/o Hobby Lobby 11995 El Camino Real San Diego, CA 92130

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Jeffrey D. Rosenbury 400 East 19th Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Sam & Julie Snell Sam & Julie Snell Trust c/o Mark Sweetman, Esq PO Box 397 Clovis, NM 88102

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Jeff E. and Mati Tharp 553 State Road 523 Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.

Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

Tierra Blanca Galleria LLC 3220 Axtell Clovis, NM 88101

Re: Proposed Final Remediation Plan / Plan de Remediación Final por

Former Y Station Site

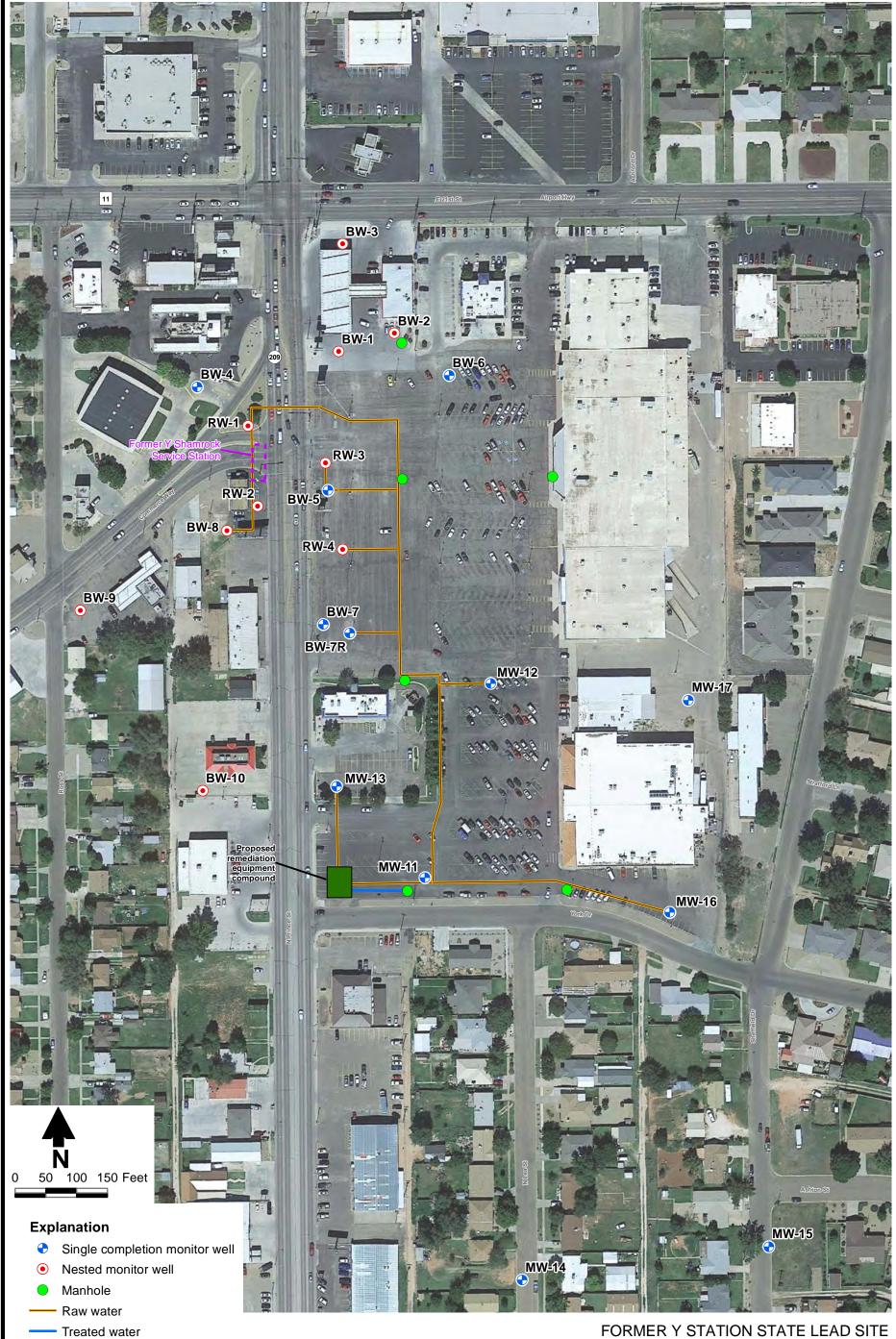
Northwest Corner of Prince Street and Commerce Way, Clovis, NM

Dear Addressee:

Enclosed please find a copy of the announcement of the submission of the proposed Final Remediation Plan for the Former Y Station site, located at the northwest corner of Prince Street and Commerce Way in Clovis, New Mexico.

If you have any questions or comments, please contact the project manager at the New Mexico Environment Department Petroleum Storage Tank Bureau office in Roswell, New Mexico.

Adjunto encontrará aviso de la presentación de un Plan de Remediación Final por Bell Gas #1186 (TR's Market) Site, 101 Sun Valley Road, Alto, Nuevo Mexico.


Los comentarios sobre el plan pueden enviarse a la gerente de proyectos de la Oficina de Tanques de Almacenamiento de Petróleo (PSTB, por sus siglas en inglés) del Departamento de Medio Ambiente de Nuevo México (NMED, por sus siglas en inglés) de Roswell, Nuevo Mexico.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Thomas Golden, P.E.

Project Engineer/ Ingeniero

FORMER Y STATION STATE LEAD SITE
721 COMMERCE WAY
CLOVIS, NEW MEXICO

Appendix K

Schedule for Implementation of Final Remediation Plan

Former Y Station FRP Implementation

Task	Calendar Days	Start Date	End Date
Final FRP Submittal			7/16/2021
Address PSTB and Public Comments	45	7/16/2021	8/30/2021
FRP Approval	7	8/30/2021	9/6/2021
Work Plan for FRP Implementation	30	9/6/2021	10/6/2021
Work Plan Approval	60	10/6/2021	12/5/2021
Equipment Procurement	84	12/5/2021	2/27/2022
Trenching/Piping	90	12/19/2021	3/19/2022
Equipment Installation	21	3/19/2022	4/9/2022
Startup	7	4/9/2022	4/16/2022
First Year System Operations	365	4/16/2022	4/16/2023